imgaug.augmenters.color¶
Augmenters that affect image colors or image colorspaces.
List of augmenters:
InColorspace
(deprecated)WithColorspace
WithBrightnessChannels
MultiplyAndAddToBrightness
MultiplyBrightness
AddToBrightness
WithHueAndSaturation
MultiplyHueAndSaturation
MultiplyHue
MultiplySaturation
RemoveSaturation
AddToHueAndSaturation
AddToHue
AddToSaturation
ChangeColorspace
Grayscale
ChangeColorTemperature
KMeansColorQuantization
UniformColorQuantization
Posterize
-
class
imgaug.augmenters.color.
AddToBrightness
(add=(-30, 30), to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.MultiplyAndAddToBrightness
Add to the brightness channels of input images.
This is a wrapper around
WithBrightnessChannels
and hence performs internally the same projection to random colorspaces.Added in 0.4.0.
Supported dtypes:
See
MultiplyAndAddToBrightness
.Parameters: - add (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See
Add
. - to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See
WithBrightnessChannels
. - from_colorspace (str, optional) – See
WithBrightnessChannels
. - seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
. - name (None or str, optional) – See
__init__()
. - random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
- deterministic (bool, optional) – Deprecated since 0.4.0.
See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.AddToBrightness((-30, 30))
Convert each image to a colorspace with a brightness-related channel, extract that channel, add between
-30
and30
and convert back to the original colorspace.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. - add (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See
-
class
imgaug.augmenters.color.
AddToHue
(value=(-255, 255), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.AddToHueAndSaturation
Add random values to the hue of images.
The augmenter first transforms images to HSV colorspace, then adds random values to the H channel and afterwards converts back to RGB.
If you want to change both the hue and the saturation, it is recommended to use
AddToHueAndSaturation
as otherwise the image will be converted twice to HSV and back to RGB.This augmenter is a shortcut for
AddToHueAndSaturation(value_hue=...)
.Supported dtypes:
Parameters: value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the hue of all pixels. This is expected to be in the range
-255
to+255
and will automatically be projected to an angular representation using(hue/255) * (360/2)
(OpenCV’s hue representation is in the range[0, 180]
instead of[0, 360]
).- If an integer, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the discrete range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.AddToHue((-50, 50))
Sample random values from the discrete uniform range
[-50..50]
, convert them to angular representation and add them to the hue, i.e. to theH
channel inHSV
colorspace.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
AddToHueAndSaturation
(value=None, value_hue=None, value_saturation=None, per_channel=False, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.meta.Augmenter
Increases or decreases hue and saturation by random values.
The augmenter first transforms images to HSV colorspace, then adds random values to the H and S channels and afterwards converts back to RGB.
This augmenter is faster than using
WithHueAndSaturation
in combination withAdd
.TODO add float support
Supported dtypes:
See
change_colorspace_()
.Parameters: value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the hue and saturation of all pixels. It is expected to be in the range
-255
to+255
.- If this is
None
, value_hue and/or value_saturation may be set to values other thanNone
. - If an integer, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the discrete range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
- If this is
value_hue (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the hue of all pixels. This is expected to be in the range
-255
to+255
and will automatically be projected to an angular representation using(hue/255) * (360/2)
(OpenCV’s hue representation is in the range[0, 180]
instead of[0, 360]
). Only this or value may be set, not both.- If this and value_saturation are both
None
, value may be set to a non-None
value. - If an integer, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the discrete range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
- If this and value_saturation are both
value_saturation (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the saturation of all pixels. It is expected to be in the range
-255
to+255
. Only this or value may be set, not both.- If this and value_hue are both
None
, value may be set to a non-None
value. - If an integer, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the discrete range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
- If this and value_hue are both
per_channel (bool or float, optional) – Whether to sample per image only one value from value and use it for both hue and saturation (
False
) or to sample independently one value for hue and one for saturation (True
). If this value is a floatp
, then forp
percent of all images per_channel will be treated asTrue
, otherwise asFalse
.This parameter has no effect is value_hue and/or value_saturation are used instead of value.
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.AddToHueAndSaturation((-50, 50), per_channel=True)
Add random values between
-50
and50
to the hue and saturation (independently per channel and the same value for all pixels within that channel).Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
get_parameters
(self)[source]¶ See
get_parameters()
.
-
class
imgaug.augmenters.color.
AddToSaturation
(value=(-75, 75), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.AddToHueAndSaturation
Add random values to the saturation of images.
The augmenter first transforms images to HSV colorspace, then adds random values to the S channel and afterwards converts back to RGB.
If you want to change both the hue and the saturation, it is recommended to use
AddToHueAndSaturation
as otherwise the image will be converted twice to HSV and back to RGB.This augmenter is a shortcut for
AddToHueAndSaturation(value_saturation=...)
.Supported dtypes:
Parameters: value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the saturation of all pixels. It is expected to be in the range
-255
to+255
.- If an integer, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the discrete range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.AddToSaturation((-50, 50))
Sample random values from the discrete uniform range
[-50..50]
, and add them to the saturation, i.e. to theS
channel inHSV
colorspace.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
ChangeColorTemperature
(kelvin=(1000, 11000), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.meta.Augmenter
Change the temperature to a provided Kelvin value.
Low Kelvin values around
1000
to4000
will result in red, yellow or orange images. Kelvin values around10000
to40000
will result in progressively darker blue tones.Color temperatures taken from http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html
Basic method to change color temperatures taken from https://stackoverflow.com/a/11888449
Added in 0.4.0.
Supported dtypes:
See
change_color_temperatures_()
.Parameters: kelvin (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Temperature in Kelvin. The temperatures of images will be modified to this value. Must be in the interval
[1000, 40000]
.- If a number, exactly that value will always be used.
- If a
tuple
(a, b)
, then a value from the interval[a, b]
will be sampled per image. - If a
list
, then a random value will be sampled from that
list
per image. * If aStochasticParameter
, then a value will be sampled perimage from that parameter.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.ChangeColorTemperature((1100, 10000))
Create an augmenter that changes the color temperature of images to a random value between
1100
and10000
Kelvin.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
get_parameters
(self)[source]¶ See
get_parameters()
.
-
class
imgaug.augmenters.color.
ChangeColorspace
(to_colorspace, from_colorspace='RGB', alpha=1.0, seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.meta.Augmenter
Augmenter to change the colorspace of images.
Note
This augmenter is not tested. Some colorspaces might work, others might not.
..note:
This augmenter tries to project the colorspace value range on 0-255. It outputs dtype=uint8 images.
Supported dtypes:
See
change_colorspace_()
.Parameters: to_colorspace (str or list of str or imgaug.parameters.StochasticParameter) – The target colorspace. Allowed strings are:
RGB
,BGR
,GRAY
,CIE
,YCrCb
,HSV
,HLS
,Lab
,Luv
. These are also accessible viaimgaug.augmenters.color.CSPACE_<NAME>
, e.g.imgaug.augmenters.CSPACE_YCrCb
.- If a string, it must be among the allowed colorspaces.
- If a list, it is expected to be a list of strings, each one being an allowed colorspace. A random element from the list will be chosen per image.
- If a StochasticParameter, it is expected to return string. A new sample will be drawn per image.
from_colorspace (str, optional) – The source colorspace (of the input images). See to_colorspace. Only a single string is allowed.
alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – The alpha value of the new colorspace when overlayed over the old one. A value close to 1.0 means that mostly the new colorspace is visible. A value close to 0.0 means, that mostly the old image is visible.
- If an int or float, exactly that value will be used.
- If a tuple
(a, b)
, a random value from the rangea <= x <= b
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, a value will be sampled from the parameter per image.
seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
BGR
= 'BGR'¶
-
CIE
= 'CIE'¶
-
COLORSPACES
= {'BGR', 'CIE', 'GRAY', 'HLS', 'HSV', 'Lab', 'Luv', 'RGB', 'YCrCb'}¶
-
CV_VARS
= {'BGR2CIE': <MagicMock id='140303154096728'>, 'BGR2GRAY': <MagicMock id='140303154088312'>, 'BGR2HLS': <MagicMock id='140303153990904'>, 'BGR2HSV': <MagicMock id='140303154129944'>, 'BGR2Lab': <MagicMock id='140303154175448'>, 'BGR2Luv': <MagicMock id='140303154179768'>, 'BGR2RGB': <MagicMock id='140303154092184'>, 'BGR2YCrCb': <MagicMock id='140303154113336'>, 'HLS2BGR': <MagicMock id='140303154246264'>, 'HLS2RGB': <MagicMock id='140303154221464'>, 'HSV2BGR': <MagicMock id='140303154229432'>, 'HSV2RGB': <MagicMock id='140303154196376'>, 'Lab2BGR': <MagicMock id='140303154275608'>, 'Lab2RGB': <MagicMock id='140303154295864'>, 'RGB2BGR': <MagicMock id='140303153942936'>, 'RGB2CIE': <MagicMock id='140303153992536'>, 'RGB2GRAY': <MagicMock id='140303153971832'>, 'RGB2HLS': <MagicMock id='140303154017784'>, 'RGB2HSV': <MagicMock id='140303153997080'>, 'RGB2Lab': <MagicMock id='140303154038488'>, 'RGB2Luv': <MagicMock id='140303154046904'>, 'RGB2YCrCb': <MagicMock id='140303154005048'>}¶
-
GRAY
= 'GRAY'¶
-
HLS
= 'HLS'¶
-
HSV
= 'HSV'¶
-
Lab
= 'Lab'¶
-
Luv
= 'Luv'¶
-
RGB
= 'RGB'¶
-
YCrCb
= 'YCrCb'¶
-
get_parameters
(self)[source]¶ See
get_parameters()
.
-
class
imgaug.augmenters.color.
Grayscale
(alpha=1, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.ChangeColorspace
Augmenter to convert images to their grayscale versions.
Note
Number of output channels is still
3
, i.e. this augmenter just “removes” color.TODO check dtype support
Supported dtypes:
See
change_colorspace_()
.Parameters: alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – The alpha value of the grayscale image when overlayed over the old image. A value close to 1.0 means, that mostly the new grayscale image is visible. A value close to 0.0 means, that mostly the old image is visible.
- If a number, exactly that value will always be used.
- If a tuple
(a, b)
, a random value from the rangea <= x <= b
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, a value will be sampled from the parameter per image.
from_colorspace (str, optional) – The source colorspace (of the input images). See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.Grayscale(alpha=1.0)
Creates an augmenter that turns images to their grayscale versions.
>>> import imgaug.augmenters as iaa >>> aug = iaa.Grayscale(alpha=(0.0, 1.0))
Creates an augmenter that turns images to their grayscale versions with an alpha value in the range
0 <= alpha <= 1
. An alpha value of 0.5 would mean, that the output image is 50 percent of the input image and 50 percent of the grayscale image (i.e. 50 percent of color removed).Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
imgaug.augmenters.color.
InColorspace
(to_colorspace, from_colorspace='RGB', children=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Deprecated. Use
WithColorspace
instead.Convert images to another colorspace.
-
class
imgaug.augmenters.color.
KMeansColorQuantization
(n_colors=(2, 16), from_colorspace='RGB', to_colorspace=['RGB', 'Lab'], max_size=128, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color._AbstractColorQuantization
Quantize colors using k-Means clustering.
This “collects” the colors from the input image, groups them into
k
clusters using k-Means clustering and replaces the colors in the input image using the cluster centroids.This is slower than
UniformColorQuantization
, but adapts dynamically to the color range in the input image.Note
This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will not be quantized.
Supported dtypes:
if (image size <= max_size):
- minimum of (
ChangeColorspace
,quantize_kmeans()
)
if (image size > max_size):
- minimum of (
ChangeColorspace
,quantize_kmeans()
,imresize_single_image()
)
Parameters: n_colors (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Target number of colors in the generated output image. This corresponds to the number of clusters in k-Means, i.e.
k
. Sampled values below2
will always be clipped to2
.- If a number, exactly that value will always be used.
- If a tuple
(a, b)
, then a value from the discrete interval[a..b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a
StochasticParameter
, then a value will be sampled per image from that parameter.
to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The colorspace in which to perform the quantization. See
change_colorspace_()
for valid values. This will be ignored for grayscale input images.- If
None
the colorspace of input images will not be changed. - If a string, it must be among the allowed colorspaces.
- If a list, it is expected to be a list of strings, each one being an allowed colorspace. A random element from the list will be chosen per image.
- If a StochasticParameter, it is expected to return string. A new sample will be drawn per image.
- If
from_colorspace (str, optional) – The colorspace of the input images. See to_colorspace. Only a single string is allowed.
max_size (int or None, optional) – Maximum image size at which to perform the augmentation. If the width or height of an image exceeds this value, it will be downscaled before running the augmentation so that the longest side matches max_size. This is done to speed up the augmentation. The final output image has the same size as the input image. Use
None
to apply no downscaling.interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is exceeded. Valid methods are the same as in
imresize_single_image()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.KMeansColorQuantization()
Create an augmenter to apply k-Means color quantization to images using a random amount of colors, sampled uniformly from the interval
[2..16]
. It assumes the input image colorspace to beRGB
and clusters colors randomly inRGB
orLab
colorspace.>>> aug = iaa.KMeansColorQuantization(n_colors=8)
Create an augmenter that quantizes images to (up to) eight colors.
>>> aug = iaa.KMeansColorQuantization(n_colors=(4, 16))
Create an augmenter that quantizes images to (up to)
n
colors, wheren
is randomly and uniformly sampled from the discrete interval[4..16]
.>>> aug = iaa.KMeansColorQuantization( >>> from_colorspace=iaa.CSPACE_BGR)
Create an augmenter that quantizes input images that are in
BGR
colorspace. The quantization happens inRGB
orLab
colorspace, into which the images are temporarily converted.>>> aug = iaa.KMeansColorQuantization( >>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])
Create an augmenter that quantizes images by clustering colors randomly in either
RGB
orHSV
colorspace. The assumed input colorspace of images isRGB
.Attributes: n_colors
Alias for property
counts
.
Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
n_colors
¶ Alias for property
counts
.Added in 0.4.0.
-
class
imgaug.augmenters.color.
MultiplyAndAddToBrightness
(mul=(0.7, 1.3), add=(-30, 30), to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', random_order=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.WithBrightnessChannels
Multiply and add to the brightness channels of input images.
This is a wrapper around
WithBrightnessChannels
and hence performs internally the same projection to random colorspaces.Added in 0.4.0.
Supported dtypes:
Parameters: - mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See
Multiply
. - add (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See
Add
. - to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See
WithBrightnessChannels
. - from_colorspace (str, optional) – See
WithBrightnessChannels
. - random_order (bool, optional) – Whether to apply the add and multiply operations in random
order (
True
). IfFalse
, this augmenter will always first multiply and then add. - seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
. - name (None or str, optional) – See
__init__()
. - random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
- deterministic (bool, optional) – Deprecated since 0.4.0.
See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.MultiplyAndAddToBrightness(mul=(0.5, 1.5), add=(-30, 30))
Convert each image to a colorspace with a brightness-related channel, extract that channel, multiply it by a factor between
0.5
and1.5
, add a value between-30
and30
and convert back to the original colorspace.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. - mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See
-
class
imgaug.augmenters.color.
MultiplyBrightness
(mul=(0.7, 1.3), to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.MultiplyAndAddToBrightness
Multiply the brightness channels of input images.
This is a wrapper around
WithBrightnessChannels
and hence performs internally the same projection to random colorspaces.Added in 0.4.0.
Supported dtypes:
See
MultiplyAndAddToBrightness
.Parameters: - mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See
Multiply
. - to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See
WithBrightnessChannels
. - from_colorspace (str, optional) – See
WithBrightnessChannels
. - seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
. - name (None or str, optional) – See
__init__()
. - random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
- deterministic (bool, optional) – Deprecated since 0.4.0.
See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.MultiplyBrightness((0.5, 1.5))
Convert each image to a colorspace with a brightness-related channel, extract that channel, multiply it by a factor between
0.5
and1.5
, and convert back to the original colorspace.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. - mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See
-
class
imgaug.augmenters.color.
MultiplyHue
(mul=(-3.0, 3.0), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.MultiplyHueAndSaturation
Multiply the hue of images by random values.
The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H channel and afterwards converts back to RGB.
This augmenter is a shortcut for
MultiplyHueAndSaturation(mul_hue=...)
.Supported dtypes:
Parameters: mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all hue values. This is expected to be in the range
-10.0
to+10.0
and will automatically be projected to an angular representation using(hue/255) * (360/2)
(OpenCV’s hue representation is in the range[0, 180]
instead of[0, 360]
). Only this or mul may be set, not both.- If a number, then that multiplier will be used for all images.
- If a tuple
(a, b)
, then a value from the continuous range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.MultiplyHue((0.5, 1.5))
Multiply the hue channel of images using random values between
0.5
and1.5
.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
MultiplyHueAndSaturation
(mul=None, mul_hue=None, mul_saturation=None, per_channel=False, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.WithHueAndSaturation
Multipy hue and saturation by random values.
The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H and S channels and afterwards converts back to RGB.
This augmenter is a wrapper around
WithHueAndSaturation
.Supported dtypes:
See
WithHueAndSaturation
.Parameters: mul (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all hue and saturation values of all pixels. It is expected to be in the range
-10.0
to+10.0
. Note that values of0.0
or lower will remove all saturation.- If this is
None
, mul_hue and/or mul_saturation may be set to values other thanNone
. - If a number, then that multiplier will be used for all images.
- If a tuple
(a, b)
, then a value from the continuous range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
- If this is
mul_hue (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all hue values. This is expected to be in the range
-10.0
to+10.0
and will automatically be projected to an angular representation using(hue/255) * (360/2)
(OpenCV’s hue representation is in the range[0, 180]
instead of[0, 360]
). Only this or mul may be set, not both.- If this and mul_saturation are both
None
, mul may be set to a non-None
value. - If a number, then that multiplier will be used for all images.
- If a tuple
(a, b)
, then a value from the continuous range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
- If this and mul_saturation are both
mul_saturation (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all saturation values. It is expected to be in the range
0.0
to+10.0
. Only this or mul may be set, not both.- If this and mul_hue are both
None
, mul may be set to a non-None
value. - If a number, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the continuous range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
- If this and mul_hue are both
per_channel (bool or float, optional) – Whether to sample per image only one value from mul and use it for both hue and saturation (
False
) or to sample independently one value for hue and one for saturation (True
). If this value is a floatp
, then forp
percent of all images per_channel will be treated asTrue
, otherwise asFalse
.This parameter has no effect if mul_hue and/or mul_saturation are used instead of mul.
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True)
Multiply hue and saturation by random values between
0.5
and1.5
(independently per channel and the same value for all pixels within that channel). The hue will be automatically projected to an angular representation.>>> import imgaug.augmenters as iaa >>> aug = iaa.MultiplyHueAndSaturation(mul_hue=(0.5, 1.5))
Multiply only the hue by random values between
0.5
and1.5
.>>> import imgaug.augmenters as iaa >>> aug = iaa.MultiplyHueAndSaturation(mul_saturation=(0.5, 1.5))
Multiply only the saturation by random values between
0.5
and1.5
.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
MultiplySaturation
(mul=(0.0, 3.0), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.MultiplyHueAndSaturation
Multiply the saturation of images by random values.
The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H channel and afterwards converts back to RGB.
This augmenter is a shortcut for
MultiplyHueAndSaturation(mul_saturation=...)
.Supported dtypes:
Parameters: mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all saturation values. It is expected to be in the range
0.0
to+10.0
.- If a number, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the continuous range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.MultiplySaturation((0.5, 1.5))
Multiply the saturation channel of images using random values between
0.5
and1.5
.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
Posterize
(nb_bits=(1, 8), from_colorspace='RGB', to_colorspace=None, max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.UniformColorQuantizationToNBits
Alias for
UniformColorQuantizationToNBits
.Added in 0.4.0.
Supported dtypes:
See
UniformColorQuantizationToNBits
.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
RemoveSaturation
(mul=1, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color.MultiplySaturation
Decrease the saturation of images by varying degrees.
This creates images looking similar to
Grayscale
.This augmenter is the same as
MultiplySaturation((0.0, 1.0))
.Added in 0.4.0.
Supported dtypes:
See
MultiplySaturation
.Parameters: mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Inverse multiplier to use for the saturation values. High values denote stronger color removal. E.g.
1.0
will remove all saturation,0.0
will remove nothing. Expected value range is[0.0, 1.0]
.- If a number, then that value will be used for all images.
- If a tuple
(a, b)
, then a value from the continuous range[a, b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a StochasticParameter, then a value will be sampled from that parameter per image.
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.RemoveSaturation((0.0, 1.0))
Create an augmenter that decreases saturation by varying degrees.
>>> aug = iaa.RemoveSaturation(1.0)
Create an augmenter that removes all saturation from input images. This is similar to
Grayscale
.>>> aug = iaa.RemoveSaturation(from_colorspace=iaa.CSPACE_BGR)
Create an augmenter that decreases saturation of images in
BGR
colorspace by varying degrees.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
UniformColorQuantization
(n_colors=(2, 16), from_colorspace='RGB', to_colorspace=None, max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color._AbstractColorQuantization
Quantize colors into N bins with regular distance.
For
uint8
images the equation isfloor(v/q)*q + q/2
withq = 256/N
, wherev
is a pixel intensity value andN
is the target number of colors after quantization.This augmenter is faster than
KMeansColorQuantization
, but the set of possible output colors is constant (i.e. independent of the input images). It may produce unsatisfying outputs for input images that are made up of very similar colors.Note
This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will not be quantized.
Supported dtypes:
if (image size <= max_size):
- minimum of (
ChangeColorspace
,quantize_uniform_()
)
if (image size > max_size):
- minimum of (
ChangeColorspace
,quantize_uniform_()
,imresize_single_image()
)
Parameters: n_colors (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –
Target number of colors to use in the generated output image.
- If a number, exactly that value will always be used.
- If a tuple
(a, b)
, then a value from the discrete interval[a..b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a
StochasticParameter
, then a value will be sampled per image from that parameter.
to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The colorspace in which to perform the quantization. See
change_colorspace_()
for valid values. This will be ignored for grayscale input images.- If
None
the colorspace of input images will not be changed. - If a string, it must be among the allowed colorspaces.
- If a list, it is expected to be a list of strings, each one being an allowed colorspace. A random element from the list will be chosen per image.
- If a StochasticParameter, it is expected to return string. A new sample will be drawn per image.
- If
from_colorspace (str, optional) – The colorspace of the input images. See to_colorspace. Only a single string is allowed.
max_size (None or int, optional) – Maximum image size at which to perform the augmentation. If the width or height of an image exceeds this value, it will be downscaled before running the augmentation so that the longest side matches max_size. This is done to speed up the augmentation. The final output image has the same size as the input image. Use
None
to apply no downscaling.interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is exceeded. Valid methods are the same as in
imresize_single_image()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.UniformColorQuantization()
Create an augmenter to apply uniform color quantization to images using a random amount of colors, sampled uniformly from the discrete interval
[2..16]
.>>> aug = iaa.UniformColorQuantization(n_colors=8)
Create an augmenter that quantizes images to (up to) eight colors.
>>> aug = iaa.UniformColorQuantization(n_colors=(4, 16))
Create an augmenter that quantizes images to (up to)
n
colors, wheren
is randomly and uniformly sampled from the discrete interval[4..16]
.>>> aug = iaa.UniformColorQuantization( >>> from_colorspace=iaa.CSPACE_BGR, >>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])
Create an augmenter that uniformly quantizes images in either
RGB
orHSV
colorspace (randomly picked per image). The input colorspace of all images has to beBGR
.Attributes: n_colors
Alias for property
counts
.
Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
n_colors
¶ Alias for property
counts
.Added in 0.4.0.
-
class
imgaug.augmenters.color.
UniformColorQuantizationToNBits
(nb_bits=(1, 8), from_colorspace='RGB', to_colorspace=None, max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.color._AbstractColorQuantization
Quantize images by setting
8-B
bits of each component to zero.This augmenter sets the
8-B
highest frequency (rightmost) bits of each array component to zero. ForB
bits this is equivalent to changing each component’s intensity valuev
tov' = v & (2**(8-B) - 1)
, e.g. forB=3
this results inv' = c & ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111 1100
.This augmenter behaves for
B
similarly toUniformColorQuantization(2**B)
, but quantizes each bin with interval(a, b)
toa
instead of toa + (b-a)/2
.This augmenter is comparable to
PIL.ImageOps.posterize()
.Note
This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will not be quantized.
Added in 0.4.0.
Supported dtypes:
if (image size <= max_size):
- minimum of (
ChangeColorspace
,quantize_uniform()
)
if (image size > max_size):
- minimum of (
ChangeColorspace
,quantize_uniform()
,imresize_single_image()
)
Parameters: nb_bits (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –
Number of bits to keep in each image’s array component.
- If a number, exactly that value will always be used.
- If a tuple
(a, b)
, then a value from the discrete interval[a..b]
will be sampled per image. - If a list, then a random value will be sampled from that list per image.
- If a
StochasticParameter
, then a value will be sampled per image from that parameter.
to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The colorspace in which to perform the quantization. See
change_colorspace_()
for valid values. This will be ignored for grayscale input images.- If
None
the colorspace of input images will not be changed. - If a string, it must be among the allowed colorspaces.
- If a list, it is expected to be a list of strings, each one being an allowed colorspace. A random element from the list will be chosen per image.
- If a StochasticParameter, it is expected to return string. A new sample will be drawn per image.
- If
from_colorspace (str, optional) – The colorspace of the input images. See to_colorspace. Only a single string is allowed.
max_size (None or int, optional) – Maximum image size at which to perform the augmentation. If the width or height of an image exceeds this value, it will be downscaled before running the augmentation so that the longest side matches max_size. This is done to speed up the augmentation. The final output image has the same size as the input image. Use
None
to apply no downscaling.interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is exceeded. Valid methods are the same as in
imresize_single_image()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.UniformColorQuantizationToNBits()
Create an augmenter to apply uniform color quantization to images using a random amount of bits to remove, sampled uniformly from the discrete interval
[1..8]
.>>> aug = iaa.UniformColorQuantizationToNBits(nb_bits=(2, 8))
Create an augmenter that quantizes images by removing
8-B
rightmost bits from each component, whereB
is uniformly sampled from the discrete interval[2..8]
.>>> aug = iaa.UniformColorQuantizationToNBits( >>> from_colorspace=iaa.CSPACE_BGR, >>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])
Create an augmenter that uniformly quantizes images in either
RGB
orHSV
colorspace (randomly picked per image). The input colorspace of all images has to beBGR
.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)Get a list of lists of children of this augmenter. get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one.
-
class
imgaug.augmenters.color.
WithBrightnessChannels
(children=None, to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.meta.Augmenter
Augmenter to apply child augmenters to brightness-related image channels.
This augmenter first converts an image to a random colorspace containing a brightness-related channel (e.g.
V
inHSV
), then extracts that channel and applies its child augmenters to this one channel. Afterwards, it reintegrates the augmented channel into the full image and converts back to the input colorspace.Added in 0.4.0.
Supported dtypes:
Parameters: children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to the brightness channels. They receive images with a single channel and have to modify these.
to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – Colorspace in which to extract the brightness-related channels. Currently,
imgaug.augmenters.color.CSPACE_YCrCb
,CSPACE_HSV
,CSPACE_HLS
,CSPACE_Lab
,CSPACE_Luv
,CSPACE_YUV
,CSPACE_CIE
are supported.- If
imgaug.ALL
: Will pick imagewise a random colorspace from all supported colorspaces. - If
str
: Will always use this colorspace. - If
list
orstr
: Will pick imagewise a random colorspace from this list. - If
StochasticParameter
: A parameter that will be queried once per batch to generate all target colorspaces. Expected to return strings matching theCSPACE_*
constants.
- If
from_colorspace (str, optional) – See
change_colorspace_()
.seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
.name (None or str, optional) – See
__init__()
.random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.WithBrightnessChannels(iaa.Add((-50, 50)))
Add
-50
to50
to the brightness-related channels of each image.>>> aug = iaa.WithBrightnessChannels( >>> iaa.Add((-50, 50)), to_colorspace=[iaa.CSPACE_Lab, iaa.CSPACE_HSV])
Add
-50
to50
to the brightness-related channels of each image, but pick those brightness-related channels only fromLab
(L
) andHSV
(V
) colorspaces.>>> aug = iaa.WithBrightnessChannels( >>> iaa.Add((-50, 50)), from_colorspace=iaa.CSPACE_BGR)
Add
-50
to50
to the brightness-related channels of each image, where the images are provided inBGR
colorspace instead of the standardRGB
.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
get_children_lists
(self)[source]¶ See
get_children_lists()
.
-
get_parameters
(self)[source]¶ See
get_parameters()
.
-
class
imgaug.augmenters.color.
WithColorspace
(to_colorspace, from_colorspace='RGB', children=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.meta.Augmenter
Apply child augmenters within a specific colorspace.
This augumenter takes a source colorspace A and a target colorspace B as well as children C. It changes images from A to B, then applies the child augmenters C and finally changes the colorspace back from B to A. See also ChangeColorspace() for more.
Supported dtypes:
Parameters: - to_colorspace (str) – See
change_colorspace_()
. - from_colorspace (str, optional) – See
change_colorspace_()
. - children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to converted images.
- seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
. - name (None or str, optional) – See
__init__()
. - random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
- deterministic (bool, optional) – Deprecated since 0.4.0.
See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.WithColorspace( >>> to_colorspace=iaa.CSPACE_HSV, >>> from_colorspace=iaa.CSPACE_RGB, >>> children=iaa.WithChannels( >>> 0, >>> iaa.Add((0, 50)) >>> ) >>> )
Convert to
HSV
colorspace, add a value between0
and50
(uniformly sampled per image) to the Hue channel, then convert back to the input colorspace (RGB
).Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
get_children_lists
(self)[source]¶ See
get_children_lists()
.
-
get_parameters
(self)[source]¶ See
get_parameters()
.
- to_colorspace (str) – See
-
class
imgaug.augmenters.color.
WithHueAndSaturation
(children=None, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')[source]¶ Bases:
imgaug.augmenters.meta.Augmenter
Apply child augmenters to hue and saturation channels.
This augumenter takes an image in a source colorspace, converts it to HSV, extracts the H (hue) and S (saturation) channels, applies the provided child augmenters to these channels and finally converts back to the original colorspace.
The image array generated by this augmenter and provided to its children is in
int16
(sic! only augmenters that can handleint16
arrays can be children!). The hue channel is mapped to the value range[0, 255]
. Before converting back to the source colorspace, the saturation channel’s values are clipped to[0, 255]
. A modulo operation is applied to the hue channel’s values, followed by a mapping from[0, 255]
to[0, 180]
(and finally the colorspace conversion).Supported dtypes:
Parameters: - from_colorspace (str, optional) – See
change_colorspace_()
. - children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to converted images.
They receive
int16
images with two channels (hue, saturation) and have to modify these. - seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See
__init__()
. - name (None or str, optional) – See
__init__()
. - random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still recommended to use seed now. Outdated since 0.4.0.
- deterministic (bool, optional) – Deprecated since 0.4.0.
See method
to_deterministic()
for an alternative and for details about what the “deterministic mode” actually does.
Examples
>>> import imgaug.augmenters as iaa >>> aug = iaa.WithHueAndSaturation( >>> iaa.WithChannels(0, iaa.Add((0, 50))) >>> )
Create an augmenter that will add a random value between
0
and50
(uniformly sampled per image) hue channel in HSV colorspace. It automatically accounts for the hue being in angular representation, i.e. if the angle goes beyond 360 degrees, it will start again at 0 degrees. The colorspace is finally converted back toRGB
(default setting).>>> import imgaug.augmenters as iaa >>> aug = iaa.WithHueAndSaturation([ >>> iaa.WithChannels(0, iaa.Add((-30, 10))), >>> iaa.WithChannels(1, [ >>> iaa.Multiply((0.5, 1.5)), >>> iaa.LinearContrast((0.75, 1.25)) >>> ]) >>> ])
Create an augmenter that adds a random value sampled uniformly from the range
[-30, 10]
to the hue and multiplies the saturation by a random factor sampled uniformly from[0.5, 1.5]
. It also modifies the contrast of the saturation channel. After these steps, theHSV
image is converted back toRGB
.Methods
__call__
(self, *args, **kwargs)Alias for augment()
.augment
(self[, return_batch, hooks])Augment a batch. augment_batch
(self, batch[, hooks])Deprecated. augment_batch_
(self, batch[, parents, hooks])Augment a single batch in-place. augment_batches
(self, batches[, hooks, …])Augment multiple batches. augment_bounding_boxes
(self, …[, parents, …])Augment a batch of bounding boxes. augment_heatmaps
(self, heatmaps[, parents, …])Augment a batch of heatmaps. augment_image
(self, image[, hooks])Augment a single image. augment_images
(self, images[, parents, hooks])Augment a batch of images. augment_keypoints
(self, keypoints_on_images)Augment a batch of keypoints/landmarks. augment_line_strings
(self, …[, parents, hooks])Augment a batch of line strings. augment_polygons
(self, polygons_on_images[, …])Augment a batch of polygons. augment_segmentation_maps
(self, segmaps[, …])Augment a batch of segmentation maps. copy
(self)Create a shallow copy of this Augmenter instance. copy_random_state
(self, source[, recursive, …])Copy the RNGs from a source augmenter sequence. copy_random_state_
(self, source[, …])Copy the RNGs from a source augmenter sequence (in-place). deepcopy
(self)Create a deep copy of this Augmenter instance. draw_grid
(self, images, rows, cols)Augment images and draw the results as a single grid-like image. find_augmenters
(self, func[, parents, flat])Find augmenters that match a condition. find_augmenters_by_name
(self, name[, regex, …])Find augmenter(s) by name. find_augmenters_by_names
(self, names[, …])Find augmenter(s) by names. get_all_children
(self[, flat])Get all children of this augmenter as a list. get_children_lists
(self)See get_children_lists()
.get_parameters
(self)See get_parameters()
.localize_random_state
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. localize_random_state_
(self[, recursive])Assign augmenter-specific RNGs to this augmenter and its children. pool
(self[, processes, maxtasksperchild, seed])Create a pool used for multicore augmentation. remove_augmenters
(self, func[, copy, …])Remove this augmenter or children that match a condition. remove_augmenters_
(self, func[, parents])Remove in-place children of this augmenter that match a condition. remove_augmenters_inplace
(self, func[, parents])Deprecated. reseed
(self[, random_state, deterministic_too])Deprecated. seed_
(self[, entropy, deterministic_too])Seed this augmenter and all of its children. show_grid
(self, images, rows, cols)Augment images and plot the results as a single grid-like image. to_deterministic
(self[, n])Convert this augmenter from a stochastic to a deterministic one. -
get_children_lists
(self)[source]¶ See
get_children_lists()
.
-
get_parameters
(self)[source]¶ See
get_parameters()
.
- from_colorspace (str, optional) – See
-
imgaug.augmenters.color.
change_color_temperature
(image, kelvin, from_colorspace='RGB')[source]¶ Change the temperature of an image to a given value in Kelvin.
Added in 0.4.0.
Supported dtypes:
See
change_color_temperatures_
.Parameters: - image (ndarray) – The image which’s color temperature is supposed to be changed.
Expected to be of shape
(H,W,3)
array. - kelvin (number) – The temperature in Kelvin. Expected value range is in
the interval
(1000, 4000)
. - from_colorspace (str, optional) – The source colorspace.
See
change_colorspaces_()
. Defaults toRGB
.
Returns: Image with target color temperature.
Return type: ndarray
- image (ndarray) – The image which’s color temperature is supposed to be changed.
Expected to be of shape
-
imgaug.augmenters.color.
change_color_temperatures_
(images, kelvins, from_colorspaces='RGB')[source]¶ Change in-place the temperature of images to given values in Kelvin.
Added in 0.4.0.
Supported dtypes:
See
change_colorspace_
.Parameters: - images (ndarray or list of ndarray) – The images which’s color temperature is supposed to be changed.
Either a list of
(H,W,3)
arrays or a single(N,H,W,3)
array. - kelvins (iterable of number) – Temperatures in Kelvin. One per image. Expected value range is in
the interval
(1000, 4000)
. - from_colorspaces (str or list of str, optional) – The source colorspace.
See
change_colorspaces_()
. Defaults toRGB
.
Returns: Images with target color temperatures. The input array(s) might have been changed in-place.
Return type: ndarray or list of ndarray
- images (ndarray or list of ndarray) – The images which’s color temperature is supposed to be changed.
Either a list of
-
imgaug.augmenters.color.
change_colorspace_
(image, to_colorspace, from_colorspace='RGB')[source]¶ Change the colorspace of an image inplace.
Note
All outputs of this function are uint8. For some colorspaces this may not be optimal.
Note
Output grayscale images will still have three channels.
Supported dtypes:
uint8
: yes; fully testeduint16
: nouint32
: nouint64
: noint8
: noint16
: noint32
: noint64
: nofloat16
: nofloat32
: nofloat64
: nofloat128
: nobool
: no
Parameters: - image (ndarray) – The image to convert from one colorspace into another.
Usually expected to have shape
(H,W,3)
. - to_colorspace (str) – The target colorspace. See the
CSPACE
constants, e.g.imgaug.augmenters.color.CSPACE_RGB
. - from_colorspace (str, optional) – The source colorspace. Analogous to to_colorspace. Defaults
to
RGB
.
Returns: Image with target colorspace. Can be the same array instance as was originally provided (i.e. changed inplace). Grayscale images will still have three channels.
Return type: ndarray
Examples
>>> import imgaug.augmenters as iaa >>> import numpy as np >>> # fake RGB image >>> image_rgb = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3)) >>> image_bgr = iaa.change_colorspace_(np.copy(image_rgb), iaa.CSPACE_BGR)
-
imgaug.augmenters.color.
change_colorspaces_
(images, to_colorspaces, from_colorspaces='RGB')[source]¶ Change the colorspaces of a batch of images inplace.
Note
All outputs of this function are uint8. For some colorspaces this may not be optimal.
Note
Output grayscale images will still have three channels.
Supported dtypes:
See
change_colorspace_()
.Parameters: - images (ndarray or list of ndarray) – The images to convert from one colorspace into another.
Either a list of
(H,W,3)
arrays or a single(N,H,W,3)
array. - to_colorspaces (str or iterable of str) – The target colorspaces. Either a single string (all images will be
converted to the same colorspace) or an iterable of strings (one per
image). See the
CSPACE
constants, e.g.imgaug.augmenters.color.CSPACE_RGB
. - from_colorspaces (str or list of str, optional) – The source colorspace. Analogous to to_colorspace. Defaults
to
RGB
.
Returns: Images with target colorspaces. Can contain the same array instances as were originally provided (i.e. changed inplace). Grayscale images will still have three channels.
Return type: ndarray or list of ndarray
Examples
>>> import imgaug.augmenters as iaa >>> import numpy as np >>> # fake RGB image >>> image_rgb = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3)) >>> images_rgb = [image_rgb, image_rgb, image_rgb] >>> images_rgb_copy = [np.copy(image_rgb) for image_rgb in images_rgb] >>> images_bgr = iaa.change_colorspaces_(images_rgb_copy, iaa.CSPACE_BGR)
Create three example
RGB
images and convert them toBGR
colorspace.>>> images_rgb_copy = [np.copy(image_rgb) for image_rgb in images_rgb] >>> images_various = iaa.change_colorspaces_( >>> images_rgb_copy, [iaa.CSPACE_BGR, iaa.CSPACE_HSV, iaa.CSPACE_GRAY])
Chnage the colorspace of the first image to
BGR
, the one of the second image toHSV
and the one of the third image tograyscale
(note that in the latter case the image will still have shape(H,W,3)
, not(H,W,1)
).- images (ndarray or list of ndarray) – The images to convert from one colorspace into another.
Either a list of
-
imgaug.augmenters.color.
posterize
(arr, nb_bits)[source]¶ Alias for
quantize_uniform_to_n_bits()
.This function is an alias for
quantize_uniform_to_n_bits()
and was added for users familiar with the same function in PIL.Added in 0.4.0.
Supported dtypes:
See
quantize_uniform_to_n_bits()
.Parameters: - arr (ndarray) – See
quantize_uniform_to_n_bits()
. - nb_bits (int) – See
quantize_uniform_to_n_bits()
.
Returns: Array with quantized components.
Return type: ndarray
- arr (ndarray) – See
-
imgaug.augmenters.color.
quantize_colors_kmeans
(image, n_colors, n_max_iter=10, eps=1.0)[source]¶ Deprecated. Use
imgaug.augmenters.colors.quantize_kmeans
instead.Outdated name of
quantize_kmeans()
.Deprecated since 0.4.0.
-
imgaug.augmenters.color.
quantize_colors_uniform
(image, n_colors)[source]¶ Deprecated. Use
imgaug.augmenters.colors.quantize_uniform
instead.Outdated name for
quantize_uniform()
.Deprecated since 0.4.0.
-
imgaug.augmenters.color.
quantize_kmeans
(arr, nb_clusters, nb_max_iter=10, eps=1.0)[source]¶ Quantize an array into N bins using k-means clustering.
If the input is an image, this method returns in an image with a maximum of
N
colors. Similar colors are grouped to their mean. The k-means clustering happens across channels and not channelwise.Code similar to https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/ py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html
Warning
This function currently changes the RNG state of both OpenCV’s internal RNG and imgaug’s global RNG. This is necessary in order to ensure that the k-means clustering happens deterministically.
Added in 0.4.0. (Previously called
quantize_colors_kmeans()
.)Supported dtypes:
uint8
: yes; fully testeduint16
: nouint32
: nouint64
: noint8
: noint16
: noint32
: noint64
: nofloat16
: nofloat32
: nofloat64
: nofloat128
: nobool
: no
Parameters: - arr (ndarray) – Array to quantize. Expected to be of shape
(H,W)
or(H,W,C)
withC
usually being1
or3
. - nb_clusters (int) – Number of clusters to quantize into, i.e.
k
in k-means clustering. This corresponds to the maximum number of colors in an output image. - nb_max_iter (int, optional) – Maximum number of iterations that the k-means clustering algorithm is run.
- eps (float, optional) – Minimum change of all clusters per k-means iteration. If all clusters change by less than this amount in an iteration, the clustering is stopped.
Returns: Image with quantized colors.
Return type: ndarray
Examples
>>> import imgaug.augmenters as iaa >>> import numpy as np >>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3)) >>> image_quantized = iaa.quantize_kmeans(image, 6)
Generates a
4x4
image with3
channels, containing consecutive values from0
to4*4*3
, leading to an equal number of colors. These colors are then quantized so that only6
are remaining. Note that the six remaining colors do have to appear in the input image.
-
imgaug.augmenters.color.
quantize_uniform
(arr, nb_bins, to_bin_centers=True)[source]¶ Quantize an array into N equally-sized bins.
See
quantize_uniform_()
for details.Added in 0.4.0. (Previously called
quantize_colors_uniform()
.)Supported dtypes:
See
quantize_uniform_()
.Parameters: - arr (ndarray) – See
quantize_uniform_()
. - nb_bins (int) – See
quantize_uniform_()
. - to_bin_centers (bool) – See
quantize_uniform_()
.
Returns: Array with quantized components.
Return type: ndarray
- arr (ndarray) – See
-
imgaug.augmenters.color.
quantize_uniform_
(arr, nb_bins, to_bin_centers=True)[source]¶ Quantize an array into N equally-sized bins in-place.
This can be used to quantize/posterize an image into N colors.
For
uint8
arrays the equation isfloor(v/q)*q + q/2
withq = 256/N
, wherev
is a pixel intensity value andN
is the target number of bins (roughly matches number of colors) after quantization.Added in 0.4.0.
Supported dtypes:
uint8
: yes; fully testeduint16
: nouint32
: nouint64
: noint8
: noint16
: noint32
: noint64
: nofloat16
: nofloat32
: nofloat64
: nofloat128
: nobool
: no
Parameters: - arr (ndarray) – Array to quantize, usually an image. Expected to be of shape
(H,W)
or(H,W,C)
withC
usually being1
or3
. This array may be changed in-place. - nb_bins (int) – Number of equally-sized bins to quantize into. This corresponds to the maximum number of colors in an output image.
- to_bin_centers (bool) – Whether to quantize each bin
(a, b)
toa + (b-a)/2
(center of bin,True
) or toa
(lower boundary,False
).
Returns: Array with quantized components. This may be the input array with components changed in-place.
Return type: ndarray
Examples
>>> import imgaug.augmenters as iaa >>> import numpy as np >>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3)) >>> image_quantized = iaa.quantize_uniform_(np.copy(image), 6)
Generates a
4x4
image with3
channels, containing consecutive values from0
to4*4*3
, leading to an equal number of colors. Each component is then quantized into one of6
bins that regularly split up the value range of[0..255]
, i.e. the resolution w.r.t. to the value range is reduced.
-
imgaug.augmenters.color.
quantize_uniform_to_n_bits
(arr, nb_bits)[source]¶ Reduce each component in an array to a maximum number of bits.
See
quantize_uniform_to_n_bits()
for details.Added in 0.4.0.
Supported dtypes:
See
quantize_uniform_to_n_bits_()
.Parameters: - arr (ndarray) – See
quantize_uniform_to_n_bits()
. - nb_bits (int) – See
quantize_uniform_to_n_bits()
.
Returns: Array with quantized components.
Return type: ndarray
- arr (ndarray) – See
-
imgaug.augmenters.color.
quantize_uniform_to_n_bits_
(arr, nb_bits)[source]¶ Reduce each component in an array to a maximum number of bits in-place.
This operation sets the
8-B
highest frequency (rightmost) bits to zero. ForB
bits this is equivalent to changing each component’s intensity valuev
tov' = v & (2**(8-B) - 1)
, e.g. forB=3
this results inv' = c & ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111 1100
.This is identical to
quantize_uniform()
withnb_bins=2**nb_bits
andto_bin_centers=False
.This function produces the same outputs as
PIL.ImageOps.posterize()
, but is significantly faster.Added in 0.4.0.
Supported dtypes:
See
quantize_uniform_()
.Parameters: - arr (ndarray) – Array to quantize, usually an image. Expected to be of shape
(H,W)
or(H,W,C)
withC
usually being1
or3
. This array may be changed in-place. - nb_bits (int) – Number of bits to keep in each array component.
Returns: Array with quantized components. This may be the input array with components changed in-place.
Return type: ndarray
Examples
>>> import imgaug.augmenters as iaa >>> import numpy as np >>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3)) >>> image_quantized = iaa.quantize_uniform_to_n_bits_(np.copy(image), 6)
Generates a
4x4
image with3
channels, containing consecutive values from0
to4*4*3
, leading to an equal number of colors. These colors are then quantized so that each component’s8-6=2
rightmost bits are set to zero.- arr (ndarray) – Array to quantize, usually an image. Expected to be of shape