

imgaug

imgaug is a library for image augmentation in machine learning experiments.
It supports a wide range of augmentation techniques, allows to easily combine
these and to execute them in random order or on multiple CPU cores,
has a simple yet powerful stochastic interface and can not only augment images,
but also keypoints/landmarks, bounding boxes, heatmaps and segmentation maps.

[image: Heavy augmentations]
Example augmentations of a single input image.

Contents:

	Installation
	Installation in Anaconda

	Installation in pip

	Uninstall

	Examples: Basics
	A standard use case

	A simple and common augmentation sequence

	Heavy Augmentations

	Examples: Keypoints
	Notebook

	A simple example

	Examples: Bounding Boxes
	Notebook

	A simple example

	Dealing with bounding boxes outside of the image

	Shifting/Moving Bounding Boxes

	Projection of BBs Onto Rescaled Images

	Computing Intersections, Unions and IoUs

	Examples: Heatmaps
	Notebook

	A simple example

	Multiple sub-heatmaps per heatmaps object

	Accessing the heatmap array

	Resizing heatmaps

	Padding heatmaps

	Examples: Segmentation Maps and Masks
	Notebook

	A simple example

	Using boolean masks

	Accessing the segmentation map array

	Resizing and padding

	Stochastic Parameters
	Introduction

	Continuous Probability Distributions

	Discrete Probability Distributions

	Arithmetic

	Special Parameters

	Noise Parameters

	Blending/Overlaying images
	Introduction

	Imagewise Constant Alphas Values

	BlendAlphaSimplexNoise

	FrequencyNoiseAlpha

	IterativeNoiseAggregator

	Sigmoid

	Overview of Augmenters
	augmenters.meta

	augmenters.arithmetic

	augmenters.artistic

	augmenters.blend

	augmenters.blur

	augmenters.collections

	augmenters.color

	augmenters.contrast

	augmenters.convolutional

	augmenters.debug

	augmenters.edges

	augmenters.flip

	augmenters.geometric

	augmenters.imgcorruptlike

	augmenters.pillike

	augmenters.pooling

	augmenters.segmentation

	augmenters.size

	augmenters.weather

	Performance
	Results Overview

	Images

	Heatmaps

	Keypoints and Bounding Boxes

	dtype support
	Legend

	imgaug helper functions

	imgaug.augmenters.meta

	imgaug.augmenters.arithmetic

	imgaug.augmenters.blend

	imgaug.augmenters.blur

	imgaug.augmenters.collections

	imgaug.augmenters.color

	imgaug.augmenters.contrast

	imgaug.augmenters.convolutional

	imgaug.augmenters.debug

	imgaug.augmenters.edges

	imgaug.augmenters.flip

	imgaug.augmenters.geometric

	imgaug.augmenters.imgcorruptlike

	imgaug.augmenters.pillike

	imgaug.augmenters.segmentation

	imgaug.augmenters.size

	imgaug.augmenters.weather

	Jupyter Notebooks

	API
	imgaug

	imgaug.parameters

	imgaug.multicore

	imgaug.dtypes

	imgaug.random

	imgaug.validation

	imgaug.augmentables.base

	imgaug.augmentables.batches

	imgaug.augmentables.bbs

	imgaug.augmentables.heatmaps

	imgaug.augmentables.kps

	imgaug.augmentables.lines

	imgaug.augmentables.normalization

	imgaug.augmentables.polys

	imgaug.augmentables.segmaps

	imgaug.augmentables.utils

	imgaug.augmenters.arithmetic

	imgaug.augmenters.artistic

	imgaug.augmenters.base

	imgaug.augmenters.blend

	imgaug.augmenters.blur

	imgaug.augmenters.collections

	imgaug.augmenters.color

	imgaug.augmenters.contrast

	imgaug.augmenters.convolutional

	imgaug.augmenters.debug

	imgaug.augmenters.edges

	imgaug.augmenters.flip

	imgaug.augmenters.geometric

	imgaug.augmenters.imgcorruptlike

	imgaug.augmenters.meta

	imgaug.augmenters.pillike

	imgaug.augmenters.pooling

	imgaug.augmenters.segmentation

	imgaug.augmenters.size

	imgaug.augmenters.weather

See Module Index for API.

Indices and tables

	Index

	Module Index

	Search Page

Installation

The library uses python, which must be installed.
Python 2.7, 3.4, 3.5, 3.6, 3.7 and 3.8 are supported.

The below sections explain how to install the library in anaconda and pip.
If you don’t know what anaconda (aka conda) is, simply use pip instead.

Installation in Anaconda

To install in anaconda simply perform the following commands

conda config --add channels conda-forge
conda install imgaug

Note that you may also use the pip-based installation commands described below.
They work with and without anaconda.

To also be able to use the augmenters in imgaug.augmenters.imgcorruptlike,
you have to manually install the imagecorruptions package:

pip install imagecorruptions

Installation in pip

To install the library via pip, simply execute:

pip install imgaug

This installs the latest version from pypi.

If you encounter any problems with Shapely, try the following:

pip install six numpy scipy Pillow matplotlib scikit-image opencv-python imageio
pip install --no-dependencies imgaug

The first command installs manually all dependencies except Shapely, the
second only the library. Note that Shapely is required for some operations,
mainly when operating with line strings or polygons.

The version installed above is the latest official release from pypi. That
release often lags behind the latest version from github by a few months.
To instead install the very latest version of imgaug use

pip install git+https://github.com/aleju/imgaug.git

Independent of whether you install from pypi or github, in order to
be able to use the augmenters in imgaug.augmenters.imgcorruptlike,
you have to manually install the imagecorruptions package:

pip install imagecorruptions

Uninstall

To deinstall the library use

conda remove imgaug

on anaconda and

pip uninstall imgaug

otherwise.

Examples: Basics

A standard use case

The following example shows a standard use case.
An augmentation sequence (crop + horizontal flips + gaussian blur) is defined
once at the start of the script. Then many batches are loaded and augmented
before being used for training.

from imgaug import augmenters as iaa

seq = iaa.Sequential([
 iaa.Crop(px=(0, 16)), # crop images from each side by 0 to 16px (randomly chosen)
 iaa.Fliplr(0.5), # horizontally flip 50% of the images
 iaa.GaussianBlur(sigma=(0, 3.0)) # blur images with a sigma of 0 to 3.0
])

for batch_idx in range(1000):
 # 'images' should be either a 4D numpy array of shape (N, height, width, channels)
 # or a list of 3D numpy arrays, each having shape (height, width, channels).
 # Grayscale images must have shape (height, width, 1) each.
 # All images must have numpy's dtype uint8. Values are expected to be in
 # range 0-255.
 images = load_batch(batch_idx)
 images_aug = seq(images=images)
 train_on_images(images_aug)

A simple and common augmentation sequence

The following example shows an augmentation sequence that might be useful
for many common experiments. It applies crops and affine transformations
to images, flips some of the images horizontally, adds a bit of noise and blur
and also changes the contrast as well as brightness.

import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (32, 64, 64, 3) and dtype uint8.
images = np.array(
 [ia.quokka(size=(64, 64)) for _ in range(32)],
 dtype=np.uint8
)

seq = iaa.Sequential([
 iaa.Fliplr(0.5), # horizontal flips
 iaa.Crop(percent=(0, 0.1)), # random crops
 # Small gaussian blur with random sigma between 0 and 0.5.
 # But we only blur about 50% of all images.
 iaa.Sometimes(
 0.5,
 iaa.GaussianBlur(sigma=(0, 0.5))
),
 # Strengthen or weaken the contrast in each image.
 iaa.LinearContrast((0.75, 1.5)),
 # Add gaussian noise.
 # For 50% of all images, we sample the noise once per pixel.
 # For the other 50% of all images, we sample the noise per pixel AND
 # channel. This can change the color (not only brightness) of the
 # pixels.
 iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
 # Make some images brighter and some darker.
 # In 20% of all cases, we sample the multiplier once per channel,
 # which can end up changing the color of the images.
 iaa.Multiply((0.8, 1.2), per_channel=0.2),
 # Apply affine transformations to each image.
 # Scale/zoom them, translate/move them, rotate them and shear them.
 iaa.Affine(
 scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
 translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
 rotate=(-25, 25),
 shear=(-8, 8)
)
], random_order=True) # apply augmenters in random order

images_aug = seq(images=images)

[image: Simple augmentations]
Example results of the above simple augmentation sequence.

Heavy Augmentations

The following example shows a large augmentation sequence containing many
different augmenters, leading to significant changes in the augmented images.
Depending on the use case, the sequence might be too strong. Occasionally
it can also break images by changing them too much. To weaken the effects
you can lower the value of iaa.SomeOf((0, 5), ...) to e.g. (0, 3)
or decrease the probability of some augmenters to be applied by decreasing in
sometimes = lambda aug: iaa.Sometimes(0.5, aug) the value 0.5 to e.g.
0.3.

import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (32, 64, 64, 3) and dtype uint8.
images = np.array(
 [ia.quokka(size=(64, 64)) for _ in range(32)],
 dtype=np.uint8
)

Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second
image.
sometimes = lambda aug: iaa.Sometimes(0.5, aug)

Define our sequence of augmentation steps that will be applied to every image.
seq = iaa.Sequential(
 [
 #
 # Apply the following augmenters to most images.
 #
 iaa.Fliplr(0.5), # horizontally flip 50% of all images
 iaa.Flipud(0.2), # vertically flip 20% of all images

 # crop some of the images by 0-10% of their height/width
 sometimes(iaa.Crop(percent=(0, 0.1))),

 # Apply affine transformations to some of the images
 # - scale to 80-120% of image height/width (each axis independently)
 # - translate by -20 to +20 relative to height/width (per axis)
 # - rotate by -45 to +45 degrees
 # - shear by -16 to +16 degrees
 # - order: use nearest neighbour or bilinear interpolation (fast)
 # - mode: use any available mode to fill newly created pixels
 # see API or scikit-image for which modes are available
 # - cval: if the mode is constant, then use a random brightness
 # for the newly created pixels (e.g. sometimes black,
 # sometimes white)
 sometimes(iaa.Affine(
 scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
 translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
 rotate=(-45, 45),
 shear=(-16, 16),
 order=[0, 1],
 cval=(0, 255),
 mode=ia.ALL
)),

 #
 # Execute 0 to 5 of the following (less important) augmenters per
 # image. Don't execute all of them, as that would often be way too
 # strong.
 #
 iaa.SomeOf((0, 5),
 [
 # Convert some images into their superpixel representation,
 # sample between 20 and 200 superpixels per image, but do
 # not replace all superpixels with their average, only
 # some of them (p_replace).
 sometimes(
 iaa.Superpixels(
 p_replace=(0, 1.0),
 n_segments=(20, 200)
)
),

 # Blur each image with varying strength using
 # gaussian blur (sigma between 0 and 3.0),
 # average/uniform blur (kernel size between 2x2 and 7x7)
 # median blur (kernel size between 3x3 and 11x11).
 iaa.OneOf([
 iaa.GaussianBlur((0, 3.0)),
 iaa.AverageBlur(k=(2, 7)),
 iaa.MedianBlur(k=(3, 11)),
]),

 # Sharpen each image, overlay the result with the original
 # image using an alpha between 0 (no sharpening) and 1
 # (full sharpening effect).
 iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),

 # Same as sharpen, but for an embossing effect.
 iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),

 # Search in some images either for all edges or for
 # directed edges. These edges are then marked in a black
 # and white image and overlayed with the original image
 # using an alpha of 0 to 0.7.
 sometimes(iaa.OneOf([
 iaa.EdgeDetect(alpha=(0, 0.7)),
 iaa.DirectedEdgeDetect(
 alpha=(0, 0.7), direction=(0.0, 1.0)
),
])),

 # Add gaussian noise to some images.
 # In 50% of these cases, the noise is randomly sampled per
 # channel and pixel.
 # In the other 50% of all cases it is sampled once per
 # pixel (i.e. brightness change).
 iaa.AdditiveGaussianNoise(
 loc=0, scale=(0.0, 0.05*255), per_channel=0.5
),

 # Either drop randomly 1 to 10% of all pixels (i.e. set
 # them to black) or drop them on an image with 2-5% percent
 # of the original size, leading to large dropped
 # rectangles.
 iaa.OneOf([
 iaa.Dropout((0.01, 0.1), per_channel=0.5),
 iaa.CoarseDropout(
 (0.03, 0.15), size_percent=(0.02, 0.05),
 per_channel=0.2
),
]),

 # Invert each image's channel with 5% probability.
 # This sets each pixel value v to 255-v.
 iaa.Invert(0.05, per_channel=True), # invert color channels

 # Add a value of -10 to 10 to each pixel.
 iaa.Add((-10, 10), per_channel=0.5),

 # Change brightness of images (50-150% of original value).
 iaa.Multiply((0.5, 1.5), per_channel=0.5),

 # Improve or worsen the contrast of images.
 iaa.LinearContrast((0.5, 2.0), per_channel=0.5),

 # Convert each image to grayscale and then overlay the
 # result with the original with random alpha. I.e. remove
 # colors with varying strengths.
 iaa.Grayscale(alpha=(0.0, 1.0)),

 # In some images move pixels locally around (with random
 # strengths).
 sometimes(
 iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)
),

 # In some images distort local areas with varying strength.
 sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05)))
],
 # do all of the above augmentations in random order
 random_order=True
)
],
 # do all of the above augmentations in random order
 random_order=True
)

images_aug = seq(images=images)

[image: Heavy augmentations]
Example results of the above heavy augmentation sequence.

Examples: Keypoints

imgaug can handle not only images, but also keypoints/landmarks on these.
E.g. if an image is rotated during augmentation, the library can also rotate
all landmarks correspondingly.

Notebook

A jupyter notebook for keypoint augmentation is available at
Jupyter Notebooks. The notebooks are usually more up to date
and contain more examples than the ReadTheDocs documentation.

A simple example

The following example loads an image and places four keypoints on it.
The image is then augmented to be brighter, slightly rotated and scaled.
These augmentations are also applied to the keypoints.
The image is then shown before and after augmentation (with keypoints drawn
on it).

import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables import Keypoint, KeypointsOnImage

ia.seed(1)

image = ia.quokka(size=(256, 256))
kps = KeypointsOnImage([
 Keypoint(x=65, y=100),
 Keypoint(x=75, y=200),
 Keypoint(x=100, y=100),
 Keypoint(x=200, y=80)
], shape=image.shape)

seq = iaa.Sequential([
 iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect keypoints
 iaa.Affine(
 rotate=10,
 scale=(0.5, 0.7)
) # rotate by exactly 10deg and scale to 50-70%, affects keypoints
])

Augment keypoints and images.
image_aug, kps_aug = seq(image=image, keypoints=kps)

print coordinates before/after augmentation (see below)
use after.x_int and after.y_int to get rounded integer coordinates
for i in range(len(kps.keypoints)):
 before = kps.keypoints[i]
 after = kps_aug.keypoints[i]
 print("Keypoint %d: (%.8f, %.8f) -> (%.8f, %.8f)" % (
 i, before.x, before.y, after.x, after.y)
)

image with keypoints before/after augmentation (shown below)
image_before = kps.draw_on_image(image, size=7)
image_after = kps_aug.draw_on_image(image_aug, size=7)

Console output of the example:

Keypoint 0: (65.00000000, 100.00000000) -> (97.86113503, 107.69632182)
Keypoint 1: (75.00000000, 200.00000000) -> (93.93710117, 160.01366917)
Keypoint 2: (100.00000000, 100.00000000) -> (115.85492750, 110.86911292)
Keypoint 3: (200.00000000, 80.00000000) -> (169.07878659, 109.65206321)

[image: Simple keypoint augmentation example]
Image with keypoints, before (left) and after (right)
augmentation. Keypoints are shown in green and drawn in after the
augmentation process.

Examples: Bounding Boxes

imgaug offers support for bounding boxes (aka rectangles, regions of interest).
E.g. if an image is rotated during augmentation, the library can also rotate
all bounding boxes on it correspondingly.

Features of the library’s bounding box support:

	Represent bounding boxes as objects (imgaug.augmentables.bbs.BoundingBox).

	Augment bounding boxes.

	Draw bounding boxes on images.

	Move/shift bounding boxes on images,
project them onto other images (e.g. onto the same image after resizing),
compute their intersections/unions and IoU values.

Notebook

A jupyter notebook for bounding box augmentation is available at
Jupyter Notebooks. The notebooks are usually more up to date
and contain more examples than the ReadTheDocs documentation.

A simple example

The following example loads an image and places two bounding boxes on it.
The image is then augmented to be brighter, slightly rotated and scaled.
These augmentations are also applied to the bounding boxes.
The image is then shown before and after augmentation (with bounding boxes
drawn on it).

import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
 BoundingBox(x1=65, y1=100, x2=200, y2=150),
 BoundingBox(x1=150, y1=80, x2=200, y2=130)
], shape=image.shape)

seq = iaa.Sequential([
 iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect BBs
 iaa.Affine(
 translate_px={"x": 40, "y": 60},
 scale=(0.5, 0.7)
) # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
])

Augment BBs and images.
image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)

print coordinates before/after augmentation (see below)
use .x1_int, .y_int, ... to get integer coordinates
for i in range(len(bbs.bounding_boxes)):
 before = bbs.bounding_boxes[i]
 after = bbs_aug.bounding_boxes[i]
 print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % (
 i,
 before.x1, before.y1, before.x2, before.y2,
 after.x1, after.y1, after.x2, after.y2)
)

image with BBs before/after augmentation (shown below)
image_before = bbs.draw_on_image(image, size=2)
image_after = bbs_aug.draw_on_image(image_aug, size=2, color=[0, 0, 255])

Console output of the example:

BB 0: (65.0000, 100.0000, 200.0000, 150.0000) -> (130.7524, 171.3311, 210.1272, 200.7291)
BB 1: (150.0000, 80.0000, 200.0000, 130.0000) -> (180.7291, 159.5718, 210.1272, 188.9699)

[image: Simple bounding box augmentation example]
Image with bounding boxes, before (left) and after (right)
augmentation. Bounding boxes are shown in green (before augmentation) and
blue (after augmentation).

Note that the bounding box augmentation works by augmenting each box’s edge
coordinates and then drawing a bounding box around these augmented
coordinates. Each of these new bounding boxes is therefore axis-aligned.
This can sometimes lead to oversized new bounding boxes,
especially in the case of rotation. The following image shows the result
of the same code as in the example above, but Affine was replaced by
Affine(rotate=45):

[image: Bounding box augmentation with rotation]
Image with bounding boxes, before (left) and after (right)
augmentation. The image was augmentated by rotating it by 45 degrees.
The axis-aligned bounding box around the augmented keypoints ends up
being oversized.

Dealing with bounding boxes outside of the image

When augmenting images and their respective bounding boxes, the boxes
can end up fully or partially outside of the image plane. By default, the
library still returns these boxes, even though that may not be desired.
The following example shows how to (a) remove bounding boxes that are
fully/partially outside of the image and (b) how to clip bounding boxes that
are partially outside of the image so that their are fully inside.

import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

GREEN = [0, 255, 0]
ORANGE = [255, 140, 0]
RED = [255, 0, 0]

Pad image with a 1px white and (BY-1)px black border
def pad(image, by):
 image_border1 = ia.pad(image, top=1, right=1, bottom=1, left=1,
 mode="constant", cval=255)
 image_border2 = ia.pad(image_border1, top=by-1, right=by-1,
 bottom=by-1, left=by-1,
 mode="constant", cval=0)
 return image_border2

Draw BBs on an image
and before doing that, extend the image plane by BORDER pixels.
Mark BBs inside the image plane with green color, those partially inside
with orange and those fully outside with red.
def draw_bbs(image, bbs, border):
 image_border = pad(image, border)
 for bb in bbs.bounding_boxes:
 if bb.is_fully_within_image(image.shape):
 color = GREEN
 elif bb.is_partly_within_image(image.shape):
 color = ORANGE
 else:
 color = RED
 image_border = bb.shift(left=border, top=border)\
 .draw_on_image(image_border, size=2, color=color)

 return image_border

Define example image with three small square BBs next to each other.
Augment these BBs by shifting them to the right.
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
 BoundingBox(x1=25, x2=75, y1=25, y2=75),
 BoundingBox(x1=100, x2=150, y1=25, y2=75),
 BoundingBox(x1=175, x2=225, y1=25, y2=75)
], shape=image.shape)

seq = iaa.Affine(translate_px={"x": 120})
image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)

Draw the BBs (a) in their original form, (b) after augmentation,
(c) after augmentation and removing those fully outside the image,
(d) after augmentation and removing those fully outside the image and
clipping those partially inside the image so that they are fully inside.
image_before = draw_bbs(image, bbs, 100)
image_after1 = draw_bbs(image_aug, bbs_aug, 100)
image_after2 = draw_bbs(image_aug, bbs_aug.remove_out_of_image(), 100)
image_after3 = draw_bbs(image_aug, bbs_aug.remove_out_of_image().clip_out_of_image(), 100)

[image: Bounding box augmentation with OOIs]
Results of the above example code. Top left: Original/unaugmented image
with bounding boxes (here visualized with an additional black border
around the image). Right, top: Image after augmentation (translation
120px to the right). One bounding box is now fully outside of the image area
(red), one is partially outside of it (orange). Right, middle: After using
.remove_out_of_image() the BB that was fully outside of the image area
was removed. Right, center: After using .remove_out_of_image() and
.clip_out_of_image(), one BB was removed and the one partially outside of
of image area was clipped to be fully inside it.

Shifting/Moving Bounding Boxes

The function shift(top=<int>, right=<int>, bottom=<int>, left=<int>) can be
used to change the x/y position of all or specific bounding boxes.

import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

Define image and two bounding boxes
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
 BoundingBox(x1=25, x2=75, y1=25, y2=75),
 BoundingBox(x1=100, x2=150, y1=25, y2=75)
], shape=image.shape)

Move both BBs 25px to the right and the second BB 25px down
bbs_shifted = bbs.shift(left=25)
bbs_shifted.bounding_boxes[1] = bbs_shifted.bounding_boxes[1].shift(top=25)

Draw images before/after moving BBs
image = bbs.draw_on_image(image, color=[0, 255, 0], size=2, alpha=0.75)
image = bbs_shifted.draw_on_image(image, color=[0, 0, 255], size=2, alpha=0.75)

[image: Shifting bounding boxes around]
Using shift() to move bounding boxes around (green: original BBs, blue: shifted/moved BBs).

Projection of BBs Onto Rescaled Images

Bounding boxes can easily be projected onto rescaled versions of the same
image using the function .on(image). This changes the coordinates of the
bounding boxes. E.g. if the top left coordinate of the bounding box was before
at x=10% and y=15%, it will still be at x/y 10%/15% on the new image, though
the absolute pixel values will change depending on the height/width of the new
image.

import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

Define image with two bounding boxes
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
 BoundingBox(x1=25, x2=75, y1=25, y2=75),
 BoundingBox(x1=100, x2=150, y1=25, y2=75)
], shape=image.shape)

Rescale image and bounding boxes
image_rescaled = ia.imresize_single_image(image, (512, 512))
bbs_rescaled = bbs.on(image_rescaled)

Draw image before/after rescaling and with rescaled bounding boxes
image_bbs = bbs.draw_on_image(image, size=2)
image_rescaled_bbs = bbs_rescaled.draw_on_image(image_rescaled, size=2)

[image: Projecting bounding boxes]
Using on() to project bounding boxes from one image to the other,
here onto an image of 2x the original size. New coordinates are determined
based on their relative positions on the old image.

Computing Intersections, Unions and IoUs

Computing intersections, unions and especially IoU values (intersection over union)
is common for many machine learning experiments. The library offers easy
functions for that.

import numpy as np
import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox

ia.seed(1)

Define image with two bounding boxes.
image = ia.quokka(size=(256, 256))
bb1 = BoundingBox(x1=50, x2=100, y1=25, y2=75)
bb2 = BoundingBox(x1=75, x2=125, y1=50, y2=100)

Compute intersection, union and IoU value
Intersection and union are both bounding boxes. They are here
decreased/increased in size purely for better visualization.
bb_inters = bb1.intersection(bb2).extend(all_sides=-1)
bb_union = bb1.union(bb2).extend(all_sides=2)
iou = bb1.iou(bb2)

Draw bounding boxes, intersection, union and IoU value on image.
image_bbs = np.copy(image)
image_bbs = bb1.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb2.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb_inters.draw_on_image(image_bbs, size=2, color=[255, 0, 0])
image_bbs = bb_union.draw_on_image(image_bbs, size=2, color=[0, 0, 255])
image_bbs = ia.draw_text(
 image_bbs, text="IoU=%.2f" % (iou,),
 x=bb_union.x2+10, y=bb_union.y1+bb_union.height//2,
 color=[255, 255, 255], size=13
)

[image: Computing intersections, unions and IoUs]
Two bounding boxes on an image (green), their intersection (red, slightly shrunk),
their union (blue, slightly extended) and their IoU value (white).

Examples: Heatmaps

imgaug offers support for heatmap-like data. This can be used e.g. for
depth map or keypoint/landmark localization maps. Heatmaps can be augmented
correspondingly to images, e.g. if an image is rotated by 45°, the
corresponding heatmap for that image will also be rotated by 45°.

Note:

	Heatmaps have to be bounded within value ranges, e.g. 0.0 to 1.0
for keypoint localization maps or something like 0.0 to 200.0
(meters) for depth maps. Choosing arbitrarily low/high min/max values for
unbounded heatmaps is not recommended as it could lead to numerical
inaccuracies.

	All augmentation functions for heatmaps are implemented under the
assumption of augmenting ground truth data. As such, heatmaps will be
affected by augmentations that change the geometry of images (e.g. affine
transformations, cropping, resizing), but not by other augmentations (e.g.
gaussian noise, saturation changes, grayscaling, dropout, …).

Features of the library’s heatmap support:

	Represent heatmaps as objects
(imgaug.augmentables.heatmaps.HeatmapsOnImage).

	Augment heatmaps (only geometry-affecting augmentations,
e.g. affine transformations, cropping, …).

	Use different resolutions for heatmaps than for images (e.g. 32x32
heatmaps for 256x256 images).

	Draw heatmaps – on their own or on images (HeatmapsOnImage.draw(),
HeatmapsOnImage.draw_on_image()).

	Resize, average pool or max pool heatmaps (HeatmapsOnImage.scale(),
HeatmapsOnImage.avg_pool(), HeatmapsOnImage.max_pool()).

	Pad heatmaps by pixel amounts or to desired aspect ratios
(HeatmapsOnImage.pad(), HeatmapsOnImage.pad_to_aspect_ratio()).

Notebook

A jupyter notebook for heatmap augmentation is available at
Jupyter Notebooks. The notebooks are usually more up to date
and contain more examples than the ReadTheDocs documentation.

A simple example

The following example loads a standard image and a generates a corresponding
heatmap. The heatmap is supposed to be a depth map, i.e. is supposed to
resemble the depth of objects in the image, where higher values indicate that
objects are further away. (For simplicity we just use a simple gradient as a
depth map with a cross in the center, so there is no real correspondence
between the image and the depth values.)

This example shows:

	Creating heatmaps via HeatmapsOnImage(heatmap_array, shape=image_shape).

	Using value ranges outside of simple 0.0 to 1.0 (here 0.0 to
50.0) by setting min_value and max_value in the
HeatmapsOnImage contructor.

	Resizing heatmaps, here via HeatmapsOnImage.avg_pool(kernel_size)
(i.e. average pooling).

	Augmenting heatmaps via Augmenter.__call__(), which is equivalent to
Augmenter.augment().

	Drawing heatmaps as overlays over images
HeatmapsOnImage.draw_on_image(image).

	Drawing heatmaps on their own via HeatmapsOnImage.draw() in jet color
map or via HeatmapsOnImage.draw(cmap=None) as intensity maps.

import imageio
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.heatmaps import HeatmapsOnImage

ia.seed(1)

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Create an example depth map (float32, 128x128).
Here, we use a simple gradient that has low values (around 0.0)
towards the left of the image and high values (around 50.0)
towards the right. This is obviously a very unrealistic depth
map, but makes the example easier.
depth = np.linspace(0, 50, 128).astype(np.float32) # 128 values from 0.0 to 50.0
depth = np.tile(depth.reshape(1, 128), (128, 1)) # change to a horizontal gradient

We add a cross to the center of the depth map, so that we can more
easily see the effects of augmentations.
depth[64-2:64+2, 16:128-16] = 0.75 * 50.0 # line from left to right
depth[16:128-16, 64-2:64+2] = 1.0 * 50.0 # line from top to bottom

Convert our numpy array depth map to a heatmap object.
We have to add the shape of the underlying image, as that is necessary
for some augmentations.
depth = HeatmapsOnImage(
 depth, shape=image.shape, min_value=0.0, max_value=50.0)

To save some computation time, we want our models to perform downscaling
and hence need the ground truth depth maps to be at a resolution of
64x64 instead of the 128x128 of the input image.
Here, we use simple average pooling to perform the downscaling.
depth = depth.avg_pool(2)

Define our augmentation pipeline.
seq = iaa.Sequential([
 iaa.Dropout([0.05, 0.2]), # drop 5% or 20% of all pixels
 iaa.Sharpen((0.0, 1.0)), # sharpen the image
 iaa.Affine(rotate=(-45, 45)), # rotate by -45 to 45 degrees (affects heatmaps)
 iaa.ElasticTransformation(alpha=50, sigma=5) # apply water effect (affects heatmaps)
], random_order=True)

Augment images and heatmaps.
images_aug = []
heatmaps_aug = []
for _ in range(5):
 images_aug_i, heatmaps_aug_i = seq(image=image, heatmaps=depth)
 images_aug.append(images_aug_i)
 heatmaps_aug.append(heatmaps_aug_i)

We want to generate an image of original input images and heatmaps
before/after augmentation.
It is supposed to have five columns:
(1) original image,
(2) augmented image,
(3) augmented heatmap on top of augmented image,
(4) augmented heatmap on its own in jet color map,
(5) augmented heatmap on its own in intensity colormap.
We now generate the cells of these columns.
#
Note that we add a [0] after each heatmap draw command. That's because
the heatmaps object can contain many sub-heatmaps and hence we draw
command returns a list of drawn sub-heatmaps.
We only used one sub-heatmap, so our lists always have one entry.
cells = []
for image_aug, heatmap_aug in zip(images_aug, heatmaps_aug):
 cells.append(image) # column 1
 cells.append(image_aug) # column 2
 cells.append(heatmap_aug.draw_on_image(image_aug)[0]) # column 3
 cells.append(heatmap_aug.draw(size=image_aug.shape[:2])[0]) # column 4
 cells.append(heatmap_aug.draw(size=image_aug.shape[:2], cmap=None)[0]) # column 5

Convert cells to grid image and save.
grid_image = ia.draw_grid(cells, cols=5)
imageio.imwrite("example_heatmaps.jpg", grid_image)

[image: Heatmap augmentation example]
Results of the above example code. Columns show: (1) Original image,
(2) augmented image, (3) augmented heatmap overlayed with augmented image,
(4) augmented heatmap alone in jet color map, (5) augmented heatmap alone
as intensity map.

Multiple sub-heatmaps per heatmaps object

The above example augmented a single heatmap with shape (H, W) for the
example image. If you want to augment more heatmaps per image, you can simply
extend the heatmap array’s shape to (H, W, C), where C is the number
of heatmaps. The following example instantiates one heatmap object containing
three sub-heatmaps and draws them onto the image. Heatmap augmentation would
be done in the exactly same way as in the previous example.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.heatmaps import HeatmapsOnImage

Load an image and generate a heatmap array with three sub-heatmaps.
Each sub-heatmap contains just three horizontal lines, with one of them
having a higher value (1.0) than the other two (0.2).
image = ia.quokka(size=(128, 128), extract="square")
heatmap = np.zeros((128, 128, 3), dtype=np.float32)
for i in range(3):
 heatmap[1*30-5:1*30+5, 10:-10, i] = 1.0 if i == 0 else 0.5
 heatmap[2*30-5:2*30+5, 10:-10, i] = 1.0 if i == 1 else 0.5
 heatmap[3*30-5:3*30+5, 10:-10, i] = 1.0 if i == 2 else 0.5
heatmap = HeatmapsOnImage(heatmap, shape=image.shape)

Draw image and the three sub-heatmaps on it.
We draw four columns: (1) image, (2-4) heatmaps one to three drawn on
top of the image.
subheatmaps_drawn = heatmap.draw_on_image(image)
cells = [image, subheatmaps_drawn[0], subheatmaps_drawn[1],
 subheatmaps_drawn[2]]
grid_image = np.hstack(cells) # Horizontally stack the images
imageio.imwrite("example_multiple_heatmaps.jpg", grid_image)

[image: Multiple (sub-)heatmaps per image]
Results of the above example code. It shows the original image with three
heatmaps. The three heatmaps were combined in one HeatmapsOnImage
object.

Accessing the heatmap array

After augmentation you probably want to access the heatmap’s numpy array.
This is done using the function HeatmapsOnImage.get_arr(). That functions
output shape will match your original heatmap array’s shape, i.e. either
(H, W) or (H, W, C). The below code shows an example, where that
function’s result is changed and then used to instantiate a new
HeatmapsOnImage object.

Alternatively you could also change the heatmap object’s internal array, saved
as HeatmapsOnImage.arr_0to1. As the name indicates, it is always normalized
to the range 0.0 to 1.0, while get_arr() reverses that
normalization. It has also always shape (H, W, C), with C>=1.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.heatmaps import HeatmapsOnImage

Load an image and generate a heatmap array containing one horizontal line.
image = ia.quokka(size=(128, 128), extract="square")
heatmap = np.zeros((128, 128, 1), dtype=np.float32)
heatmap[64-4:64+4, 10:-10, 0] = 1.0
heatmap1 = HeatmapsOnImage(heatmap, shape=image.shape)

Extract the heatmap array from the heatmap object, change it and create
a second heatmap.
arr = heatmap1.get_arr()
arr[10:-10, 64-4:64+4] = 0.5
heatmap2 = HeatmapsOnImage(arr, shape=image.shape)

Draw image and heatmaps before/after changing the array.
We draw three columns:
(1) original image,
(2) heatmap drawn on image,
(3) heatmap drawn on image, with some changes made to the heatmap array.
cells = [image,
 heatmap1.draw_on_image(image)[0],
 heatmap2.draw_on_image(image)[0]]
grid_image = np.hstack(cells) # Horizontally stack the images
imageio.imwrite("example_heatmaps_arr.jpg", grid_image)

[image: Accessing the heatmap array]
Results of the above example code. It shows the original image, a
corresponding heatmap and again the same heatmap after its array was read
out and changed.

Resizing heatmaps

When working with heatmaps it is common that the size of the input images and
the heatmap sizes don’t match or are supposed to not match (e.g. because
predicted network output are of low resolution). HeatmapsOnImage offers
several functions to deal with such situations:
HeatmapsOnImage.avg_pool(kernel_size) applies average pooling to images,
HeatmapsOnImage.max_pool(kernel_size) analogously max pooling and
HeatmapsOnImage.resize(size, [interpolation]) performs resizing. For the
pooling functions the kernel size is expected to be a single integer or a
tuple of two/three entries (size along each dimension). For resize, the
size is expected to be a (height, width) tuple and interpolation can
be one of the strings nearest (nearest neighbour interpolation), linear,
cubic (default) or area.

The below code shows an example. It instantiates a simple 128x128 heatmap
with two horizontal lines (one of which is blurred) and a small square in the
center. It then applies average pooling, max pooling and resizing to heatmap
sizes 64x64, 32x32 and 16x16. Then, an output image is generated
with six rows: The first three show the results of average/max pooling and
resizing, while the rows three to six show the same results after again
resizing them to 128x128 using nearest neighbour upscaling.

import imageio
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.heatmaps import HeatmapsOnImage

def pad_by(image, amount):
 return ia.pad(image,
 top=amount, right=amount, bottom=amount, left=amount)

def draw_heatmaps(heatmaps, upscale=False):
 drawn = []
 for heatmap in heatmaps:
 if upscale:
 drawn.append(
 heatmap.resize((128, 128), interpolation="nearest")
 .draw()[0]
)
 else:
 size = heatmap.get_arr().shape[0]
 pad_amount = (128-size)//2
 drawn.append(pad_by(heatmap.draw()[0], pad_amount))
 return drawn

Generate an example heatmap with two horizontal lines (first one blurry,
second not) and a small square.
heatmap = np.zeros((128, 128, 1), dtype=np.float32)
heatmap[32-4:32+4, 10:-10, 0] = 1.0
heatmap = iaa.GaussianBlur(3.0).augment_image(heatmap)
heatmap[96-4:96+4, 10:-10, 0] = 1.0
heatmap[64-2:64+2, 64-2:64+2, 0] = 1.0
heatmap = HeatmapsOnImage(heatmap, shape=(128, 128, 1))

Scale the heatmaps using average pooling, max pooling and resizing with
default interpolation (cubic).
avg_pooled = [heatmap, heatmap.avg_pool(2), heatmap.avg_pool(4),
 heatmap.avg_pool(8)]
max_pooled = [heatmap, heatmap.max_pool(2), heatmap.max_pool(4),
 heatmap.max_pool(8)]
resized = [heatmap, heatmap.resize((64, 64)), heatmap.resize((32, 32)),
 heatmap.resize((16, 16))]

Draw an image of all scaled heatmaps.
cells = draw_heatmaps(avg_pooled)\
 + draw_heatmaps(max_pooled)\
 + draw_heatmaps(resized)\
 + draw_heatmaps(avg_pooled, upscale=True)\
 + draw_heatmaps(max_pooled, upscale=True)\
 + draw_heatmaps(resized, upscale=True)
grid_image = ia.draw_grid(cells, cols=4)
imageio.imwrite("example_heatmaps_scaling.jpg", grid_image)

[image: Resizing heatmaps]
Results of the above example code. It shows six rows:
(Rows 1-3) scaling via average pooling, max pooling and (cubic) resizing
to 64x64 (column 2), 32x32 (column 3) and 16x16 (column 4) and
then zero-padding to 128x128. (Rows 4-6) Doing the same again, but
not padding to 128x128 but instead resizing using nearest neighbour
upscaling.

Padding heatmaps

Another common operation is padding of images and heatmaps, especially to
squared sizes. This is done for images using
imgaug.pad(image, [top], [right], [bottom], [left], [mode], [cval])
and imgaug.pad_to_aspect_ratio(image, aspect_ratio, [mode], [cval], [return_pad_amounts]).
For heatmaps it is done using
HeatmapsOnImage.pad([top], [right], [bottom], [left], [mode], [cval]) and
HeatmapsOnImage.pad_to_aspect_ratio(aspect_ratio, [mode], [cval], [return_pad_amounts]).
In both cases, pad() expects pixel amounts (i.e. integers) and
pad_to_aspect_ratio() the target aspect ratio, given as a float denoting
ratio = width / height (i.e. a value of 1.0 would lead to a squared
image/heatmap, while 2.0 would lead to a fairly wide image/heatmap).

The below code shows an example for padding. It starts with a squared sized
image and heatmap, cuts both so that they are more wide than high and then
zero-pads both back to squared size.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.heatmaps import HeatmapsOnImage

Load example image and generate example heatmap with one horizontal line
image = ia.quokka((128, 128), extract="square")
heatmap = np.zeros((128, 128, 1), dtype=np.float32)
heatmap[64-4:64+4, 10:-10, 0] = 1.0

Cut image and heatmap so that they are no longer squared
image = image[32:-32, :, :]
heatmap = heatmap[32:-32, :, :]

heatmap = HeatmapsOnImage(heatmap, shape=(128, 128, 1))

Pad images and heatmaps by pixel amounts or to aspect ratios
We pad both back to squared size of 128x128
images_padded = [
 ia.pad(image, top=32, bottom=32),
 ia.pad_to_aspect_ratio(image, 1.0)
]
heatmaps_padded = [
 heatmap.pad(top=32, bottom=32),
 heatmap.pad_to_aspect_ratio(1.0)
]

Draw an image of all padded images and heatmaps
cells = [
 images_padded[0],
 heatmaps_padded[0].draw_on_image(images_padded[0])[0],
 images_padded[1],
 heatmaps_padded[1].draw_on_image(images_padded[1])[0]
]

grid_image = ia.draw_grid(cells, cols=2)
imageio.imwrite("example_heatmaps_padding.jpg", grid_image)

[image: Pad heatmaps]
Results of the above example code. It shows an input image and a heatmap
that were both first cut to 64x128 and then padded back to squared
size of 128x128. First row uses pad(), second uses
pad_to_aspect_ratio().

Examples: Segmentation Maps and Masks

imgaug offers support for segmentation map data, such as semantic
segmentation maps, instance segmentation maps or ordinary masks. Segmentation
maps can be augmented correspondingly to images. E.g. if an image is rotated
by 45°, the corresponding segmentation map for that image will also be rotated
by 45°.

Note: All augmentation functions for segmentation maps are implemented
under the assumption of augmenting ground truth data. As such,
segmentation maps will be affected by augmentations that change the geometry
of images (e.g. affine transformations, cropping, resizing), but not by other
augmentations (e.g. gaussian noise, saturation changes, grayscaling,
dropout, …).

Features of the library’s segmentation map support:

	Represent segmentation maps as objects
(imgaug.augmentables.segmaps.SegmentationMapsOnImage).

	Support integer maps (integer dtypes, usually int32) and boolean
masks (dtype numpy.bool_).

	Augment segmentation maps (only geometry-affecting augmentations,
e.g. affine transformations, cropping, …).

	Use different resolutions for segmentation maps and images (e.g.
32x32 segmentation maps and 256x256 for the corresponding
images).

	Draw segmentation maps – on their own or on images
(SegmentationMapsOnImage.draw(),
SegmentationMapsOnImage.draw_on_image()).

	Resize segmentation maps (SegmentationMapsOnImage.resize()).

	Pad segmentation maps by pixel amounts or to desired aspect ratios
(SegmentationMapsOnImage.pad(),
SegmentationMapsOnImage.pad_to_aspect_ratio()).

Notebook

A jupyter notebook for segmentation map augmentation is available at
Jupyter Notebooks. The notebooks are usually more up to date
and contain more examples than the ReadTheDocs documentation.

A simple example

The following example loads a standard image and defines a corresponding
int32 segmentation map. The image and segmentation map are augmented in the
same way and the results are visualized.

import imageio
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.segmaps import SegmentationMapsOnImage

ia.seed(1)

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Define an example segmentation map (int32, 128x128).
Here, we arbitrarily place some squares on the image.
Class 0 is our intended background class.
segmap = np.zeros((128, 128, 1), dtype=np.int32)
segmap[28:71, 35:85, 0] = 1
segmap[10:25, 30:45, 0] = 2
segmap[10:25, 70:85, 0] = 3
segmap[10:110, 5:10, 0] = 4
segmap[118:123, 10:110, 0] = 5
segmap = SegmentationMapsOnImage(segmap, shape=image.shape)

Define our augmentation pipeline.
seq = iaa.Sequential([
 iaa.Dropout([0.05, 0.2]), # drop 5% or 20% of all pixels
 iaa.Sharpen((0.0, 1.0)), # sharpen the image
 iaa.Affine(rotate=(-45, 45)), # rotate by -45 to 45 degrees (affects segmaps)
 iaa.ElasticTransformation(alpha=50, sigma=5) # apply water effect (affects segmaps)
], random_order=True)

Augment images and segmaps.
images_aug = []
segmaps_aug = []
for _ in range(5):
 images_aug_i, segmaps_aug_i = seq(image=image, segmentation_maps=segmap)
 images_aug.append(images_aug_i)
 segmaps_aug.append(segmaps_aug_i)

We want to generate an image containing the original input image and
segmentation maps before/after augmentation. (Both multiple times for
multiple augmentations.)
#
The whole image is supposed to have five columns:
(1) original image,
(2) original image with segmap,
(3) augmented image,
(4) augmented segmap on augmented image,
(5) augmented segmap on its own in.
#
We now generate the cells of these columns.
#
Note that draw_on_image() and draw() both return lists of drawn
images. Assuming that the segmentation map array has shape (H,W,C),
the list contains C items.
cells = []
for image_aug, segmap_aug in zip(images_aug, segmaps_aug):
 cells.append(image) # column 1
 cells.append(segmap.draw_on_image(image)[0]) # column 2
 cells.append(image_aug) # column 3
 cells.append(segmap_aug.draw_on_image(image_aug)[0]) # column 4
 cells.append(segmap_aug.draw(size=image_aug.shape[:2])[0]) # column 5

Convert cells to a grid image and save.
grid_image = ia.draw_grid(cells, cols=5)
imageio.imwrite("example_segmaps.jpg", grid_image)

[image: Segmentation map augmentation example]
Results of the above example code. Columns show: (1) Original image,
(2) original segmentation map drawn on original image, (3) augmented
image, (4) augmented segmentation map drawn on augmented image,
(5) augmented segmentation map drawn on its own.

Using boolean masks

In order to augment masks, you can simply use boolean arrays. Everything else
is identical to int32 maps. The below code shows an example and is very
similar to the previous code for int32 maps. It noteably changes
np.zeros((128, 128, 1), dtype=np.int32) to
np.zeros((128, 128, 1), dtype=bool).

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.segmaps import SegmentationMapsOnImage

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Create an example mask (bool, 128x128).
Here, we arbitrarily place a square on the image.
segmap = np.zeros((128, 128, 1), dtype=bool)
segmap[28:71, 35:85, 0] = True
segmap = SegmentationMapsOnImage(segmap, shape=image.shape)

Draw three columns: (1) original image,
(2) original image with mask on top, (3) only mask
cells = [
 image,
 segmap.draw_on_image(image)[0],
 segmap.draw(size=image.shape[:2])[0]
]

Convert cells to a grid image and save.
grid_image = ia.draw_grid(cells, cols=3)
imageio.imwrite("example_segmaps_bool.jpg", grid_image)

[image: Boolean segmentation map augmentation example]
Results of the above example code. Columns show: (1) Original image,
(2) boolean segmentation map (i.e. mask) drawn on image, (3) boolean
segmentation map drawn on its own.

Accessing the segmentation map array

After augmentation it is often desired to re-access the segmentation map
array. This can be done using SegmentationMapsOnImage.get_arr(),
which returns a segmentation map array with the same shape and dtype as
was originally provided as arr to SegmentationMapsOnImage(arr, ...).

The below code shows an example that accesses and changes the array.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.segmaps import SegmentationMapsOnImage

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Create an example segmentation map (int32, 128x128).
Here, we arbitrarily place some squares on the image.
Class 0 is the background class.
segmap = np.zeros((128, 128, 1), dtype=np.int32)
segmap[28:71, 35:85, 0] = 1
segmap[10:25, 30:45, 0] = 2
segmap[10:25, 70:85, 0] = 3
segmap[10:110, 5:10, 0] = 4
segmap[118:123, 10:110, 0] = 5
segmap1 = SegmentationMapsOnImage(segmap, shape=image.shape)

Read out the segmentation map's array, change it and create a new
segmentation map
arr = segmap1.get_arr()
arr[10:110, 5:10, 0] = 5
segmap2 = ia.SegmentationMapsOnImage(arr, shape=image.shape)

Draw three columns: (1) original image, (2) original image with
unaltered segmentation map on top, (3) original image with altered
segmentation map on top
cells = [
 image,
 segmap1.draw_on_image(image)[0],
 segmap2.draw_on_image(image)[0]
]

Convert cells to grid image and save.
grid_image = ia.draw_grid(cells, cols=3)
imageio.imwrite("example_segmaps_array.jpg", grid_image)

[image: Example for accessing segmentation map arrays]
Results of the above example code. Columns show: (1) Original image,
(2) original segmentation map drawn on original image, (3) segmentation
map with modified array drawn on image.

Resizing and padding

Segmentation maps can easily be resized and padded. The methods are identical
to the ones used for heatmaps (see :doc:examples_heatmaps), though
segmentation maps do not offer resizing via average or max pooling. The
resize() method also defaults to nearest neighbour interpolation (instead
of cubic interpolation) and it is recommended to not change that.

The functions for resizing and padding are:

	SegmentationMapsOnImage.resize(sizes, interpolation="nearest"):
Resizes to sizes given as a tuple (height, width). Interpolation
can be nearest, linear, cubic and area, but only
nearest is actually recommended.

	SegmentationMapsOnImage.pad(top=0, right=0, bottom=0, left=0, mode="constant",
cval=0):
Pads the segmentation map by given pixel amounts. Uses by default constant
value padding with value 0, i.e. zero-padding. Possible padding modes
are the same as for numpy.pad(), i.e. constant, edge,
linear_ramp, maximum, mean, median, minimum,
reflect, symmetric and wrap.

	SegmentationMapsOnImage.pad_to_aspect_ratio(aspect_ratio, mode="constant", cval=0,
return_pad_amounts=False):
Same as pad(), but pads an image towards a desired aspect ratio
(ratio = width / height). E.g. use 1.0 for squared segmentation
maps or 2.0 for maps that are twice as wide as they are high.

Stochastic Parameters

Introduction

When augmenting images during experiments, usually one wants to augment each
image in different ways. E.g. when rotating images, not every image is supposed
to be rotated by 10 degrees. Instead, only some are supposed to be rotated
by 10 degrees, while others should be rotated by 17 degrees or 5 degrees
or -12 degrees - and so on. This can be achieved using random functions,
but reimplementing these, making sure that they generate the expected values
and getting them to work with determinism is cumbersome. To avoid all of
this work, the library uses Stochastic Parameters. These are usually
abstract representations of probability distributions, e.g. the normal
distribution N(0, 1.0) or the uniform range [0.0, 10.0].
Basically all augmenters accept these stochastic parameters, making it easy
to control value ranges. They are all adapted to work with determinism
out of the box.

The below code shows their usage:

from imgaug import augmenters as iaa
from imgaug import parameters as iap

seq = iaa.Sequential([
 iaa.GaussianBlur(
 sigma=iap.Uniform(0.0, 1.0)
),
 iaa.ContrastNormalization(
 iap.Choice(
 [1.0, 1.5, 3.0],
 p=[0.5, 0.3, 0.2]
)
),
 iaa.Affine(
 rotate=iap.Normal(0.0, 30),
 translate_px=iap.RandomSign(iap.Poisson(3))
),
 iaa.AddElementwise(
 iap.Discretize(
 (iap.Beta(0.5, 0.5) * 2 - 1.0) * 64
)
),
 iaa.Multiply(
 iap.Positive(iap.Normal(0.0, 0.1)) + 1.0
)
])

	The example does the following:

	
	Blur each image by sigma, where sigma is sampled from the uniform range [0.0, 1.0). Example values: 0.053, 0.414, 0.389, 0.277, 0.981.

	Increase the contrast either to 100% (50% chance of being chosen) or by 150% (30% chance of being chosen) or 300% (20% chance of being chosen).

	Rotate each image by a random amount of degrees, where the degree is sampled from the normal distribution N(0, 30). Most of the values will be in the range -60 to 60.

	Translate each image by n pixels, where n is sampled from a poisson distribution with alpha=3 (pick should be around x=3).
As we cant translate by a fraction of a pixel, we pick a discrete distribution here, which poisson is.
However, we do not just want to translate towards the right/top (only positive values).
So we randomly flip the sign sometimes to get negative pixel amounts too.

	Add to each pixel a random value, sampled from the beta distribution Beta(0.5, 0.5).
This distribution has its peaks around 0.0 and 1.0.
We multiply this with 2 and subtract 1 to get it into the range [-1, 1].
Then we multiply by 64 to get the range [-64, 64].
As we beta distribution is continuous, we convert it to a discrete distribution.
The result is that a lot of pixel intensities are shifted by -64 or 64 (or a value very close to these two).
Some other pixel intensities are kept (mostly) at their old values.

	We use Multiply to make each image brighter.
The brightness increase is sampled from a normal distribution, converted to have only positive values.
So most values are expected to be in the range 0.0 to 0.2.
We add 1.0 to set the brightness to 1.0 (100%) to 1.2 (120%).

[image: Augmented images generated by example sequence]

Continuous Probability Distributions

The following continuous probability distributions are available:

	Normal(loc, scale): The popular normal distribution with mean loc and standard deviation scale.
Example:

from imgaug import parameters as iap
params = [
 iap.Normal(0, 1),
 iap.Normal(5, 3),
 iap.Normal(iap.Choice([-3, 3]), 1),
 iap.Normal(iap.Uniform(-3, 3), 1)
]
iap.show_distributions_grid(params)

[image: Examples of normal distributions]

	Laplace(loc, scale): Similarly shaped to a normal distribution. Has its peak at loc and width scale.
Example:

from imgaug import parameters as iap
params = [
 iap.Laplace(0, 1),
 iap.Laplace(5, 3),
 iap.Laplace(iap.Choice([-3, 3]), 1),
 iap.Laplace(iap.Uniform(-3, 3), 1)
]
iap.show_distributions_grid(params)

[image: Examples of laplace distributions]

	
	ChiSquare(df): The chi-square (“X^2”) distribution with df degrees of freedom.

	Roughly similar to a continuous version of the poisson distribution.
Has its peak at df and no negative values, only positive ones.
Example:

from imgaug import parameters as iap
params = [
 iap.ChiSquare(1),
 iap.ChiSquare(3),
 iap.ChiSquare(iap.Choice([1, 5])),
 iap.RandomSign(iap.ChiSquare(3))
]
iap.show_distributions_grid(params)

[image: Examples of chi-square distributions]

	Weibull(a): Weibull distribution with shape a.
Example:

from imgaug import parameters as iap
params = [
 iap.Weibull(0.5),
 iap.Weibull(1),
 iap.Weibull(1.5),
 iap.Weibull((0.5, 1.5))
]
iap.show_distributions_grid(params)

[image: Examples of Weibull distributions]

	Uniform(a, b): Uniform distribution in the range [a, b).
Example:

from imgaug import parameters as iap
params = [
 iap.Uniform(0, 1),
 iap.Uniform(iap.Normal(-3, 1), iap.Normal(3, 1)),
 iap.Uniform([-1, 0], 1),
 iap.Uniform((-1, 0), 1)
]
iap.show_distributions_grid(params)

[image: Examples of Uniform distributions]

	Beta(alpha, beta): Beta distribution with parameters alpha and beta.
Example:

from imgaug import parameters as iap
params = [
 iap.Beta(0.5, 0.5),
 iap.Beta(2.0, 2.0),
 iap.Beta(1.0, 0.5),
 iap.Beta(0.5, 1.0)
]
iap.show_distributions_grid(params)

[image: Examples of Beta distributions]

Discrete Probability Distributions

The following discrete probability distributions are available:

	Binomial(p): The common binomial distribution with probability p.
Useful to simulate coinflips.
Example:

from imgaug import parameters as iap
params = [
 iap.Binomial(0.5),
 iap.Binomial(0.9)
]
iap.show_distributions_grid(params)

[image: Examples of Binomial distributions]

	DiscreteUniform(a, b): The discrete uniform distribution in the range [a..b].
Example:

from imgaug import parameters as iap
params = [
 iap.DiscreteUniform(0, 10),
 iap.DiscreteUniform(-10, 10),
 iap.DiscreteUniform([-10, -9, -8, -7], 10),
 iap.DiscreteUniform((-10, -7), 10)
]
iap.show_distributions_grid(params)

[image: Examples of DiscreteUniform distributions]

	Poisson(lam): Poisson distribution with shape lam. Generates no negative values.
Example:

from imgaug import parameters as iap
params = [
 iap.Poisson(1),
 iap.Poisson(2.5),
 iap.Poisson((1, 2.5)),
 iap.RandomSign(iap.Poisson(2.5))
]
iap.show_distributions_grid(params)

[image: Examples of Poisson distributions]

Arithmetic

The library supports arithmetic operations on stochastic parameters.
This allows to modify values sampled from distributions or combine several
distributions with each other.

	Add(param, val, elementwise): Add val to the values sampled from
param. The shortcut is +, e.g. Uniform(…) + 1.
val can be a stochastic parameter itself. Usually, only one
value is sampled from val per sampling run and added to all
samples generated by param. Alternatively, elementwise can be set
to True in order to generate as many samples from val as from param
and add them elementwise. Note that Add merely adds to the results
of param and does not combine probability density functions
(see e.g. example image 3 and 4). Example:

from imgaug import parameters as iap
params = [
 iap.Uniform(0, 1) + 1, # identical to: Add(Uniform(0, 1), 1)
 iap.Add(iap.Uniform(0, 1), iap.Choice([0, 1], p=[0.7, 0.3])),
 iap.Normal(0, 1) + iap.Uniform(-5.5, -5) + iap.Uniform(5, 5.5),
 iap.Normal(0, 1) + iap.Uniform(-7, 5) + iap.Poisson(3),
 iap.Add(iap.Normal(-3, 1), iap.Normal(3, 1)),
 iap.Add(iap.Normal(-3, 1), iap.Normal(3, 1), elementwise=True)
]
iap.show_distributions_grid(
 params,
 rows=2,
 sample_sizes=[# (iterations, samples per iteration)
 (1000, 1000), (1000, 1000), (1000, 1000),
 (1000, 1000), (1, 100000), (1, 100000)
]
)

[image: Examples of using Add]

	Subtract(param, val, elementwise): Same as Add, but subtracts val
from the results of param. The shortcut is -,
e.g. Uniform(…) - 1.

	Multiply(param, val, elementwise): Same as Add, but multiplies val
with the results of param. The shortcut is *,
e.g. Uniform(…) * 2. Example:

from imgaug import parameters as iap
params = [
 iap.Uniform(0, 1) * 2, # identical to: Multiply(Uniform(0, 1), 2)
 iap.Multiply(iap.Uniform(0, 1), iap.Choice([0, 1], p=[0.7, 0.3])),
 (iap.Normal(0, 1) * iap.Uniform(-5.5, -5)) * iap.Uniform(5, 5.5),
 (iap.Normal(0, 1) * iap.Uniform(-7, 5)) * iap.Poisson(3),
 iap.Multiply(iap.Normal(-3, 1), iap.Normal(3, 1)),
 iap.Multiply(iap.Normal(-3, 1), iap.Normal(3, 1), elementwise=True)
]
iap.show_distributions_grid(
 params,
 rows=2,
 sample_sizes=[# (iterations, samples per iteration)
 (1000, 1000), (1000, 1000), (1000, 1000),
 (1000, 1000), (1, 100000), (1, 100000)
]
)

[image: Examples of using Multiply]

	Divide(param, val, elementwise): Same as Multiply, but divides by
val. The shortcut is /, e.g. Uniform(…) / 2. Division by zero
is automatically prevented (zeros are replaced by ones). Example:

from imgaug import parameters as iap
params = [
 iap.Uniform(0, 1) / 2, # identical to: Divide(Uniform(0, 1), 2)
 iap.Divide(iap.Uniform(0, 1), iap.Choice([0, 2], p=[0.7, 0.3])),
 (iap.Normal(0, 1) / iap.Uniform(-5.5, -5)) / iap.Uniform(5, 5.5),
 (iap.Normal(0, 1) * iap.Uniform(-7, 5)) / iap.Poisson(3),
 iap.Divide(iap.Normal(-3, 1), iap.Normal(3, 1)),
 iap.Divide(iap.Normal(-3, 1), iap.Normal(3, 1), elementwise=True)
]
iap.show_distributions_grid(
 params,
 rows=2,
 sample_sizes=[# (iterations, samples per iteration)
 (1000, 1000), (1000, 1000), (1000, 1000),
 (1000, 1000), (1, 100000), (1, 100000)
]
)

[image: Examples of using Divide]

	Power(param, val, elementwise): Same as Add, but raises sampled
values to the exponent val. The shortcut is **. Example:

from imgaug import parameters as iap
params = [
 iap.Uniform(0, 1) ** 2, # identical to: Power(Uniform(0, 1), 2)
 iap.Clip(iap.Uniform(-1, 1) ** iap.Normal(0, 1), -4, 4)
]
iap.show_distributions_grid(params, rows=1)

[image: Examples of using Power]

Special Parameters

	Deterministic(v): A constant. Upon sampling, this always returns v.

	Choice(values, replace=True, p=None): Upon sampling, this parameter
picks randomly elements from a list values. If replace is set to
True (default), the picking happens with replacement. By default,
all elements have the same probability of being picked. This can be
modified using p. Note that values may also contain strings
and other stochastic parameters. In the latter case, each picked
parameter will be replaced by a sample from that parameter. This allows
merging of probability mass functions, but is a rather slow process.
All elements in values should have the same datatype (except for
stochastic parameters). Example:

from imgaug import parameters as iap
params = [
 iap.Choice([0, 1, 2]),
 iap.Choice([0, 1, 2], p=[0.15, 0.5, 0.35]),
 iap.Choice([iap.Normal(-3, 1), iap.Normal(3, 1)]),
 iap.Choice([iap.Normal(-3, 1), iap.Poisson(3)])
]
iap.show_distributions_grid(params)

[image: Examples of using Choice]

	Clip(param, minval=None, maxval=None): Clips the values sampled from
param to the range [minval, maxval]. minval and maxval may be
None. In that case, only minimum or maximum clipping is applied
(depending on what is None). Example:

from imgaug import parameters as iap
params = [
 iap.Clip(iap.Normal(0, 1), -2, 2),
 iap.Clip(iap.Normal(0, 1), -2, None)
]
iap.show_distributions_grid(params, rows=1)

[image: Examples of using Clip]

	Discretize(param): Converts a continuous parameter param into a
discrete one (using rounding). Discrete parameters are not changed.
Example:

from imgaug import parameters as iap
params = [
 iap.Discretize(iap.Normal(0, 1)),
 iap.Discretize(iap.ChiSquare(3))
]
iap.show_distributions_grid(params, rows=1)

[image: Examples of using Discretize]

	Absolute(param): Applies an absolute function to each value sampled
from param, turning them to positive ones. Example:

from imgaug import parameters as iap
params = [
 iap.Absolute(iap.Normal(0, 1)),
 iap.Absolute(iap.Laplace(0, 1))
]
iap.show_distributions_grid(params, rows=1)

[image: Examples of using Absolute]

	RandomSign(param, p_positive=0.5): Randomly flips the signs
of values sampled from param. Optionally, the probability of flipping
a value’s sign towards positive can be set. Example:

from imgaug import parameters as iap
params = [
 iap.ChiSquare(3),
 iap.RandomSign(iap.ChiSquare(3)),
 iap.RandomSign(iap.ChiSquare(3), p_positive=0.75),
 iap.RandomSign(iap.ChiSquare(3), p_positive=0.9)
]
iap.show_distributions_grid(params)

[image: Examples of using RandomSign]

	ForceSign(param, positive, mode=”invert”, reroll_count_max=2):
Converts all values sampled from param to positive or negative ones.
Signs of positive/negative values may simply be flipped (mode=”invert”)
or resampled from param (mode=”reroll”). When rerolling, the number of
iterations is limited to reroll_count_max (afterwards mode=”invert” is
used). Example:

from imgaug import parameters as iap
params = [
 iap.ForceSign(iap.Normal(0, 1), positive=True),
 iap.ChiSquare(3) - 3.0,
 iap.ForceSign(iap.ChiSquare(3) - 3.0, positive=True, mode="invert"),
 iap.ForceSign(iap.ChiSquare(3) - 3.0, positive=True, mode="reroll")
]
iap.show_distributions_grid(params)

[image: Examples of using ForceSign]

	Positive(other_param, mode=”invert”, reroll_count_max=2):
Shortcut for ForceSign with positive=True. E.g.
Positive(Normal(0, 1)) restricts a normal distribution to only positive
values.

	Negative(other_param, mode=”invert”, reroll_count_max=2):
Shortcut for ForceSign with positive=False. E.g.
Negative(Normal(0, 1)) restricts a normal distribution to only negative
values.

	FromLowerResolution(other_param, size_percent=None, size_px=None, method=”nearest”, min_size=1):
Intended for 2d-sampling processes, e.g. for masks. Samples these in
a lower resolution space. E.g. instead of sampling a mask at 100x100,
this allows to sample it at 10x10 and then upsample to 100x100.
One advantage is, that this can be faster. Another possible use is, that
the upsampling may result in large, correlated blobs (linear interpolation)
or rectangles (nearest neighbour interpolation).

Noise Parameters

TODO

Blending/Overlaying images

Introduction

Most augmenters in the library affect images in uniform ways per image.
Sometimes one might not want that and instead desires more localized effects
(e.g. change the color of some image regions, while keeping the others unchanged)
or wants to keep a fraction of the old image (e.g. blur the image and mix in a bit
of the unblurred image).
Blending augmenters are intended for these use cases.
They either mix two images using a constant alpha factor or using a pixel-wise
mask.
Below image shows examples.

First row
iaa.BlendAlpha(
 (0.0, 1.0),
 foreground=iaa.MedianBlur(11),
 per_channel=True
)

Second row
iaa.BlendAlphaSimplexNoise(
 foreground=iaa.EdgeDetect(1.0),
 per_channel=False
)

Third row
iaa.BlendAlphaSimplexNoise(
 foreground=iaa.EdgeDetect(1.0),
 background=iaa.LinearContrast((0.5, 2.0)),
 per_channel=0.5
)

Forth row
iaa.BlendAlphaFrequencyNoise(
 foreground=iaa.Affine(
 rotate=(-10, 10),
 translate_px={"x": (-4, 4), "y": (-4, 4)}
),
 background=iaa.AddToHueAndSaturation((-40, 40)),
 per_channel=0.5
)

Fifth row
iaa.BlendAlphaSimplexNoise(
 foreground=iaa.BlendAlphaSimplexNoise(
 foreground=iaa.EdgeDetect(1.0),
 background=iaa.LinearContrast((0.5, 2.0)),
 per_channel=True
),
 background=iaa.BlendAlphaFrequencyNoise(
 exponent=(-2.5, -1.0),
 foreground=iaa.Affine(
 rotate=(-10, 10),
 translate_px={"x": (-4, 4), "y": (-4, 4)}
),
 background=iaa.AddToHueAndSaturation((-40, 40)),
 per_channel=True
),
 per_channel=True,
 aggregation_method="max",
 sigmoid=False
)

[image: Introduction example]
Various effects of combining alpha-augmenters with other augmenters.
First row shows imgaug.augmenters.blend.BlendAlpha with
imgaug.augmenters.blur.MedianBlur,
second imgaug.augmenters.blend.BlendAlphaSimplexNoise with
imgaug.augmenters.convolutional.EdgeDetect,
third imgaug.augmenters.blend.BlendAlphaSimplexNoise with
imgaug.augmenters.convolutional.EdgeDetect and
imgaug.augmenters.contrast.ContrastNormalization,
third shows
imgaug.augmenters.blend.BlendAlphaFrequencyNoise with
imgaug.augmenters.geometric.Affine and
imgaug.augmenters.color.AddToHueAndSaturation
and forth row shows a mixture
imgaug.augmenters.blend.BlendAlphaSimplexNoise and
imgaug.augmenters.blend.BlendAlphaFrequencyNoise.

Imagewise Constant Alphas Values

The augmenter imgaug.augmenters.blend.BlendAlpha allows to mix the
results of two augmentation branches using an alpha factor that is constant
throughout the whole image, i.e. it follows roughly
I_blend = alpha * I_fg + (1 - alpha) * I_bg per image, where I_fg is
the image from the foreground branch and I_bg is the image from the
background branch.
Often, the first branch will be an augmented version of the image and
the second branch will be the identity function, leading to a blend of
augmented and unaugmented image. The background branch can also contain
non-identity augmenters, leading to a blend of two distinct augmentation
effects.

imgaug.augmenters.blend.BlendAlpha is already built into some
augmenters as a parameter, e.g. into
imgaug.augmenters.convolutional.EdgeDetect.

The below example code generates images that are a blend between
imgaug.augmenters.convolutional.Sharpen and
imgaug.augmenters.arithmetic.CoarseDropout. Notice how the
sharpening does not affect the black rectangles from dropout, as the two
augmenters are both applied to the original
images and merely blended.

import imgaug as ia
from imgaug import augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (8, 128, 128, 3) and dtype uint8.
images = np.array(
 [ia.quokka(size=(128, 128)) for _ in range(8)],
 dtype=np.uint8
)

seq = iaa.BlendAlpha(
 factor=(0.2, 0.8),
 foreground=iaa.Sharpen(1.0, lightness=2),
 background=iaa.CoarseDropout(p=0.1, size_px=8)
)

images_aug = seq(images=images)

[image: Basic example for BlendAlpha]
Mixing imgaug.augmenters.convolutional.Sharpen and
imgaug.augmenters.arithmetic.CoarseDropout via
imgaug.augmenters.blend.BlendAlpha. The resulting effect
is very different from executing them in sequence.

Similar to other augmenters, imgaug.augmenters.blend.BlendAlpha
supports a per_channel mode, in which it samples blending strengths
for each channel independently. As a result, some channels may show more
from the foreground (or background) branch’s outputs than other
channels. This can lead to visible color effects. The following example
is the same as the one above, only per_channel was activated.

iaa.BlendAlpha(..., per_channel=True)

[image: Basic example for BlendAlpha with per_channel=True]
Mixing imgaug.augmenters.convolutional.Sharpen and
imgaug.augmenters.arithmetic.CoarseDropout via
imgaug.augmenters.blend.BlendAlpha and per_channel
set to True.

imgaug.augmenters.blend.BlendAlpha can also be used with
augmenters that change the position of pixels, leading to “ghost”
images. (This should not be done when also augmenting keypoints, as
their position becomes unclear.)

seq = iaa.BlendAlpha(
 factor=(0.2, 0.8),
 foreground=iaa.Affine(rotate=(-20, 20)),
 per_channel=True
)

[image: Basic example for BlendAlpha with Affine and per_channel=True]
Mixing original images with their rotated version.
Some channels are more visibly rotated than others.

BlendAlphaSimplexNoise

imgaug.augmenters.blend.BlendAlpha uses a constant blending
factor per image (or per channel). This limits its possibilities.
Often, a more localized factor is desired to create unusual
patterns. imgaug.augmenters.blend.BlendAlphaSimplexNoise is
an augmenter that does that. It generates continuous masks following
simplex noise and uses them to perform local blending. The following
example shows a combination of
imgaug.augmenters.blend.BlendAlphaSimplexNoise and
imgaug.augmenters.arithmetic.Multiply (with
per_channel=True) that creates blobs of various
colors in the image.

import imgaug as ia
from imgaug import augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (8, 128, 128, 3) and dtype uint8.
images = np.array(
 [ia.quokka(size=(128, 128)) for _ in range(8)],
 dtype=np.uint8
)

seq = iaa.SimplexNoiseAlpha(
 foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True)
)

images_aug = seq(images=images)

[image: Basic example for BlendAlphaSimplexNoise]
Mixing original images with their versions modified by
imgaug.augmenters.arithmetic.Multiply (with
per_channel set to True).
Simplex noise masks are used for the blending process, leading
to blobby patterns.

imgaug.augmenters.blend.BlendAlphaSimplexNoise also supports
per_channel=True, leading to unique noise masks sampled per channel.
The following example shows the combination of
imgaug.augmenters.blend.BlendAlphaSimplexNoise (with
per_channel=True) and
imgaug.augmenters.convolutional.EdgeDetect.
Even though imgaug.augmenters.convolutional.EdgeDetect usually
generates black and white images (white=edges, black=everything else), here
the combination leads to strong color effects as the channel-wise noise
masks only blend EdgeDetect’s result for some channels.

seq = iaa.BlendAlphaSimplexNoise(
 foreground=iaa.EdgeDetect(1.0),
 per_channel=True
)

[image: Basic example for BlendAlphaSimplexNoise with per_channel=True]
Blending images via simplex noise can lead to unexpected but diverse
patterns when per_channel is set to True. Here, a mixture of
original images with EdgeDetect(1.0) is used.

imgaug.augmenters.blend.BlendAlphaSimplexNoise uses continuous
noise masks (2d arrays with values in the range [0.0, 1.0]) to blend
images. The below image shows examples of 64x64 noise masks generated by
imgaug.augmenters.blend.BlendAlphaSimplexNoise with default settings.
Values close to 1.0 (white) indicate that pixel colors will be taken from
the first image source, while 0.0 (black) values indicate that pixel
colors will be taken from the second image source. (Often only one image
source will be given in the form of augmenters and the second will fall back
to the original images fed into
imgaug.augmenters.blend.BlendAlphaSimplexNoise.)

[image: Examples of noise masks generated by BlendAlphaSimplexNoise]
Examples of noise masks generated by
imgaug.augmenters.blend.BlendAlphaSimplexNoise using default
settings.

imgaug.augmenters.blend.BlendAlphaSimplexNoise generates its noise
masks in low resolution images and then upscales the masks to the size of
the input images. During upscaling it usually uses nearest neighbour
interpolation (nearest), linear interpolation (linear) or cubic
interpolation (cubic). Nearest neighbour interpolation leads to noise maps
with rectangular blobs. The below example shows noise maps generated when
only using nearest neighbour interpolation.

seq = iaa.BlendAlphaSimplexNoise(
 ...,
 upscale_method="nearest"
)

[image: Examples of noise masks generated by BlendAlphaSimplexNoise with upscaling method nearest]
Examples of noise masks generated by
imgaug.augmenters.blend.BlendAlphaSimplexNoise when restricting
the upscaling method to nearest.

Similarly, the following example shows noise maps generated when only using
linear interpolation.

seq = iaa.BlendAlphaSimplexNoise(
 ...,
 upscale_method="linear"
)

[image: Examples of noise masks generated by SimplexNoiseAlpha with upscaling method linear]
Examples of noise masks generated by
imgaug.augmenters.blend.BlendAlphaSimplexNoise when restricting
the upscaling method to linear.

FrequencyNoiseAlpha

imgaug.augmenters.blend.BlendAlphaFrequencyNoise is mostly identical
to imgaug.augmenters.blend.BlendAlphaSimplexNoise. In contrast
to imgaug.augmenters.blend.BlendAlphaSimplexNoise it uses a
different sampling process to generate the blend masks. The process is based
on starting with random frequencies, weighting them with a random exponent
and then transforming from frequency domain to spatial domain. When using a
low exponent value this leads to large, smooth blobs. Slightly higher
exponents lead to cloudy patterns. High exponent values lead to recurring,
small patterns. The below example shows the usage of
imgaug.augmenters.blend.BlendAlphaFrequencyNoise.

import imgaug as ia
from imgaug import augmenters as iaa
from imgaug import parameters as iap

ia.seed(1)

Example batch of images.
The array has shape (8, 64, 64, 3) and dtype uint8.
images = np.array(
 [ia.quokka(size=(128, 128)) for _ in range(8)],
 dtype=np.uint8
)

seq = iaa.BlendAlphaFrequencyNoise(
 foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True)
)

images_aug = seq.augment_images(images)

[image: Basic example for BlendAlphaFrequencyNoise]
Mixing original images with their versions modified by
imgaug.augmenters.arithmetic.Multiply (with per_channel set
to True). Frequency noise masks are used for the blending process,
leading to blobby patterns.

Similarly to simplex noise,
imgaug.augmenters.blend.BlendAlphaFrequencyNoise also supports
per_channel=True, leading to different noise maps per image channel.

seq = iaa.BlendAlphaFrequencyNoise(
 foreground=iaa.EdgeDetect(1.0),
 per_channel=True
)

[image: Basic example for FrequencyNoiseAlpha with per_channel=True]
Blending images via frequency noise can lead to unexpected but diverse
patterns when per_channel is set to True. Here, a mixture of
original images with
imgaug.augmenters.convolutional.EdgeDetect(1.0) is used.

The below image shows random example noise masks generated by
imgaug.augmenters.blend.BlendAlphaFrequencyNoise with default
settings.

[image: Examples of noise masks generated by FrequencyNoiseAlpha]
Examples of noise masks generated by
imgaug.augmenters.blend.FrequencyNoiseAlpha using default
settings.

The following image shows the effects of varying exponent between -4.0
and 4.0. To show these effects more clearly, a few features of
imgaug.augmenters.blend.BlendAlphaFrequencyNoise were
deactivated (e.g. multiple iterations). In the code, E is the value of
the exponent (e.g. E=-2.0).

seq = iaa.BlendAlphaFrequencyNoise(
 exponent=E,
 foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True),
 size_px_max=32,
 upscale_method="linear",
 iterations=1,
 sigmoid=False
)

[image: Examples of noise masks generated by FrequencyNoiseAlpha under varying exponents]
Examples of noise masks generated by
imgaug.augmenters.blend.BlendAlphaFrequencyNoise using default
settings with varying exponents.

Similarly to imgaug.augmenters.blend.BlendAlphaSimplexNoise,
imgaug.augmenters.blend.BlendAlphaFrequencyNoise also generates the
noise masks as low resolution versions and then upscales them to the full
image size. The following images show the usage of nearest neighbour
interpolation (upscale_method="nearest") and linear
interpolation (upscale_method="linear").

[image: Examples of noise masks generated by FrequencyNoiseAlpha with upscaling method nearest]
Examples of noise masks generated by
imgaug.augmenters.blend.BlendAlphaFrequencyNoise when restricting
the upscaling method to nearest.

[image: Examples of noise masks generated by FrequencyNoiseAlpha with upscaling method linear]
Examples of noise masks generated by
imgaug.augmenters.blend.BlendAlphaFrequencyNoise when restricting
the upscaling method to linear.

IterativeNoiseAggregator

Both imgaug.augmenters.blend.BlendAlphaSimplexNoise and
imgaug.augmenters.blend.BlendAlphaFrequencyNoise wrap around
imgaug.parameters.IterativeNoiseAggregator, a component
to generate noise masks in multiple iterations. It has parameters for the
number of iterations (1 to N) and for the aggregation methods, which controls
how the noise masks from the different iterations are to be combined.
Valid aggregation methods are "min", "avg" and "max", where
min takes the minimum over all iteration’s masks, max the maxmimum
and avg the average. As a result, masks generated with method min
tend to be close to 0.0 (mostly black values), those generated with max
close to 1.0 and avg converges towards 0.5.
(0.0 means that the results of the second image dominate the final image,
so in many cases the original images before the augmenter). The following
image shows the effects of changing the number of iterations when
combining imgaug.parameters.FrequencyNoise with
imgaug.parameters.IterativeNoiseAggregator.

This is how the iterations would be changed for BlendAlphaFrequencyNoise.
(Same for BlendAlphaSimplexNoise.)
seq = iaa.BlendAlphaFrequencyNoise(
 ...,
 iterations=N
)

[image: Examples of varying the number of iterations in IterativeNoiseAggregator]
Examples of varying the number of iterations in
imgaug.parameters.IterativeNoiseAggregator (here in
combination with imgaug.parameters.FrequencyNoise).

The following image shows the effects of changing the aggregation mode
(with varying iterations).

This is how the iterations and aggregation method would be changed for
BlendAlphaFrequencyNoise. (Same for BlendAlphaSimplexNoise.)
seq = iaa.BlendAlphaFrequencyNoise(
 ...,
 iterations=N,
 aggregation_method=M
)

[image: Examples of varying the methods and iterations in IterativeNoiseAggregator]
Examples of varying the aggregation method and iterations in
imgaug.parameters.IterativeNoiseAggregator (here in
combination with imgaug.parameters.FrequencyNoise).

Sigmoid

Generated noise masks can often end up having many values around 0.5,
especially when running
imgaug.parameters.IterativeNoiseAggregator with many iterations
and aggregation method avg. This can be undesired.
imgaug.parameters.Sigmoid is a method to compensate that. It
applies a sigmoid function to the noise masks, forcing the values to
mostly lie close to 0.0 or 1.0 and only rarely in
between. This can lead to blobs of values close to 1.0 (“use only colors from
images coming from source A”), surrounded by blobs with values close to
0.0 (“use only colors from images coming from source B”). This is similar
to taking either from one image source (per pixel) or the other, but
usually not both. Sigmoid is integrated into both
class:imgaug.augmenters.blend.BlendAlphaSimplexNoise
and imgaug.augmenters.blend.BlendAlphaFrequencyNoise. It can be
dynamically activated/deactivated and has a threshold parameter that
controls how aggressive and pushes the noise values towards 1.0.

This is how the Sigmoid would be activated/deactivated for
BlendAlphaFrequencyNoise (same for BlendAlphaSimplexNoise). P is the
probability of the Sigmoid being activated (can be True/False), T is the
threshold (sane values are usually around -10 to +10, can be a
tuple, e.g. sigmoid_thresh=(-10, 10), to indicate a uniform range).
seq = iaa.BlendAlphaFrequencyNoise(
 ...,
 sigmoid=P,
 sigmoid_thresh=T
)

The below image shows the effects of applying
imgaug.parameters.Sigmoid to noise masks generated by
imgaug.parameters.FrequencyNoise.

[image: Examples of noise maps without and with activated Sigmoid]
Examples of noise maps without and with activated
imgaug.parameters.Sigmoid (noise maps here from
imgaug.parameters.FrequencyNoise).

The below image shows the effects of varying the sigmoid’s threshold.
Lower values place the threshold further to the “left” (lower x values),
leading to more x-values being above the threshold values, leading to
more 1.0s in the noise masks.

[image: Examples of varying the Sigmoid threshold]
Examples of varying the imgaug.parameters.Sigmoid threshold
from -10.0 to 10.0.

Overview of Augmenters

	augmenters.meta
	Sequential

	SomeOf

	OneOf

	Sometimes

	WithChannels

	Identity

	Noop

	Lambda

	AssertLambda

	AssertShape

	ChannelShuffle

	RemoveCBAsByOutOfImageFraction

	ClipCBAsToImagePlanes

	augmenters.arithmetic
	Add

	AddElementwise

	AdditiveGaussianNoise

	AdditiveLaplaceNoise

	AdditivePoissonNoise

	Multiply

	MultiplyElementwise

	Cutout

	Dropout

	CoarseDropout

	Dropout2D

	TotalDropout

	ReplaceElementwise

	ImpulseNoise

	SaltAndPepper

	CoarseSaltAndPepper

	Salt

	CoarseSalt

	Pepper

	CoarsePepper

	Invert

	Solarize

	JpegCompression

	augmenters.artistic
	Cartoon

	augmenters.blend
	BlendAlpha

	BlendAlphaMask

	BlendAlphaElementwise

	BlendAlphaSimplexNoise

	BlendAlphaFrequencyNoise

	BlendAlphaSomeColors

	BlendAlphaHorizontalLinearGradient

	BlendAlphaVerticalLinearGradient

	BlendAlphaRegularGrid

	BlendAlphaCheckerboard

	BlendAlphaSegMapClassIds

	BlendAlphaBoundingBoxes

	augmenters.blur
	GaussianBlur

	AverageBlur

	MedianBlur

	BilateralBlur

	MotionBlur

	MeanShiftBlur

	augmenters.collections
	RandAugment

	augmenters.color
	WithColorspace

	WithBrightnessChannels

	MultiplyAndAddToBrightness

	MultiplyBrightness

	AddToBrightness

	WithHueAndSaturation

	MultiplyHueAndSaturation

	MultiplyHue

	MultiplySaturation

	RemoveSaturation

	AddToHueAndSaturation

	AddToHue

	AddToSaturation

	ChangeColorspace

	Grayscale

	ChangeColorTemperature

	KMeansColorQuantization

	UniformColorQuantization

	UniformColorQuantizationToNBits

	Posterize

	augmenters.contrast
	GammaContrast

	SigmoidContrast

	LogContrast

	LinearContrast

	AllChannelsCLAHE

	CLAHE

	AllChannelsHistogramEqualization

	HistogramEqualization

	augmenters.convolutional
	Convolve

	Sharpen

	Emboss

	EdgeDetect

	DirectedEdgeDetect

	augmenters.debug
	SaveDebugImageEveryNBatches

	augmenters.edges
	Canny

	augmenters.flip
	HorizontalFlip

	VericalFlip

	Fliplr

	Flipud

	augmenters.geometric
	Affine

	ScaleX

	ScaleY

	TranslateX

	TranslateY

	Rotate

	ShearX

	ShearY

	PiecewiseAffine

	PerspectiveTransform

	ElasticTransformation

	Rot90

	WithPolarWarping

	Jigsaw

	augmenters.imgcorruptlike
	GaussianNoise

	ShotNoise

	ImpulseNoise

	SpeckleNoise

	GaussianBlur

	GlassBlur

	DefocusBlur

	MotionBlur

	ZoomBlur

	Fog

	Frost

	Snow

	Spatter

	Contrast

	Brightness

	Saturate

	JpegCompression

	Pixelate

	ElasticTransform

	augmenters.pillike
	Solarize

	Posterize

	Equalize

	Autocontrast

	EnhanceColor

	EnhanceContrast

	EnhanceBrightness

	EnhanceSharpness

	FilterBlur

	FilterSmooth

	FilterSmoothMore

	FilterEdgeEnhance

	FilterEdgeEnhanceMore

	FilterFindEdges

	FilterContour

	FilterEmboss

	FilterSharpen

	FilterDetail

	Affine

	augmenters.pooling
	AveragePooling

	MaxPooling

	MinPooling

	MedianPooling

	augmenters.segmentation
	Superpixels

	Voronoi

	UniformVoronoi

	RegularGridVoronoi

	RelativeRegularGridVoronoi

	augmenters.size
	Resize

	CropAndPad

	Pad

	Crop

	PadToFixedSize

	CropToFixedSize

	PadToMultiplesOf

	CropToMultiplesOf

	CropToPowersOf

	PadToPowersOf

	CropToAspectRatio

	PadToAspectRatio

	CropToSquare

	PadToSquare

	CenterPadToFixedSize

	CenterCropToFixedSize

	CenterCropToMultiplesOf

	CenterPadToMultiplesOf

	CenterCropToPowersOf

	CenterPadToPowersOf

	CenterCropToAspectRatio

	CenterPadToAspectRatio

	CenterCropToSquare

	CenterPadToSquare

	KeepSizeByResize

	augmenters.weather
	FastSnowyLandscape

	Clouds

	Fog

	CloudLayer

	Snowflakes

	SnowflakesLayer

	Rain

	RainLayer

augmenters.meta

Sequential

List augmenter that may contain other augmenters to apply in sequence
or random order.

API link: Sequential

Example.
Apply in predefined order:

import imgaug.augmenters as iaa
aug = iaa.Sequential([
 iaa.Affine(translate_px={"x":-40}),
 iaa.AdditiveGaussianNoise(scale=0.1*255)
])

[image: Sequential]

Example.
Apply in random order (note that the order is sampled once per batch and then
the same for all images within the batch):

aug = iaa.Sequential([
 iaa.Affine(translate_px={"x":-40}),
 iaa.AdditiveGaussianNoise(scale=0.1*255)
], random_order=True)

[image: Sequential with random order]

SomeOf

List augmenter that applies only some of its children to images.

API link: SomeOf

Example.
Apply two of four given augmenters:

import imgaug.augmenters as iaa
aug = iaa.SomeOf(2, [
 iaa.Affine(rotate=45),
 iaa.AdditiveGaussianNoise(scale=0.2*255),
 iaa.Add(50, per_channel=True),
 iaa.Sharpen(alpha=0.5)
])

[image: SomeOf]

Example.
Apply 0 to <max> given augmenters (where <max> is automatically
replaced with the number of children):

aug = iaa.SomeOf((0, None), [
 iaa.Affine(rotate=45),
 iaa.AdditiveGaussianNoise(scale=0.2*255),
 iaa.Add(50, per_channel=True),
 iaa.Sharpen(alpha=0.5)
])

[image: SomeOf 0 to None]

Example.
Pick two of four given augmenters and apply them in random order:

aug = iaa.SomeOf(2, [
 iaa.Affine(rotate=45),
 iaa.AdditiveGaussianNoise(scale=0.2*255),
 iaa.Add(50, per_channel=True),
 iaa.Sharpen(alpha=0.5)
], random_order=True)

[image: SomeOf random order]

OneOf

Augmenter that always executes exactly one of its children.

API link: OneOf()

Example.
Apply one of four augmenters to each image:

import imgaug.augmenters as iaa
aug = iaa.OneOf([
 iaa.Affine(rotate=45),
 iaa.AdditiveGaussianNoise(scale=0.2*255),
 iaa.Add(50, per_channel=True),
 iaa.Sharpen(alpha=0.5)
])

[image: OneOf]

Sometimes

Augment only p percent of all images with one or more augmenters.

API link: Sometimes

Example.
Apply gaussian blur to about 50% of all images:

import imgaug.augmenters as iaa
aug = iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=2.0))

[image: Sometimes]

Example.
Apply gaussian blur to about 50% of all images. Apply a mixture of affine
rotations and sharpening to the other 50%.

aug = iaa.Sometimes(
 0.5,
 iaa.GaussianBlur(sigma=2.0),
 iaa.Sequential([iaa.Affine(rotate=45), iaa.Sharpen(alpha=1.0)])
)

[image: Sometimes if else]

WithChannels

Apply child augmenters to specific channels.

API link: WithChannels

Example.
Increase each pixel’s R-value (redness) by 10 to 100:

import imgaug.augmenters as iaa
aug = iaa.WithChannels(0, iaa.Add((10, 100)))

[image: WithChannels]

Example.
Rotate each image’s red channel by 0 to 45 degrees:

aug = iaa.WithChannels(0, iaa.Affine(rotate=(0, 45)))

[image: WithChannels + Affine]

Identity

Augmenter that does not change the input data.

This augmenter is useful e.g. during validation/testing as it allows
to re-use the training code without actually performing any augmentation.

API link: Identity

Example.
Create an augmenter that does not change inputs:

import imgaug.augmenters as iaa
aug = iaa.Identity()

[image: Identity]

Noop

Alias for augmenter Identity.

It is recommended to now use Identity. Noop might be
deprecated in the future.

API link: Noop

Example.
Create an augmenter that does nothing:

import imgaug.augmenters as iaa
aug = iaa.Noop()

[image: Noop]

Lambda

Augmenter that calls a lambda function for each batch of input image.

API link: Lambda

Example.
Replace in every image each fourth row with black pixels:

import imgaug.augmenters as iaa

def img_func(images, random_state, parents, hooks):
 for img in images:
 img[::4] = 0
 return images

def keypoint_func(keypoints_on_images, random_state, parents, hooks):
 return keypoints_on_images

aug = iaa.Lambda(img_func, keypoint_func)

[image: Lambda]

AssertLambda

Augmenter that runs an assert on each batch of input images
using a lambda function as condition.

API link: AssertLambda

TODO examples

AssertShape

Augmenter to make assumptions about the shape of input image(s)
and keypoints.

API link: AssertShape

Example.
Check if each image in a batch has shape 32x32x3, otherwise raise an
exception:

import imgaug.augmenters as iaa
seq = iaa.Sequential([
 iaa.AssertShape((None, 32, 32, 3)),
 iaa.Fliplr(0.5) # only executed if shape matches
])

Example.
Check if each image in a batch has a height in the range 32<=x<64,
a width of exactly 64 and either 1 or 3 channels:

seq = iaa.Sequential([
 iaa.AssertShape((None, (32, 64), 32, [1, 3])),
 iaa.Fliplr(0.5)
])

ChannelShuffle

Randomize the order of channels in input images.

API link: ChannelShuffle

Example.
Shuffle all channels of 35% of all images:

import imgaug.augmenters as iaa
aug = iaa.ChannelShuffle(0.35)

[image: ChannelShuffle]

Example.
Shuffle only channels 0 and 1 of 35% of all images. As the new
channel orders 0, 1 and 1, 0 are both valid outcomes of the
shuffling, it means that for 0.35 * 0.5 = 0.175 or 17.5% of all images
the order of channels 0 and 1 is inverted.

aug = iaa.ChannelShuffle(0.35, channels=[0, 1])

[image: ChannelShuffle]

RemoveCBAsByOutOfImageFraction

Remove coordinate-based augmentables exceeding an out of image fraction.

This augmenter inspects all coordinate-based augmentables (e.g.
bounding boxes, line strings) within a given batch and removes any such
augmentable which’s out of image fraction is exactly a given value or
greater than that. The out of image fraction denotes the fraction of the
augmentable’s area that is outside of the image, e.g. for a bounding box
that has half of its area outside of the image it would be 0.5.

API link: RemoveCBAsByOutOfImageFraction

Example.
Translate all inputs by -100 to 100 pixels on the x-axis, then
remove any coordinate-based augmentable (e.g. bounding boxes) which has
at least 50% of its area outside of the image plane:

import imgaug.augmenters as iaa
aug = iaa.Sequential([
 iaa.Affine(translate_px={"x": (-100, 100)}),
 iaa.RemoveCBAsByOutOfImageFraction(0.5)
])

[image: RemoveCBAsByOutOfImageFraction]

Example.
Create a bounding box on an example image, then translate the image so that
50% of the bounding box’s area is outside of the image and compare
the effects and using RemoveCBAsByOutOfImageFraction with not using it.

import imgaug as ia
import imgaug.augmenters as iaa
image = ia.quokka_square((100, 100))
bb = ia.BoundingBox(x1=50-25, y1=0, x2=50+25, y2=100)
bbsoi = ia.BoundingBoxesOnImage([bb], shape=image.shape)
aug_without = iaa.Affine(translate_px={"x": 51})
aug_with = iaa.Sequential([
 iaa.Affine(translate_px={"x": 51}),
 iaa.RemoveCBAsByOutOfImageFraction(0.5)
])

image_without, bbsoi_without = aug_without(
 image=image, bounding_boxes=bbsoi)
image_with, bbsoi_with = aug_with(
 image=image, bounding_boxes=bbsoi)

assert len(bbsoi_without.bounding_boxes) == 1
assert len(bbsoi_with.bounding_boxes) == 0

[image: RemoveCBAsByOutOfImageFraction comparison with/without]

ClipCBAsToImagePlanes

Clip coordinate-based augmentables to areas within the image plane.

This augmenter inspects all coordinate-based augmentables (e.g.
bounding boxes, line strings) within a given batch and from each of them
parts that are outside of the image plane. Parts within the image plane
will be retained. This may e.g. shrink down bounding boxes. For keypoints,
it removes any single points outside of the image plane. Any augmentable
that is completely outside of the image plane will be removed.

API link: ClipCBAsToImagePlanes

Example.
Translate input data on the x-axis by -100 to 100 pixels,
then cut all coordinate-based augmentables (e.g. bounding boxes) down
to areas that are within the image planes of their corresponding images:

import imgaug.augmenters as iaa
aug = iaa.Sequential([
 iaa.Affine(translate_px={"x": (-100, 100)}),
 iaa.ClipCBAsToImagePlanes()
])

[image: ClipCBAsToImagePlanes]

augmenters.arithmetic

Add

Add a value to all pixels in an image.

API link: Add

Example.
Add random values between -40 and 40 to images, with each value
being sampled once per image and then being the same for all pixels:

import imgaug.augmenters as iaa
aug = iaa.Add((-40, 40))

[image: Add]

Example.
Add random values between -40 and 40 to images. In 50% of all
images the values differ per channel (3 sampled value). In the other 50% of
all images the value is the same for all channels:

aug = iaa.Add((-40, 40), per_channel=0.5)

[image: Add per channel]

AddElementwise

Add values to the pixels of images with possibly different values
for neighbouring pixels.

API link: AddElementwise

Example.
Add random values between -40 and 40 to images, with each value being sampled
per pixel:

import imgaug.augmenters as iaa
aug = iaa.AddElementwise((-40, 40))

[image: AddElementwise]

Example.
Add random values between -40 and 40 to images. In 50% of all images the
values differ per channel (3 sampled values per pixel).
In the other 50% of all images the value is the same for all channels per pixel:

aug = iaa.AddElementwise((-40, 40), per_channel=0.5)

[image: AddElementwise per channel]

AdditiveGaussianNoise

Add noise sampled from gaussian distributions elementwise to images.

API link: AdditiveGaussianNoise()

Example.
Add gaussian noise to an image, sampled once per pixel from a normal
distribution N(0, s), where s is sampled per image and varies between
0 and 0.2*255:

import imgaug.augmenters as iaa
aug = iaa.AdditiveGaussianNoise(scale=(0, 0.2*255))

[image: AdditiveGaussianNoise]

Example.
Add gaussian noise to an image, sampled once per pixel from a normal
distribution N(0, 0.05*255):

aug = iaa.AdditiveGaussianNoise(scale=0.2*255)

[image: AdditiveGaussianNoise large]

Example.
Add gaussian noise to an image, sampled channelwise from
N(0, 0.2*255) (i.e. three independent samples per pixel):

aug = iaa.AdditiveGaussianNoise(scale=0.2*255, per_channel=True)

[image: AdditiveGaussianNoise per channel]

AdditiveLaplaceNoise

Add noise sampled from laplace distributions elementwise to images.

The laplace distribution is similar to the gaussian distribution, but
puts more weight on the long tail. Hence, this noise will add more
outliers (very high/low values). It is somewhere between gaussian noise and
salt and pepper noise.

API link: AdditiveLaplaceNoise()

Example.
Add laplace noise to an image, sampled once per pixel from Laplace(0, s),
where s is sampled per image and varies between 0 and 0.2*255:

import imgaug.augmenters as iaa
aug = iaa.AdditiveLaplaceNoise(scale=(0, 0.2*255))

[image: AdditiveLaplaceNoise]

Example.
Add laplace noise to an image, sampled once per pixel from
Laplace(0, 0.2*255):

aug = iaa.AdditiveLaplaceNoise(scale=0.2*255)

[image: AdditiveLaplaceNoise large]

Example.
Add laplace noise to an image, sampled channelwise from
Laplace(0, 0.2*255) (i.e. three independent samples per pixel):

aug = iaa.AdditiveLaplaceNoise(scale=0.2*255, per_channel=True)

[image: AdditiveLaplaceNoise per channel]

AdditivePoissonNoise

Add noise sampled from poisson distributions elementwise to images.

Poisson noise is comparable to gaussian noise, as e.g. generated via
AdditiveGaussianNoise. As poisson distributions produce only positive
numbers, the sign of the sampled values are here randomly flipped.

Values of around 20.0 for lam lead to visible noise (for uint8).
Values of around 40.0 for lam lead to very visible noise (for
uint8).
It is recommended to usually set per_channel to True.

API link: AdditivePoissonNoise()

Example.
Add poisson noise to an image, sampled once per pixel from Poisson(lam),
where lam is sampled per image and varies between 0 and 40:

import imgaug.augmenters as iaa
aug = iaa.AdditivePoissonNoise(scale=(0, 40))

[image: AdditivePoissonNoise]

Example.
Add poisson noise to an image, sampled once per pixel from Poisson(40):

aug = iaa.AdditivePoissonNoise(40)

[image: AdditivePoissonNoise large]

Example.
Add poisson noise to an image, sampled channelwise from
Poisson(40) (i.e. three independent samples per pixel):

aug = iaa.AdditivePoissonNoise(scale=40, per_channel=True)

[image: AdditivePoissonNoise per channel]

Multiply

Multiply all pixels in an image with a specific value, thereby making the
image darker or brighter.

API link: Multiply

Example.
Multiply each image with a random value between 0.5 and 1.5:

import imgaug.augmenters as iaa
aug = iaa.Multiply((0.5, 1.5))

[image: Multiply]

Example.
Multiply 50% of all images with a random value between 0.5 and 1.5
and multiply the remaining 50% channel-wise, i.e. sample one multiplier
independently per channel:

aug = iaa.Multiply((0.5, 1.5), per_channel=0.5)

[image: Multiply per channel]

MultiplyElementwise

Multiply values of pixels with possibly different values for neighbouring
pixels, making each pixel darker or brighter.

API link: MultiplyElementwise

Example.
Multiply each pixel with a random value between 0.5 and 1.5:

import imgaug.augmenters as iaa
aug = iaa.MultiplyElementwise((0.5, 1.5))

[image: MultiplyElementwise]

Example.
Multiply in 50% of all images each pixel with random values between 0.5 and 1.5
and multiply in the remaining 50% of all images the pixels channel-wise, i.e.
sample one multiplier independently per channel and pixel:

aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=0.5)

[image: MultiplyElementwise per channel]

Cutout

Fill one or more rectangular areas in an image using a fill mode.

See paper “Improved Regularization of Convolutional Neural Networks with
Cutout” by DeVries and Taylor.

In contrast to the paper, this implementation also supports replacing
image sub-areas with gaussian noise, random intensities or random RGB
colors. It also supports non-squared areas. While the paper uses
absolute pixel values for the size and position, this implementation
uses relative values, which seems more appropriate for mixed-size
datasets. The position parameter furthermore allows more flexibility, e.g.
gaussian distributions around the center.

Note

This augmenter affects only image data. Other datatypes (e.g.
segmentation map pixels or keypoints within the filled areas)
are not affected.

Note

Gaussian fill mode will assume that float input images contain values
in the interval [0.0, 1.0] and hence sample values from a
gaussian within that interval, i.e. from N(0.5, std=0.5/3).

API link: MultiplyElementwise

Example.
Fill per image two random areas, by default with grayish pixels:

import imgaug.augmenters as iaa
aug = iaa.Cutout(nb_iterations=2)

[image: Cutout with nb_iterations=2]

Example.
Fill per image between one and five areas, each having 20%
of the corresponding size of the height and width (for non-square
images this results in non-square areas to be filled).

aug = iaa.Cutout(nb_iterations=(1, 5), size=0.2, squared=False)

[image: Cutout non-square]

Example.
Fill all areas with white pixels:

aug = iaa.Cutout(fill_mode="constant", cval=255)

[image: Cutout with cval=255]

Example.
Fill 50% of all areas with a random intensity value between
0 and 256. Fill the other 50% of all areas with random colors.

aug = iaa.Cutout(fill_mode="constant", cval=(0, 255),
 fill_per_channel=0.5)

[image: Cutout with RGB filling]

Example.
Fill areas with gaussian channelwise noise (i.e. usually RGB).

aug = iaa.Cutout(fill_mode="gaussian", fill_per_channel=True)

[image: Cutout with gaussian filling]

Dropout

Augmenter that sets a certain fraction of pixels in images to zero.

API link: Dropout()

Example.
Sample per image a value p from the range 0<=p<=0.2 and then drop
p percent of all pixels in the image (i.e. convert them to black pixels):

import imgaug.augmenters as iaa
aug = iaa.Dropout(p=(0, 0.2))

[image: Dropout]

Example.
Sample per image a value p from the range 0<=p<=0.2 and then drop
p percent of all pixels in the image (i.e. convert them to black pixels),
but do this independently per channel in 50% of all images:

aug = iaa.Dropout(p=(0, 0.2), per_channel=0.5)

[image: Dropout per channel]

CoarseDropout

Augmenter that sets rectangular areas within images to zero.

API link: CoarseDropout()

Example.
Drop 2% of all pixels by converting them to black pixels, but do
that on a lower-resolution version of the image that has 50% of the original
size, leading to 2x2 squares being dropped:

import imgaug.augmenters as iaa
aug = iaa.CoarseDropout(0.02, size_percent=0.5)

[image: CoarseDropout]

Example.
Drop 0 to 5% of all pixels by converting them to black pixels, but do
that on a lower-resolution version of the image that has 5% to 50% of the
original size, leading to large rectangular areas being dropped:

import imgaug.augmenters as iaa
aug = iaa.CoarseDropout((0.0, 0.05), size_percent=(0.02, 0.25))

[image: CoarseDropout p and size uniform]

Example.
Drop 2% of all pixels by converting them to black pixels, but do
that on a lower-resolution version of the image that has 50% of the original
size, leading to 2x2 squares being dropped. Also do this in 50% of all
images channel-wise, so that only the information of some channels in set
to 0 while others remain untouched:

aug = iaa.CoarseDropout(0.02, size_percent=0.15, per_channel=0.5)

[image: CoarseDropout per channel]

Dropout2D

Drop random channels from images.

For image data, dropped channels will be filled with zeros.

Note

This augmenter may also set the arrays of heatmaps and segmentation
maps to zero and remove all coordinate-based data (e.g. it removes
all bounding boxes on images that were filled with zeros).
It does so if and only if all channels of an image are dropped.
If nb_keep_channels >= 1 then that never happens.

API link: Dropout2d()

Example.
Create a dropout augmenter that drops on average half of all image
channels. Dropped channels will be filled with zeros. At least one
channel is kept unaltered in each image (default setting).

import imgaug.augmenters as iaa
aug = iaa.Dropout2d(p=0.5)

[image: Dropout2d]

Example.
Create a dropout augmenter that drops on average half of all image
channels and may drop all channels in an image (i.e. images may
contain nothing but zeros):

import imgaug.augmenters as iaa
aug = iaa.Dropout2d(p=0.5, nb_keep_channels=0)

[image: Dropout2d with nb_keep_channels=0]

TotalDropout

Drop all channels of a defined fraction of all images.

For image data, all components of dropped images will be filled with zeros.

Note

This augmenter also sets the arrays of heatmaps and segmentation
maps to zero and removes all coordinate-based data (e.g. it removes
all bounding boxes on images that were filled with zeros).

API link: TotalDropout()

Example.
Create an augmenter that sets all components of all images to zero:

import imgaug.augmenters as iaa
aug = iaa.TotalDropout(1.0)

[image: TotalDropout at 100%]

Example.
Create an augmenter that sets all components of 50% of all images to
zero:

aug = iaa.TotalDropout(0.5)

[image: TotalDropout at 50%]

ReplaceElementwise

Replace pixels in an image with new values.

API link: ReplaceElementwise

Example.
Replace 10% of all pixels with either the value 0 or the value
255:

import imgaug.augmenters as iaa
aug = ReplaceElementwise(0.1, [0, 255])

[image: ReplaceElementwise]

Example.
For 50% of all images, replace 10% of all pixels with either the value
0 or the value 255 (same as in the previous example). For the other
50% of all images, replace channelwise 10% of all pixels with either
the value 0 or the value 255. So, it will be very rare for each pixel
to have all channels replaced by 255 or 0.

aug = ReplaceElementwise(0.1, [0, 255], per_channel=0.5)

[image: ReplaceElementwise per channel at 50%]

Example.
Replace 10% of all pixels by gaussian noise centered around 128. Both
the replacement mask and the gaussian noise are sampled for 50% of all
images.

import imgaug.parameters as iap
aug = ReplaceElementwise(0.1, iap.Normal(128, 0.4*128), per_channel=0.5)

[image: ReplaceElementwise with gaussian noise]

Example.
Replace 10% of all pixels by gaussian noise centered around 128. Sample
the replacement mask at a lower resolution (8x8 pixels) and upscale it to
the image size, resulting in coarse areas being replaced by gaussian noise.

aug = ReplaceElementwise(
 iap.FromLowerResolution(iap.Binomial(0.1), size_px=8),
 iap.Normal(128, 0.4*128),
 per_channel=0.5)

[image: ReplaceElementwise with gaussian noise in coarse areas]

ImpulseNoise

Add impulse noise to images.

This is identical to SaltAndPepper, except that per_channel is
always set to True.

API link: ImpulseNoise()

Example.
Replace 10% of all pixels with impulse noise:

import imgaug.augmenters as iaa
aug = iaa.ImpulseNoise(0.1)

[image: ImpulseNoise]

SaltAndPepper

Replace pixels in images with salt/pepper noise (white/black-ish colors).

API link: SaltAndPepper()

Example.
Replace 10% of all pixels with salt and pepper noise:

import imgaug.augmenters as iaa
aug = iaa.SaltAndPepper(0.1)

[image: SaltAndPepper]

Example.
Replace channelwise 10% of all pixels with salt and pepper
noise:

aug = iaa.SaltAndPepper(0.1, per_channel=True)

[image: SaltAndPepper per channel]

CoarseSaltAndPepper

Replace rectangular areas in images with white/black-ish pixel noise.

API link: CoarseSaltAndPepper()

Example.
Mark 5% of all pixels in a mask to be replaced by salt/pepper
noise. The mask has 1% to 10% the size of the input image.
The mask is then upscaled to the input image size, leading to large
rectangular areas being marked as to be replaced. These areas are then
replaced in the input image by salt/pepper noise.

import imgaug.augmenters as iaa
aug = iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1))

[image: CoarseSaltAndPepper]

Example.
Same as in the previous example, but the replacement mask before upscaling
has a size between 4x4 and 16x16 pixels (the axis sizes are sampled
independently, i.e. the mask may be rectangular).

aug = iaa.CoarseSaltAndPepper(0.05, size_px=(4, 16))

[image: CoarseSaltAndPepper with size_px]

Example.
Same as in the first example, but mask and replacement are each sampled
independently per image channel.

aug = iaa.CoarseSaltAndPepper(
 0.05, size_percent=(0.01, 0.1), per_channel=True)

[image: CoarseSaltAndPepper with per_channel]

Salt

Replace pixels in images with salt noise, i.e. white-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no pepper noise to
images.

API link: Salt()

Example.
Replace 10% of all pixels with salt noise (white-ish colors):

import imgaug.augmenters as iaa
aug = iaa.Salt(0.1)

[image: Salt]

Example.
Similar to SaltAndPepper, this augmenter also supports the per_channel
argument, which is skipped here for brevity.

CoarseSalt

Replace rectangular areas in images with white-ish pixel noise.

This augmenter is similar to CoarseSaltAndPepper, but adds no pepper noise
to images.

API link: CoarseSalt()

Example.
Mark 5% of all pixels in a mask to be replaced by salt
noise. The mask has 1% to 10% the size of the input image.
The mask is then upscaled to the input image size, leading to large
rectangular areas being marked as to be replaced. These areas are then
replaced in the input image by salt noise.

import imgaug.augmenters as iaa
aug = iaa.CoarseSalt(0.05, size_percent=(0.01, 0.1))

[image: CoarseSalt]

Similar to CoarseSaltAndPepper, this augmenter also supports the
per_channel argument, which is skipped here for brevity

Pepper

Replace pixels in images with pepper noise, i.e. black-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no salt noise to
images.

This augmenter is similar to Dropout, but slower and the black pixels are
not uniformly black.

API link: Pepper()

Example.
Replace 10% of all pixels with pepper noise (black-ish colors):

import imgaug.augmenters as iaa
aug = iaa.Pepper(0.1)

[image: Pepper]

Similar to SaltAndPepper, this augmenter also supports the per_channel
argument, which is skipped here for brevity.

CoarsePepper

Replace rectangular areas in images with black-ish pixel noise.

This augmenter is similar to CoarseSaltAndPepper, but adds no salt noise
to images.

API link: CoarsePepper()

Example.
Mark 5% of all pixels in a mask to be replaced by pepper
noise. The mask has 1% to 10% the size of the input image.
The mask is then upscaled to the input image size, leading to large
rectangular areas being marked as to be replaced. These areas are then
replaced in the input image by pepper noise.

import imgaug.augmenters as iaa
aug = iaa.CoarsePepper(0.05, size_percent=(0.01, 0.1))

[image: CoarsePepper]

Similar to CoarseSaltAndPepper, this augmenter also supports the
per_channel argument, which is skipped here for brevity

Invert

Augmenter that inverts all values in images, i.e. sets a pixel from value
v to 255-v.

API link: Invert

Example.
Invert in 50% of all images all pixels:

import imgaug.augmenters as iaa
aug = iaa.Invert(0.5)

[image: Invert]

Example.
For 50% of all images, invert all pixels in these images with 25% probability
(per image). In the remaining 50% of all images, invert 25% of all channels:

aug = iaa.Invert(0.25, per_channel=0.5)

[image: Invert per channel]

Solarize

Invert all values above a threshold in images.

This is the same as Invert, but sets a default threshold around
128 (+/- 64, decided per image) and default invert_above_threshold
to True (i.e. only values above the threshold will be inverted).

API link: Solarize

Example.
Invert the colors in 50 percent of all images for pixels with a
value between 32 and 128 or more. The threshold is sampled once
per image. The thresholding operation happens per channel.

import imgaug.augmenters as iaa
aug = iaa.Solarize(0.5, threshold=(32, 128))

[image: Solarize]

JpegCompression

Degrade the quality of images by JPEG-compressing them.

API link: JpegCompression

Example.
Remove high frequency components in images via JPEG compression with
a compression strength between 80 and 95 (randomly and
uniformly sampled per image). This corresponds to a (very low) quality
setting of 5 to 20.

import imgaug.augmenters as iaa
aug = iaa.JpegCompression(compression=(70, 99))

[image: JpegCompression]

augmenters.artistic

Cartoon

Convert the style of images to a more cartoonish one.

This augmenter was primarily designed for images with a size of 200
to 800 pixels. Smaller or larger images may cause issues.

Note that the quality of the results can currently not compete with
learned style transfer, let alone human-made images. A lack of detected
edges or also too many detected edges are probably the most significant
drawbacks.

API link: Cartoon

Example.
Create an example image, then apply a cartoon filter to it:

import imgaug.augmenters as iaa
aug = iaa.Cartoon()

[image: Cartoon (people)]

[image: Cartoon (landscape)]

[image: Cartoon (object)]

Example.
Create a non-stochastic cartoon augmenter that produces decent-looking
images:

aug = iaa.Cartoon(blur_ksize=3, segmentation_size=1.0,
 saturation=2.0, edge_prevalence=1.0)

[image: Cartoon non-stochastic (people)]

[image: Cartoon non-stochastic (landscape)]

[image: Cartoon non-stochastic (object)]

augmenters.blend

Note

It is not recommended to use blending augmenter with child augmenters
that change the geometry of images (e.g. horizontal flips, affine
transformations) if you also want to augment coordinates (e.g.
keypoints, bounding boxes, polygons, …), as it is not clear which of
the two coordinate results (first or second branch) should be used as the
coordinates after augmentation. Currently, all blending augmenters try
to use the augmented coordinates of the branch that makes up most of the
augmented image.

BlendAlpha

Alpha-blend two image sources using an alpha/opacity value.

The two image sources can be imagined as branches.
If a source is not given, it is automatically the same as the input.
Let FG be the foreground branch and BG be the background branch.
Then the result images are defined as factor * FG + (1-factor) * BG,
where factor is an overlay factor.

API link: BlendAlpha

Example.
Convert each image to pure grayscale and alpha-blend the result with the
original image using an alpha of 50%, thereby removing about 50% of
all color. This is equivalent to iaa.Grayscale(0.5).

import imgaug.augmenters as iaa
aug = iaa.BlendAlpha(0.5, iaa.Grayscale(1.0))

[image: Alpha-blend images with grayscale images]

Example.
Same as in the previous example, but the alpha factor is sampled uniformly
from the interval [0.0, 1.0] once per image, thereby removing a random
fraction of all colors. This is equivalent to
iaa.Grayscale((0.0, 1.0)).

aug = iaa.BlendAlpha((0.0, 1.0), iaa.Grayscale(1.0))

[image: Alpha-blend images with grayscale images using a random factor]

Example.
First, rotate each image by a random degree sampled uniformly from the
interval [-20, 20]. Then, alpha-blend that new image with the original
one using a random factor sampled uniformly from the interval
[0.0, 1.0]. For 50% of all images, the blending happens
channel-wise and the factor is sampled independently per channel
(per_channel=0.5). As a result, e.g. the red channel may look visibly
rotated (factor near 1.0), while the green and blue channels may not
look rotated (factors near 0.0).

aug = iaa.BlendAlpha(
 (0.0, 1.0),
 iaa.Affine(rotate=(-20, 20)),
 per_channel=0.5)

[image: Alpha-blend images channelwise with rotated ones]

Example.
Apply two branches of augmenters – A and B – independently
to input images and alpha-blend the results of these branches using a
factor f. Branch A increases image pixel intensities by 100
and B multiplies the pixel intensities by 0.2. f is sampled
uniformly from the interval [0.0, 1.0] per image. The resulting images
contain a bit of A and a bit of B.

aug = iaa.BlendAlpha(
 (0.0, 1.0),
 foreground=iaa.Add(100),
 background=iaa.Multiply(0.2))

[image: Alpha with two branches]

Example.
Apply median blur to each image and alpha-blend the result with the original
image using an alpha factor of either exactly 0.25 or exactly 0.75
(sampled once per image).

aug = iaa.BlendAlpha([0.25, 0.75], iaa.MedianBlur(13))

[image: Alpha with a list of factors to use]

BlendAlphaMask

Alpha-blend two image sources using non-binary masks generated per image.

This augmenter queries for each image a mask generator to generate
a (H,W) or (H,W,C) channelwise mask [0.0, 1.0], where
H is the image height and W the width.
The mask will then be used to alpha-blend pixel- and possibly channel-wise
between a foreground branch of augmenters and a background branch.
(Both branches default to the identity operation if not provided.)

See also BlendAlpha.

API link: BlendAlphaMask

Example.
Create an augmenter that sometimes adds clouds at the bottom and
sometimes at the top of the image:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaMask(
 iaa.InvertMaskGen(0.5, iaa.VerticalLinearGradientMaskGen()),
 iaa.Clouds()
)

[image: BlendAlphaMask with vertical gradient and Clouds]

BlendAlphaElementwise

Alpha-blend two image sources using alpha/opacity values sampled per pixel.

This is the same as BlendAlpha, except that the opacity factor is
sampled once per pixel instead of once per image (or a few times per
image, if BlendAlpha.per_channel is set to True).

See BlendAlpha for more details.

This class is a wrapper around
BlendAlphaMask.

API link: BlendAlphaElementwise

Example.
Convert each image to pure grayscale and alpha-blend the result with the
original image using an alpha of 50% for all pixels, thereby removing
about 50% of all color. This is equivalent to iaa.Grayscale(0.5).
This is also equivalent to iaa.Alpha(0.5, iaa.Grayscale(1.0)), as
the opacity has a fixed value of 0.5 and is hence identical for all
pixels.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaElementwise(0.5, iaa.Grayscale(1.0))

[image: Alpha-blend images pixelwise with grayscale images]

Example.
Same as in the previous example, but here with hue-shift instead
of grayscaling and additionally the alpha factor is sampled uniformly
from the interval [0.0, 1.0] once per pixel, thereby shifting the
hue by a random fraction for each pixel.

aug = iaa.BlendAlphaElementwise((0, 1.0), iaa.AddToHue(100))

[image: Alpha-blend images pixelwise with grayscale images using a random factor]

Example.
First, rotate each image by a random degree sampled uniformly from the
interval [-20, 20]. Then, alpha-blend that new image with the original
one using a random factor sampled uniformly from the interval
[0.0, 1.0] per pixel. For 50% of all images, the blending happens
channel-wise and the factor is sampled independently per pixel and
channel (per_channel=0.5). As a result, e.g. the red channel may look
visibly rotated (factor near 1.0), while the green and blue channels
may not look rotated (factors near 0.0).

aug = iaa.BlendAlphaElementwise(
 (0.0, 1.0),
 iaa.Affine(rotate=(-20, 20)),
 per_channel=0.5)

[image: Alpha-blend images pixelwise and channelwise with rotated ones]

Example.
Apply two branches of augmenters – A and B – independently
to input images and alpha-blend the results of these branches using a
factor f. Branch A increases image pixel intensities by 100
and B multiplies the pixel intensities by 0.2. f is sampled
uniformly from the interval [0.0, 1.0] per pixel. The resulting images
contain a bit of A and a bit of B.

aug = iaa.BlendAlphaElementwise(
 (0.0, 1.0),
 foreground=iaa.Add(100),
 background=iaa.Multiply(0.2))

[image: BlendAlphaElementwise with two branches]

Example.
Apply median blur to each image and alpha-blend the result with the
original image using an alpha factor of either exactly 0.25 or
exactly 0.75 (sampled once per pixel).

aug = iaa.BlendAlphaElementwise([0.25, 0.75], iaa.MedianBlur(13))

[image: BlendAlphaElementwise with a list of factors to use]

BlendAlphaSimplexNoise

Alpha-blend two image sources using simplex noise alpha masks.

The alpha masks are sampled using a simplex noise method, roughly creating
connected blobs of 1s surrounded by 0s. If nearest neighbour
upsampling is used, these blobs can be rectangular with sharp edges.

API link: BlendAlphaSimplexNoise

Example.
Detect per image all edges, mark them in a black and white image and
then alpha-blend the result with the original image using simplex noise
masks.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaSimplexNoise(iaa.EdgeDetect(1.0))

[image: BlendAlphaSimplexNoise with EdgeDetect]

Example.
Same as in the previous example, but using only nearest neighbour
upscaling to scale the simplex noise masks to the final image sizes, i.e.
no nearest linear upsampling is used. This leads to rectangles with sharp
edges.

aug = iaa.BlendAlphaSimplexNoise(
 iaa.EdgeDetect(1.0),
 upscale_method="nearest")

[image: BlendAlphaSimplexNoise with EdgeDetect and nearest neighbour upscaling]

Example.
Same as in the previous example, but using only linear upscaling to
scale the simplex noise masks to the final image sizes, i.e. no nearest
neighbour upsampling is used. This leads to rectangles with smooth edges.

aug = iaa.BlendAlphaSimplexNoise(
 iaa.EdgeDetect(1.0),
 upscale_method="linear")

[image: BlendAlphaSimplexNoise with EdgeDetect and linear upscaling]

Example.
Same as in the first example, but using a threshold for the sigmoid
function that is further to the right. This is more conservative, i.e.
the generated noise masks will be mostly black (values around 0.0),
which means that most of the original images (parameter/branch second)
will be kept, rather than using the results of the augmentation
(parameter/branch first).

import imgaug.parameters as iap
aug = iaa.BlendAlphaSimplexNoise(
 iaa.EdgeDetect(1.0),
 sigmoid_thresh=iap.Normal(10.0, 5.0))

[image: BlendAlphaSimplexNoise with EdgeDetect and gaussian-distributed sigmoid threshold]

BlendAlphaFrequencyNoise

Alpha-blend two image sources using frequency noise masks.

The alpha masks are sampled using frequency noise of varying scales,
which can sometimes create large connected blobs of 1 s surrounded
by 0 s and other times results in smaller patterns. If nearest
neighbour upsampling is used, these blobs can be rectangular with sharp
edges.

API link: BlendAlphaFrequencyNoise

Example.
Detect per image all edges, mark them in a black and white image and
then alpha-blend the result with the original image using frequency noise
masks.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaFrequencyNoise(first=iaa.EdgeDetect(1.0))

[image: BlendAlphaFrequencyNoise with EdgeDetect]

Example.
Same as the first example, but using only linear upscaling to
scale the frequency noise masks to the final image sizes, i.e. no nearest
neighbour upsampling is used. This results in smooth edges.

aug = iaa.BlendAlphaFrequencyNoise(
 first=iaa.EdgeDetect(1.0),
 upscale_method="nearest")

[image: BlendAlphaFrequencyNoise with EdgeDetect and nearest neighbour upscaling]

Example.
Same as the first example, but using only linear upscaling to
scale the frequency noise masks to the final image sizes, i.e. no nearest
neighbour upsampling is used. This results in smooth edges.

aug = iaa.BlendAlphaFrequencyNoise(
 first=iaa.EdgeDetect(1.0),
 upscale_method="linear")

[image: BlendAlphaFrequencyNoise with EdgeDetect and linear upscaling]

Example.
Same as in the previous example, but with the exponent set to a constant
-2 and the sigmoid deactivated, resulting in cloud-like patterns
without sharp edges.

aug = iaa.BlendAlphaFrequencyNoise(
 first=iaa.EdgeDetect(1.0),
 upscale_method="linear",
 exponent=-2,
 sigmoid=False)

[image: BlendAlphaFrequencyNoise with EdgeDetect and a cloudy pattern]

Example.
Same as the first example, but using a threshold for the sigmoid function
that is further to the right. This is more conservative, i.e. the generated
noise masks will be mostly black (values around 0.0), which means that
most of the original images (parameter/branch second) will be kept,
rather than using the results of the augmentation (parameter/branch
first).

import imgaug.parameters as iap
aug = iaa.BlendAlphaFrequencyNoise(
 first=iaa.EdgeDetect(1.0),
 sigmoid_thresh=iap.Normal(10.0, 5.0))

[image: BlendAlphaFrequencyNoise with EdgeDetect and gaussian-distributed sigmoid threshold]

BlendAlphaSomeColors

Blend images from two branches using colorwise masks.

This class generates masks that “mark” a few colors and replace the
pixels within these colors with the results of the foreground branch.
The remaining pixels are replaced with the results of the background
branch (usually the identity function). That allows to e.g. selectively
grayscale a few colors, while keeping other colors unchanged.

This class is a thin wrapper around
BlendAlphaMask together with
SomeColorsMaskGen.

API link: BlendAlphaSomeColors

Example.
Create an augmenter that turns randomly removes some colors in images by
grayscaling them:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaSomeColors(iaa.Grayscale(1.0))

[image: BlendAlphaSomeColors + Grayscale]

Example.
Create an augmenter that removes some colors in images by replacing them
with black pixels:

aug = iaa.BlendAlphaSomeColors(iaa.TotalDropout(1.0))

[image: BlendAlphaSomeColors + TotalDropout]

Example.
Create an augmenter that desaturates some colors and increases the
saturation of the remaining ones:

aug = iaa.BlendAlphaSomeColors(
 iaa.MultiplySaturation(0.5), iaa.MultiplySaturation(1.5))

[image: BlendAlphaSomeColors + MultiplySaturation]

Example.
Create an augmenter that applies average pooling to some colors.
Each color tune is either selected (alpha of 1.0) or not
selected (0.0). There is no gradual change between similar colors.

aug = iaa.BlendAlphaSomeColors(
 iaa.AveragePooling(7), alpha=[0.0, 1.0], smoothness=0.0)

[image: BlendAlphaSomeColors + AveragePooling]

Example.
Create an augmenter that applies average pooling to some colors.
Choose on average half of all colors in images for the blending operation.

aug = iaa.BlendAlphaSomeColors(
 iaa.AveragePooling(7), nb_bins=2, smoothness=0.0)

[image: BlendAlphaSomeColors + AveragePooling and two bins]

Example.
Create an augmenter that applies average pooling to some colors with
input images being in BGR colorspace

aug = iaa.BlendAlphaSomeColors(
 iaa.AveragePooling(7), from_colorspace="BGR")

[image: BlendAlphaSomeColors + AveragePooling with input image in BGR]

BlendAlphaHorizontalLinearGradient

Blend images from two branches along a horizontal linear gradient.

This class generates a horizontal linear gradient mask (i.e. usually a
mask with low values on the left and high values on the right) and
alphas-blends between foreground and background branch using that
mask.

This class is a thin wrapper around
BlendAlphaMask together with
HorizontalLinearGradientMaskGen.

API link: BlendAlphaHorizontalLinearGradient

Example.
Create an augmenter that removes more color towards the right of the
image:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaHorizontalLinearGradient(iaa.AddToHue((-100, 100)))

[image: BlendAlphaHorizontalLinearGradient + AddToHue]

Example.
Create an augmenter that replaces pixels towards the right with darker
and darker values. However it always keeps at least
20% (1.0 - max_value) of the original pixel value on the far right
and always replaces at least 20% on the far left (min_value=0.2).

aug = iaa.BlendAlphaHorizontalLinearGradient(
 iaa.TotalDropout(1.0),
 min_value=0.2, max_value=0.8)

[image: BlendAlphaHorizontalLinearGradient + TotalDropout]

Example.
Create an augmenter that blends with an average-pooled image according
to a horizontal gradient that starts at a random x-coordinate and reaches
its maximum at another random x-coordinate. Due to that randomness,
the gradient may increase towards the left or right.

aug = iaa.BlendAlphaHorizontalLinearGradient(
 iaa.AveragePooling(11),
 start_at=(0.0, 1.0), end_at=(0.0, 1.0))

[image: BlendAlphaHorizontalLinearGradient + AveragePooling]

BlendAlphaVerticalLinearGradient

Blend images from two branches along a vertical linear gradient.

This class generates a vertical linear gradient mask (i.e. usually a
mask with low values on the left and high values on the right) and
alphas-blends between foreground and background branch using that
mask.

This class is a thin wrapper around
BlendAlphaMask together with
VerticalLinearGradientMaskGen.

API link: BlendAlphaVerticalLinearGradient

Example.
Create an augmenter that removes more color towards the bottom of the
image:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaVerticalLinearGradient(iaa.AddToHue((-100, 100)))

[image: BlendAlphaVerticalLinearGradient + AddToHue]

Example.
Create an augmenter that replaces pixels towards the bottom with darker
and darker values. However it always keeps at least
20% (1.0 - max_value) of the original pixel value on the far bottom
and always replaces at least 20% on the far top (min_value=0.2).

aug = iaa.BlendAlphaVerticalLinearGradient(
 iaa.TotalDropout(1.0),
 min_value=0.2, max_value=0.8)

[image: BlendAlphaVerticalLinearGradient + TotalDropout]

Example.
Create an augmenter that blends with an average-pooled image according
to a vertical gradient that starts at a random y-coordinate and reaches
its maximum at another random y-coordinate. Due to that randomness,
the gradient may increase towards the bottom or top.

aug = iaa.BlendAlphaVerticalLinearGradient(
 iaa.AveragePooling(11),
 start_at=(0.0, 1.0), end_at=(0.0, 1.0))

[image: BlendAlphaVerticalLinearGradient + AveragePooling]

Example.
Create an augmenter that draws clouds in roughly the top quarter of the
image:

aug = iaa.BlendAlphaVerticalLinearGradient(
 iaa.Clouds(),
 start_at=(0.15, 0.35), end_at=0.0)

[image: BlendAlphaVerticalLinearGradient + Clouds]

BlendAlphaRegularGrid

Blend images from two branches according to a regular grid.

This class generates for each image a mask that splits the image into a
grid-like pattern of H rows and W columns. Each cell is then
filled with an alpha value, sampled randomly per cell.

The difference to AlphaBlendCheckerboard is that this class
samples random alpha values per grid cell, while in the checkerboard the
alpha values follow a fixed pattern.

This class is a thin wrapper around
BlendAlphaMask together with
RegularGridMaskGen.

API link: BlendAlphaRegularGrid

Example.
Create an augmenter that places a HxW grid on each image, where
H (rows) is randomly and uniformly sampled from the interval [4, 6]
and W is analogously sampled from the interval [1, 4]. Roughly
half of the cells in the grid are filled with 0.0, the remaining ones
are unaltered. Which cells exactly are “dropped” is randomly decided
per image. The resulting effect is similar to
CoarseDropout.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaRegularGrid(nb_rows=(4, 6), nb_cols=(1, 4),
 foreground=iaa.Multiply(0.0))

[image: BlendAlphaRegularGrid + Multiply]

Example.
Create an augmenter that always placed 2x2 cells on each image
and sets about 1/3 of them to zero (foreground branch) and
the remaining 2/3 to a pixelated version (background branch).

aug = iaa.BlendAlphaRegularGrid(nb_rows=2, nb_cols=2,
 foreground=iaa.Multiply(0.0),
 background=iaa.AveragePooling(8),
 alpha=[0.0, 0.0, 1.0])

[image: BlendAlphaRegularGrid + Multiply + AveragePooling]

BlendAlphaCheckerboard

Blend images from two branches according to a checkerboard pattern.

This class generates for each image a mask following a checkboard layout of
H rows and W columns. Each cell is then filled with either
1.0 or 0.0. The cell at the top-left is always 1.0. Its right
and bottom neighbour cells are 0.0. The 4-neighbours of any cell always
have a value opposite to the cell’s value (0.0 vs. 1.0).

This class is a thin wrapper around
BlendAlphaMask together with
CheckerboardMaskGen.

API link: BlendAlphaCheckerboard

Example.
Create an augmenter that places a HxW grid on each image, where
H (rows) is always 2 and W is randomly and uniformly sampled
from the interval [1, 4]. Half of the cells in the grid are
grayscaled, the other half is unaltered.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaCheckerboard(nb_rows=2, nb_cols=(1, 4),
 foreground=iaa.AddToHue((-100, 100)))

[image: BlendAlphaCheckerboard + AddToHue]

BlendAlphaSegMapClassIds

Blend images from two branches based on segmentation map ids.

This class generates masks that are 1.0 at pixel locations covered
by specific classes in segmentation maps.

This class is a thin wrapper around
BlendAlphaMask together with
SegMapClassIdsMaskGen.

Note

Segmentation maps can have multiple channels. If that is the case
then for each position (x, y) it is sufficient that any class id
in any channel matches one of the desired class ids.

Note

This class will produce an AssertionError if there are no
segmentation maps in a batch.

API link: BlendAlphaSegMapClassIds

Example.
Create an augmenter that removes color wherever the segmentation maps
contain the classes 1 or 3:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaSegMapClassIds(
 [1, 3],
 foreground=iaa.AddToHue((-100, 100)))

[image: BlendAlphaSegMapClassIds + AddToHue]

Example.
Create an augmenter that randomly picks 2 classes from the
list [1, 2, 3, 4] and blurs the image content wherever these classes
appear in the segmentation map. Note that as the sampling of class ids
happens with replacement, it is not guaranteed to sample two unique
class ids.

aug = iaa.BlendAlphaSegMapClassIds(
 [1, 2, 3, 4],
 nb_sample_classes=2,
 foreground=iaa.GaussianBlur(3.0))

Example.
Create an augmenter that zeros for roughly every fifth image all
image pixels that do not belong to class id 2 (note that the
background branch was used, not the foreground branch).
Example use case: Human body landmark detection where both the
landmarks/keypoints and the body segmentation map are known. Train the
model to detect landmarks and sometimes remove all non-body information
to force the model to become more independent of the background.

aug = iaa.Sometimes(0.2,
 iaa.BlendAlphaSegMapClassIds(
 2,
 background=iaa.TotalDropout(1.0)))

BlendAlphaBoundingBoxes

Blend images from two branches based on areas enclosed in bounding boxes.

This class generates masks that are 1.0 within bounding boxes of given
labels. A mask pixel will be set to 1.0 if at least one bounding box
covers the area and has one of the requested labels.

This class is a thin wrapper around
BlendAlphaMask together with
BoundingBoxesMaskGen.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Note

This class will produce an AssertionError if there are no
bounding boxes in a batch.

API link: BlendAlphaBoundingBoxes

Example.
Create an augmenter that removes color within bounding boxes having the
label person:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaBoundingBoxes("person",
 foreground=iaa.Grayscale(1.0))

Example.
Create an augmenter that randomizes the hue within bounding boxes that
have the label person or car:

aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
 foreground=iaa.AddToHue((-255, 255)))

Example.
Create an augmenter that randomizes the hue within bounding boxes that
have either the label person or car. Only one label is picked per
image. Note that the sampling happens with replacement, so if
nb_sample_classes would be >1, it could still lead to only one
unique label being sampled.

aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
 foreground=iaa.AddToHue((-255, 255)),
 nb_sample_labels=1)

Example.
Create an augmenter that zeros all pixels (Multiply(0.0))
that are not (background branch) within bounding boxes of
any (None) label. In other words, all pixels outside of bounding
boxes become black.
Note that we don’t use TotalDropout here, because by default it will
also remove all coordinate-based augmentables, which will break the
blending of such inputs.

aug = iaa.BlendAlphaBoundingBoxes(None,
 background=iaa.Multiply(0.0))

[image: BlendAlphaBoundingBoxes + Multiply in background branch]

augmenters.blur

GaussianBlur

Augmenter to blur images using gaussian kernels.

API link: GaussianBlur

Example.
Blur each image with a gaussian kernel with a sigma of 3.0:

import imgaug.augmenters as iaa
aug = iaa.GaussianBlur(sigma=(0.0, 3.0))

[image: GaussianBlur]

AverageBlur

Blur an image by computing simple means over neighbourhoods.

API link: AverageBlur

Example.
Blur each image using a mean over neihbourhoods that have a random size
between 2x2 and 11x11:

import imgaug.augmenters as iaa
aug = iaa.AverageBlur(k=(2, 11))

[image: AverageBlur]

Example.
Blur each image using a mean over neihbourhoods that have random sizes,
which can vary between 5 and 11 in height and 1 and 3 in width:

aug = iaa.AverageBlur(k=((5, 11), (1, 3)))

[image: AverageBlur varying height/width]

MedianBlur

Blur an image by computing median values over neighbourhoods.

API link: MedianBlur

Example.
Blur each image using a median over neihbourhoods that have a random size
between 3x3 and 11x11:

import imgaug.augmenters as iaa
aug = iaa.MedianBlur(k=(3, 11))

[image: MedianBlur]

BilateralBlur

Blur/Denoise an image using a bilateral filter.

Bilateral filters blur homogenous and textured areas, while trying to
preserve edges.

API link: BilateralBlur

Example.
Blur all images using a bilateral filter with a max distance sampled
uniformly from the interval [3, 10] and wide ranges for sigma_color
and sigma_space:

import imgaug.augmenters as iaa
aug = iaa.BilateralBlur(
 d=(3, 10), sigma_color=(10, 250), sigma_space=(10, 250))

[image: BilateralBlur]

MotionBlur

Blur images in a way that fakes camera or object movements.

API link: MotionBlur

Example.
Apply motion blur with a kernel size of 15x15 pixels to images:

import imgaug.augmenters as iaa
aug = iaa.MotionBlur(k=15)

[image: MotionBlur]

Example.
Apply motion blur with a kernel size of 15x15 pixels and a blur angle
of either -45 or 45 degrees (randomly picked per image):

aug = iaa.MotionBlur(k=15, angle=[-45, 45])

[image: MotionBlur with choice of angles]

MeanShiftBlur

Apply a pyramidic mean shift filter to each image.

See also blur_mean_shift_() for details.

This augmenter expects input images of shape (H,W) or (H,W,1)
or (H,W,3).

Note

This augmenter is quite slow.

API link: MeanShiftBlur

Example.
Create a mean shift blur augmenter:

import imgaug.augmenters as iaa
aug = iaa.MeanShiftBlur()

[image: MeanShiftBlur]

augmenters.collections

RandAugment

Apply RandAugment to inputs as described in the corresponding paper.

See paper:

Cubuk et al.

RandAugment: Practical automated data augmentation with a reduced
search space

Note

The paper contains essentially no hyperparameters for the individual
augmentation techniques. The hyperparameters used here come mostly
from the official code repository, which however seems to only contain
code for CIFAR10 and SVHN, not for ImageNet. So some guesswork was
involved and a few of the hyperparameters were also taken from
https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py .

This implementation deviates from the code repository for all PIL
enhance operations. In the repository these use a factor of
0.1 + M*1.8/M_max, which would lead to a factor of 0.1 for the
weakest M of M=0. For e.g. Brightness that would result in
a basically black image. This definition is fine for AutoAugment (from
where the code and hyperparameters are copied), which optimizes
each transformation’s M individually, but not for RandAugment,
which uses a single fixed M. We hence redefine these
hyperparameters to 1.0 + S * M * 0.9/M_max, where S is
randomly either 1 or -1.

We also note that it is not entirely clear which transformations
were used in the ImageNet experiments. The paper lists some
transformations in Figure 2, but names others in the text too (e.g.
crops, flips, cutout). While Figure 2 lists the Identity function,
this transformation seems to not appear in the repository (and in fact,
the function randaugment(N, M) doesn’t seem to exist in the
repository either). So we also make a best guess here about what
transformations might have been used.

Warning

This augmenter only works with image data, not e.g. bounding boxes.
The used PIL-based affine transformations are not yet able to
process non-image data. (This augmenter uses PIL-based affine
transformations to ensure that outputs are as similar as possible
to the paper’s implementation.)

API link: RandAugment

Example.
Create a RandAugment augmenter similar to the suggested hyperparameters
in the paper:

import imgaug.augmenters as iaa
aug = iaa.RandAugment(n=2, m=9)

[image: RandAugment standard case]

Example.
Create a RandAugment augmenter with maximum magnitude/strength:

aug = iaa.RandAugment(m=30)

[image: RandAugment strong magnitude]

Example.
Create a RandAugment augmenter that applies its transformations with a
random magnitude between 0 (very weak) and 9 (recommended for
ImageNet and ResNet-50). m is sampled per transformation:

aug = iaa.RandAugment(m=(0, 9))

[image: RandAugment random magnitude]

Example.
Create a RandAugment augmenter that applies 0 to 3 of its
child transformations to images. Horizontal flips (p=50%) and crops are
always applied.

aug = iaa.RandAugment(n=(0, 3))

[image: RandAugment random iterations]

augmenters.color

WithColorspace

Apply child augmenters within a specific colorspace.

This augumenter takes a source colorspace A and a target colorspace B
as well as children C. It changes images from A to B, then applies the
child augmenters C and finally changes the colorspace back from B to A.
See also ChangeColorspace() for more.

API link: WithColorspace

Example.
Convert to HSV colorspace, add a value between 0 and 50
(uniformly sampled per image) to the Hue channel, then convert back to the
input colorspace (RGB).

import imgaug.augmenters as iaa
aug = iaa.WithColorspace(
 to_colorspace="HSV",
 from_colorspace="RGB",
 children=iaa.WithChannels(
 0,
 iaa.Add((0, 50))
)
)

[image: WithColorspace]

WithBrightnessChannels

Augmenter to apply child augmenters to brightness-related image channels.

This augmenter first converts an image to a random colorspace containing a
brightness-related channel (e.g. V in HSV), then extracts that
channel and applies its child augmenters to this one channel. Afterwards,
it reintegrates the augmented channel into the full image and converts
back to the input colorspace.

API link: WithBrightnessChannels

Example.
Add -50 to 50 to the brightness-related channels of each image:

import imgaug.augmenters as iaa
aug = iaa.WithBrightnessChannels(iaa.Add((-50, 50)))

[image: WithBrightnessChannels]

Example.
Add -50 to 50 to the brightness-related channels of each image, but
pick those brightness-related channels only from Lab (L) and
HSV (V) colorspaces.

aug = iaa.WithBrightnessChannels(
 iaa.Add((-50, 50)), to_colorspace=[iaa.CSPACE_Lab, iaa.CSPACE_HSV])

[image: WithBrightnessChannels with modified to_colorspace]

Example.
Add -50 to 50 to the brightness-related channels of each image, where
the images are provided in BGR colorspace instead of the standard
RGB.

aug = iaa.WithBrightnessChannels(
 iaa.Add((-50, 50)), from_colorspace=iaa.CSPACE_BGR)

MultiplyAndAddToBrightness

Multiply and add to the brightness channels of input images.

This is a wrapper around
WithBrightnessChannels and hence
performs internally the same projection to random colorspaces.

API link: MultiplyAndAddToBrightness

Example.
Convert each image to a colorspace with a brightness-related channel,
extract that channel, multiply it by a factor between 0.5 and 1.5,
add a value between -30 and 30 and convert back to the original
colorspace.

import imgaug.augmenters as iaa
aug = iaa.MultiplyAndAddToBrightness(mul=(0.5, 1.5), add=(-30, 30))

[image: MultiplyAndAddToBrightness]

MultiplyBrightness

Multiply the brightness channels of input images.

This is a wrapper around
WithBrightnessChannels and hence
performs internally the same projection to random colorspaces.

API link: MultiplyBrightness

Example.
Convert each image to a colorspace with a brightness-related channel,
extract that channel, multiply it by a factor between 0.5 and 1.5,
and convert back to the original colorspace.

import imgaug.augmenters as iaa
aug = iaa.MultiplyBrightness((0.5, 1.5))

[image: MultiplyBrightness]

AddToBrightness

Add to the brightness channels of input images.

This is a wrapper around
WithBrightnessChannels and hence
performs internally the same projection to random colorspaces.

API link: AddToBrightness

Example.
Convert each image to a colorspace with a brightness-related channel,
extract that channel, add between -30 and 30 and convert back
to the original colorspace:

import imgaug.augmenters as iaa
aug = iaa.AddToBrightness((-30, 30))

[image: AddToBrightness]

WithHueAndSaturation

Apply child augmenters to hue and saturation channels.

This augumenter takes an image in a source colorspace, converts
it to HSV, extracts the H (hue) and S (saturation) channels,
applies the provided child augmenters to these channels
and finally converts back to the original colorspace.

The image array generated by this augmenter and provided to its children
is in int16 (sic! only augmenters that can handle int16 arrays
can be children!). The hue channel is mapped to the value
range [0, 255]. Before converting back to the source colorspace, the
saturation channel’s values are clipped to [0, 255]. A modulo operation
is applied to the hue channel’s values, followed by a mapping from
[0, 255] to [0, 180] (and finally the colorspace conversion).

API link: WithHueAndSaturation

Example.
Create an augmenter that will add a random value between 0 and 50
(uniformly sampled per image) hue channel in HSV colorspace. It
automatically accounts for the hue being in angular representation, i.e.
if the angle goes beyond 360 degrees, it will start again at 0 degrees.
The colorspace is finally converted back to RGB (default setting).

import imgaug.augmenters as iaa
aug = iaa.WithHueAndSaturation(
 iaa.WithChannels(0, iaa.Add((0, 50)))
)

[image: Using WithHueAndSaturation to add random values to the hue channel]

Example.
Create an augmenter that adds a random value sampled uniformly
from the range [-30, 10] to the hue and multiplies the saturation
by a random factor sampled uniformly from [0.5, 1.5]. It also
modifies the contrast of the saturation channel. After these steps,
the HSV image is converted back to RGB.

aug = iaa.WithHueAndSaturation([
 iaa.WithChannels(0, iaa.Add((-30, 10))),
 iaa.WithChannels(1, [
 iaa.Multiply((0.5, 1.5)),
 iaa.LinearContrast((0.75, 1.25))
])
])

[image: Using WithHueAndSaturation to modify both the hue and saturation]

MultiplyHueAndSaturation

Multipy hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then multiplies
the pixel values in the H and S channels and afterwards converts back to
RGB.

This augmenter is a wrapper around WithHueAndSaturation.

API link: MultiplyHueAndSaturation()

Example.
Multiply hue and saturation by random values between 0.5 and 1.5
(independently per channel and the same value for all pixels within
that channel). The hue will be automatically projected to an angular
representation.

import imgaug.augmenters as iaa
aug = iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True)

[image: MultiplyHueAndSaturation]

Example.
Multiply only the hue by random values between 0.5 and 1.5.

aug = iaa.MultiplyHueAndSaturation(mul_hue=(0.5, 1.5))

[image: MultiplyHueAndSaturation, only applied to the hue]

Example.
Multiply only the saturation by random values between 0.5 and 1.5.

aug = iaa.MultiplyHueAndSaturation(mul_saturation=(0.5, 1.5))

[image: MultiplyHueAndSaturation, only applied to the saturation]

MultiplyHue

Multiply the hue of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies
the pixel values in the H channel and afterwards converts back to
RGB.

This augmenter is a shortcut for MultiplyHueAndSaturation(mul_hue=...).

API link: MultiplyHue()

Example.
Multiply the hue channel of images using random values between 0.5
and 1.5:

import imgaug.augmenters as iaa
aug = iaa.MultiplyHue((0.5, 1.5))

[image: MultiplyHue]

MultiplySaturation

Multiply the saturation of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies
the pixel values in the H channel and afterwards converts back to
RGB.

This augmenter is a shortcut for
MultiplyHueAndSaturation(mul_saturation=...).

API link: MultiplySaturation()

Example.
Multiply the saturation channel of images using random values between
0.5 and 1.5:

import imgaug.augmenters as iaa
aug = iaa.MultiplySaturation((0.5, 1.5))

[image: MultiplySaturation]

RemoveSaturation

Decrease the saturation of images by varying degrees.

This creates images looking similar to
Grayscale.

This augmenter is the same as MultiplySaturation((0.0, 1.0)).

API link: RemoveSaturation()

Example.
Create an augmenter that decreases saturation by varying degrees:

import imgaug.augmenters as iaa
aug = iaa.RemoveSaturation()

[image: RemoveSaturation]

Example.
Create an augmenter that removes all saturation from input images.
This is similar to imgaug.augmenters.color.Grayscale.

aug = iaa.RemoveSaturation(1.0)

[image: RemoveSaturation all]

Example.
Create an augmenter that decreases saturation of images in BGR
colorspace by varying degrees.

aug = iaa.RemoveSaturation(from_colorspace=iaa.CSPACE_BGR)

AddToHueAndSaturation

Increases or decreases hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then adds random
values to the H and S channels and afterwards converts back to RGB.

This augmenter is faster than using WithHueAndSaturation in combination
with Add.

API link: AddToHueAndSaturation

Example.
Add random values between -50 and 50 to the hue and saturation
(independently per channel and the same value for all pixels within
that channel):

import imgaug.augmenters as iaa
aug = iaa.AddToHueAndSaturation((-50, 50), per_channel=True)

[image: AddToHueAndSaturation]

AddToHue

Add random values to the hue of images.

The augmenter first transforms images to HSV colorspace, then adds random
values to the H channel and afterwards converts back to RGB.

If you want to change both the hue and the saturation, it is recommended
to use AddToHueAndSaturation as otherwise the image will be
converted twice to HSV and back to RGB.

This augmenter is a shortcut for AddToHueAndSaturation(value_hue=...).

API link: AddToHue()

Example.
Sample random values from the discrete uniform range [-50..50],
convert them to angular representation and add them to the hue, i.e.
to the H channel in HSV colorspace:

import imgaug.augmenters as iaa
aug = iaa.AddToHue((-50, 50))

[image: AddToHue]

AddToSaturation

Add random values to the saturation of images.

The augmenter first transforms images to HSV colorspace, then adds random
values to the S channel and afterwards converts back to RGB.

If you want to change both the hue and the saturation, it is recommended
to use AddToHueAndSaturation as otherwise the image will be
converted twice to HSV and back to RGB.

This augmenter is a shortcut for
AddToHueAndSaturation(value_saturation=...).

API link: AddToSaturation()

Example.
Sample random values from the discrete uniform range [-50..50],
and add them to the saturation, i.e. to the S channel in HSV
colorspace:

import imgaug.augmenters as iaa
aug = iaa.AddToSaturation((-50, 50))

[image: AddToSaturation]

ChangeColorspace

Augmenter to change the colorspace of images.

API link: ChangeColorspace

Example.
The following example shows how to change the colorspace from RGB to HSV,
then add 50-100 to the first channel, then convert back to RGB.
This increases the hue value of each image.

import imgaug.augmenters as iaa
aug = iaa.Sequential([
 iaa.ChangeColorspace(from_colorspace="RGB", to_colorspace="HSV"),
 iaa.WithChannels(0, iaa.Add((50, 100))),
 iaa.ChangeColorspace(from_colorspace="HSV", to_colorspace="RGB")
])

[image: Change colorspace]

Grayscale

Augmenter to convert images to their grayscale versions.

API link: Grayscale

Example.
Change images to grayscale and overlay them with the original image by varying
strengths, effectively removing 0 to 100% of the color:

import imgaug.augmenters as iaa
aug = iaa.Grayscale(alpha=(0.0, 1.0))

[image: Grayscale]

Example.
Visualization of increasing alpha from 0.0 to 1.0 in eight steps:

[image: Grayscale vary alpha]

ChangeColorTemperature

Change the temperature to a provided Kelvin value.

Low Kelvin values around 1000 to 4000 will result in red, yellow
or orange images. Kelvin values around 10000 to 40000 will result
in progressively darker blue tones.

API link: ChangeColorTemperature

Example.
Create an augmenter that changes the color temperature of images to
a random value between 1100 and 10000 Kelvin:

import imgaug.augmenters as iaa
aug = iaa.ChangeColorTemperature((1100, 10000))

[image: ChangeColorTemperature]

KMeansColorQuantization

Quantize colors using k-Means clustering.

This “collects” the colors from the input image, groups them into
k clusters using k-Means clustering and replaces the colors in the
input image using the cluster centroids.

This is slower than UniformColorQuantization, but adapts dynamically
to the color range in the input image.

Note

This augmenter expects input images to be either grayscale
or to have 3 or 4 channels and use colorspace from_colorspace. If
images have 4 channels, it is assumed that the 4th channel is an alpha
channel and it will not be quantized.

API link: KMeansColorQuantization

Example.
Create an augmenter to apply k-Means color quantization to images using a
random amount of colors, sampled uniformly from the interval [2..16].
It assumes the input image colorspace to be RGB and clusters colors
randomly in RGB or Lab colorspace.

import imgaug.augmenters as iaa
aug = iaa.KMeansColorQuantization()

[image: KMeansColorQuantization]

Example.
Create an augmenter that quantizes images to (up to) eight colors:

aug = iaa.KMeansColorQuantization(n_colors=8)

[image: KMeansColorQuantization with eight colors]

Example.
Create an augmenter that quantizes images to (up to) n colors,
where n is randomly and uniformly sampled from the discrete interval
[4..32]:

aug = iaa.KMeansColorQuantization(n_colors=(4, 16))

[image: KMeansColorQuantization with random n_colors]

Example.
Create an augmenter that quantizes input images that are in
BGR colorspace. The quantization happens in RGB or Lab
colorspace, into which the images are temporarily converted.

aug = iaa.KMeansColorQuantization(
 from_colorspace=iaa.ChangeColorspace.BGR)

[image: KMeansColorQuantization with input images in BGR colorspace]

Example.
Create an augmenter that quantizes images by clustering colors randomly
in either RGB or HSV colorspace. The assumed input colorspace
of images is RGB.

aug = iaa.KMeansColorQuantization(
 to_colorspace=[iaa.ChangeColorspace.RGB, iaa.ChangeColorspace.HSV])

[image: KMeansColorQuantization with quantization in RGB or HSV]

UniformColorQuantization

Quantize colors into N bins with regular distance.

For uint8 images the equation is floor(v/q)*q + q/2 with
q = 256/N, where v is a pixel intensity value and N is
the target number of colors after quantization.

This augmenter is faster than KMeansColorQuantization, but the
set of possible output colors is constant (i.e. independent of the
input images). It may produce unsatisfying outputs for input images
that are made up of very similar colors.

Note

This augmenter expects input images to be either grayscale
or to have 3 or 4 channels and use colorspace from_colorspace. If
images have 4 channels, it is assumed that the 4th channel is an alpha
channel and it will not be quantized.

API link: UniformColorQuantization

Example.
Create an augmenter to apply uniform color quantization to images using a
random amount of colors, sampled uniformly from the discrete interval
[2..16]:

import imgaug.augmenters as iaa
aug = iaa.UniformColorQuantization()

[image: UniformColorQuantization]

Example.
Create an augmenter that quantizes images to (up to) eight colors:

aug = iaa.UniformColorQuantization(n_colors=8)

[image: UniformColorQuantization with eight colors]

Example.
Create an augmenter that quantizes images to (up to) n colors,
where n is randomly and uniformly sampled from the discrete interval
[4..32]:

aug = iaa.UniformColorQuantization(n_colors=(4, 16))

[image: UniformColorQuantization with random n_colors]

Example.
Create an augmenter that uniformly quantizes images in either RGB
or HSV colorspace (randomly picked per image). The input colorspace
of all images has to be BGR.

aug = iaa.UniformColorQuantization(
 from_colorspace=iaa.ChangeColorspace.BGR,
 to_colorspace=[iaa.ChangeColorspace.RGB, iaa.ChangeColorspace.HSV])

[image: UniformColorQuantization in RGB or HSV colorspace with BGR inputs]

UniformColorQuantizationToNBits

Quantize images by setting 8-B bits of each component to zero.

This augmenter sets the 8-B highest frequency (rightmost) bits of
each array component to zero. For B bits this is equivalent to
changing each component’s intensity value v to
v' = v & (2**(8-B) - 1), e.g. for B=3 this results in
v' = c & ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111 1100.

This augmenter behaves for B similarly to
UniformColorQuantization(2**B), but quantizes each bin with interval
(a, b) to a instead of to a + (b-a)/2.

This augmenter is comparable to posterize().

Note

This augmenter expects input images to be either grayscale
or to have 3 or 4 channels and use colorspace from_colorspace. If
images have 4 channels, it is assumed that the 4th channel is an alpha
channel and it will not be quantized.

API link: UniformColorQuantizationToNBits

Example.
Create an augmenter to apply uniform color quantization to
images using a random amount of bits to remove, sampled uniformly from the
discrete interval [1..8]:

import imgaug.augmenters as iaa
aug = iaa.UniformColorQuantizationToNBits()

[image: UniformColorQuantizationToNBits]

Example.
Create an augmenter that quantizes images by removing 8-B rightmost
bits from each component, where B is uniformly sampled from the
discrete interval [2..8]:

aug = iaa.UniformColorQuantizationToNBits(nb_bits=(2, 8))

[image: UniformColorQuantizationToNBits]

Example.
Create an augmenter that uniformly quantizes images in either RGB
or HSV colorspace (randomly picked per image). The input colorspace
of all images has to be BGR:

aug = iaa.UniformColorQuantizationToNBits(
 from_colorspace=iaa.CSPACE_BGR,
 to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

Posterize

Alias for imgaug.augmenters.color.UniformColorQuantizationToNBits.

API link: Posterize

augmenters.contrast

GammaContrast

Adjust image contrast by scaling pixel values to 255*((v/255)**gamma).

Values in the range gamma=(0.5, 2.0) seem to be sensible.

API link: GammaContrast()

Example.
Modify the contrast of images according to 255*((v/255)**gamma),
where v is a pixel value and gamma is sampled uniformly from
the interval [0.5, 2.0] (once per image):

import imgaug.augmenters as iaa
aug = iaa.GammaContrast((0.5, 2.0))

[image: GammaContrast]

Example.
Same as in the previous example, but gamma is sampled once per image
and channel:

aug = iaa.GammaContrast((0.5, 2.0), per_channel=True)

[image: GammaContrast per_channel]

SigmoidContrast

Adjust image contrast to 255*1/(1+exp(gain*(cutoff-I_ij/255))).

Values in the range gain=(5, 20) and cutoff=(0.25, 0.75) seem to
be sensible.

API link: SigmoidContrast()

Example.
Modify the contrast of images according to
255*1/(1+exp(gain*(cutoff-v/255))), where v is a pixel value,
gain is sampled uniformly from the interval [3, 10] (once per
image) and cutoff is sampled uniformly from the interval
[0.4, 0.6] (also once per image).

import imgaug.augmenters as iaa
aug = iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6))

[image: SigmoidContrast]

Example.
Same as in the previous example, but gain and cutoff are each
sampled once per image and channel:

aug = iaa.SigmoidContrast(
 gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True)

[image: SigmoidContrast per_channel]

LogContrast

Adjust image contrast by scaling pixels to 255*gain*log_2(1+v/255).

This augmenter is fairly similar to
imgaug.augmenters.arithmetic.Multiply.

API link: LogContrast()

Example.
Modify the contrast of images according to 255*gain*log_2(1+v/255),
where v is a pixel value and gain is sampled uniformly from the
interval [0.6, 1.4] (once per image):

import imgaug.augmenters as iaa
aug = iaa.LogContrast(gain=(0.6, 1.4))

[image: LogContrast]

Example.
Same as in the previous example, but gain is sampled once per image
and channel:

aug = iaa.LogContrast(gain=(0.6, 1.4), per_channel=True)

[image: LogContrast per_channel]

LinearContrast

Adjust contrast by scaling each pixel to 127 + alpha*(v-127).

API link: LinearContrast()

Example.
Modify the contrast of images according to 127 + alpha*(v-127)`,
where v is a pixel value and alpha is sampled uniformly from the
interval [0.4, 1.6] (once per image):

import imgaug.augmenters as iaa
aug = iaa.LinearContrast((0.4, 1.6))

[image: LinearContrast]

Example.
Same as in the previous example, but alpha is sampled once per image
and channel:

aug = iaa.LinearContrast((0.4, 1.6), per_channel=True)

[image: LinearContrast per_channel]

AllChannelsCLAHE

Apply CLAHE to all channels of images in their original colorspaces.

CLAHE (Contrast Limited Adaptive Histogram Equalization) performs
histogram equilization within image patches, i.e. over local
neighbourhoods.

In contrast to imgaug.augmenters.contrast.CLAHE, this augmenter
operates directly on all channels of the input images. It does not
perform any colorspace transformations and does not focus on specific
channels (e.g. L in Lab colorspace).

API link: AllChannelsCLAHE

Example.
Create an augmenter that applies CLAHE to all channels of input images:

import imgaug.augmenters as iaa
aug = iaa.AllChannelsCLAHE()

[image: AllChannelsCLAHE with default settings]

Example.
Same as in the previous example, but the clip_limit used by CLAHE is
uniformly sampled per image from the interval [1, 10]. Some images
will therefore have stronger contrast than others (i.e. higher clip limit
values).

aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10))

[image: AllChannelsCLAHE with random clip_limit]

Example.
Same as in the previous example, but the clip_limit is sampled per
image and channel, leading to different levels of contrast for each
channel:

aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True)

[image: AllChannelsCLAHE with random clip_limit and per_channel]

CLAHE

Apply CLAHE to L/V/L channels in HLS/HSV/Lab colorspaces.

This augmenter applies CLAHE (Contrast Limited Adaptive Histogram
Equalization) to images, a form of histogram equalization that normalizes
within local image patches.
The augmenter transforms input images to a target colorspace (e.g.
Lab), extracts an intensity-related channel from the converted
images (e.g. L for Lab), applies CLAHE to the channel and then
converts the resulting image back to the original colorspace.

Grayscale images (images without channel axis or with only one channel
axis) are automatically handled, from_colorspace does not have to be
adjusted for them. For images with four channels (e.g. RGBA), the
fourth channel is ignored in the colorspace conversion (e.g. from an
RGBA image, only the RGB part is converted, normalized, converted
back and concatenated with the input A channel). Images with unusual
channel numbers (2, 5 or more than 5) are normalized channel-by-channel
(same behaviour as AllChannelsCLAHE, though a warning will be raised).

If you want to apply CLAHE to each channel of the original input image’s
colorspace (without any colorspace conversion), use
imgaug.augmenters.contrast.AllChannelsCLAHE instead.

API link: CLAHE

Example.
Create a standard CLAHE augmenter:

import imgaug.augmenters as iaa
aug = iaa.CLAHE()

[image: CLAHE]

Example.
Create a CLAHE augmenter with a clip limit uniformly sampled from
[1..10], where 1 is rather low contrast and 10 is rather
high contrast:

aug = iaa.CLAHE(clip_limit=(1, 10))

[image: CLAHE with uniformly-distributed clip_limit]

Example.
Create a CLAHE augmenter with kernel sizes of SxS, where S is
uniformly sampled from [3..21]. Sampling happens once per image.

aug = iaa.CLAHE(tile_grid_size_px=(3, 21))

[image: CLAHE with uniformly-distributed tile_grid_size_px]

Example.
Create a CLAHE augmenter with kernel sizes of SxS, where S is
sampled from N(7, 2), but does not go below 3:

import imgaug.parameters as iap
aug = iaa.CLAHE(
 tile_grid_size_px=iap.Discretize(iap.Normal(loc=7, scale=2)),
 tile_grid_size_px_min=3)

[image: CLAHE with gaussian-distributed tile_grid_size_px]

Example.
Create a CLAHE augmenter with kernel sizes of HxW, where H is
uniformly sampled from [3..21] and W is randomly picked from the
list [3, 5, 7]:

aug = iaa.CLAHE(tile_grid_size_px=((3, 21), [3, 5, 7]))

[image: CLAHE with random tile_grid_size_px]

Example.
Create a CLAHE augmenter that converts images from BGR colorspace to
HSV colorspace and then applies the local histogram equalization to the
V channel of the images (before converting back to BGR).
Alternatively, Lab (default) or HLS can be used as the target
colorspace. Grayscale images (no channels / one channel) are never
converted and are instead directly normalized (i.e. from_colorspace
does not have to be changed for them).

aug = iaa.CLAHE(
 from_colorspace=iaa.CLAHE.BGR,
 to_colorspace=iaa.CLAHE.HSV)

[image: CLAHE with images in BGR and only HSV as target colorspace]

AllChannelsHistogramEqualization

Apply Histogram Eq. to all channels of images in their original colorspaces.

In contrast to imgaug.augmenters.contrast.HistogramEqualization, this
augmenter operates directly on all channels of the input images. It does
not perform any colorspace transformations and does not focus on specific
channels (e.g. L in Lab colorspace).

API link: AllChannelsHistogramEqualization

Example.
Create an augmenter that applies histogram equalization to all channels
of input images in the original colorspaces:

import imgaug.augmenters as iaa
aug = iaa.AllChannelsHistogramEqualization()

[image: AllChannelsHistogramEqualization]

Example.
Same as in the previous example, but alpha-blends the contrast-enhanced
augmented images with the original input images using random blend
strengths. This leads to random strengths of the contrast adjustment.

aug = iaa.Alpha((0.0, 1.0), iaa.AllChannelsHistogramEqualization())

[image: AllChannelsHistogramEqualization combined with Alpha]

HistogramEqualization

Apply Histogram Eq. to L/V/L channels of images in HLS/HSV/Lab colorspaces.

This augmenter is similar to imgaug.augmenters.contrast.CLAHE.

The augmenter transforms input images to a target colorspace (e.g.
Lab), extracts an intensity-related channel from the converted images
(e.g. L for Lab), applies Histogram Equalization to the channel
and then converts the resulting image back to the original colorspace.

Grayscale images (images without channel axis or with only one channel
axis) are automatically handled, from_colorspace does not have to be
adjusted for them. For images with four channels (e.g. RGBA), the fourth
channel is ignored in the colorspace conversion (e.g. from an RGBA
image, only the RGB part is converted, normalized, converted back and
concatenated with the input A channel). Images with unusual channel
numbers (2, 5 or more than 5) are normalized channel-by-channel (same
behaviour as AllChannelsHistogramEqualization, though a warning will
be raised).

If you want to apply HistogramEqualization to each channel of the original
input image’s colorspace (without any colorspace conversion), use
imgaug.augmenters.contrast.AllChannelsHistogramEqualization instead.

API link: HistogramEqualization

Example.
Create an augmenter that converts images to HLS/HSV/Lab
colorspaces, extracts intensity-related channels (i.e. L/V/L),
applies histogram equalization to these channels and converts back to the
input colorspace:

import imgaug.augmenters as iaa
aug = iaa.HistogramEqualization()

[image: HistogramEqualization]

Example.
Same as in the previous example, but alpha blends the result, leading
to various strengths of contrast normalization:

aug = iaa.Alpha((0.0, 1.0), iaa.HistogramEqualization())

[image: HistogramEqualization combined with Alpha]

Example.
Same as in the first example, but the colorspace of input images has
to be BGR (instead of default RGB) and the histogram equalization
is applied to the V channel in HSV colorspace:

aug = iaa.HistogramEqualization(
 from_colorspace=iaa.HistogramEqualization.BGR,
 to_colorspace=iaa.HistogramEqualization.HSV)

[image: HistogramEqualization with images in BGR and only HSV as target colorspace]

augmenters.convolutional

Convolve

Apply a Convolution to input images.

API link: Convolve

Example.
Convolve each image with a 3x3 kernel:

import imgaug.augmenters as iaa
matrix = np.array([[0, -1, 0],
 [-1, 4, -1],
 [0, -1, 0]])
aug = iaa.Convolve(matrix=matrix)

[image: Convolve]

Example.
Convolve each image with a 3x3 kernel, which is chosen dynamically per
image:

def gen_matrix(image, nb_channels, random_state):
 matrix_A = np.array([[0, -1, 0],
 [-1, 4, -1],
 [0, -1, 0]])
 matrix_B = np.array([[0, 0, 0],
 [0, -4, 1],
 [0, 2, 1]])
 if random_state.rand() < 0.5:
 return [matrix_A] * nb_channels
 else:
 return [matrix_B] * nb_channels
aug = iaa.Convolve(matrix=gen_matrix)

[image: Convolve per callable]

Sharpen

Augmenter that sharpens images and overlays the result with the original
image.

API link: Sharpen()

Example.
Sharpen an image, then overlay the results with the original using an alpha
between 0.0 and 1.0:

import imgaug.augmenters as iaa
aug = iaa.Sharpen(alpha=(0.0, 1.0), lightness=(0.75, 2.0))

[image: Sharpen]

Example.
Effects of keeping lightness fixed at 1.0 and then varying alpha
between 0.0 and 1.0 in eight steps:

[image: Sharpen varying alpha]

Example.
Effects of keeping alpha fixed at 1.0 and then varying lightness
between 0.75 and 1.5 in eight steps:

[image: Sharpen varying lightness]

Emboss

Augmenter that embosses images and overlays the result with the original
image.

API link: Emboss()

Example.
Emboss an image, then overlay the results with the original using an alpha
between 0.0 and 1.0:

import imgaug.augmenters as iaa
aug = iaa.Emboss(alpha=(0.0, 1.0), strength=(0.5, 1.5))

[image: Emboss]

Example.
Effects of keeping strength fixed at 1.0 and then varying alpha
between 0.0 and 1.0 in eight steps:

[image: Emboss varying alpha]

Example.
Effects of keeping alpha fixed at 1.0 and then varying strength
between 0.5 and 1.5 in eight steps:

[image: Emboss varying strength]

EdgeDetect

Augmenter that detects all edges in images, marks them in
a black and white image and then overlays the result with the original
image.

API link: EdgeDetect()

Example.
Detect edges in images, turning them into black and white images and then overlay
these with the original images using random alphas between 0.0 and 1.0:

import imgaug.augmenters as iaa
aug = iaa.EdgeDetect(alpha=(0.0, 1.0))

Example.
Effect of increasing alpha from 0.0 to 1.0 in eight steps:

[image: EdgeDetect vary alpha]

DirectedEdgeDetect

Augmenter that detects edges that have certain directions and marks them
in a black and white image and then overlays the result with the original
image.

API link: DirectedEdgeDetect()

Example.
Detect edges having random directions (0 to 360 degrees) in images,
turning the images into black and white versions and then overlay
these with the original images using random alphas between 0.0 and 1.0:

import imgaug.augmenters as iaa
aug = iaa.DirectedEdgeDetect(alpha=(0.0, 1.0), direction=(0.0, 1.0))

Example.
Effect of fixing direction to 0.0 and then increasing alpha from
0.0 to 1.0 in eight steps:

[image: DirectedEdgeDetect vary alpha]

Example.
Effect of fixing alpha to 1.0 and then increasing direction from
0.0 to 1.0 (0 to 360 degrees) in eight steps:

[image: DirectedEdgeDetect vary direction]

augmenters.debug

SaveDebugImageEveryNBatches

Visualize data in batches and save corresponding plots to a folder.

API link: SaveDebugImageEveryNBatches()

Example.
Save a debug plot to a temporary folder every 100 batches.
Set folder_path to a string, e.g. /tmp/experiments/debug-images,
in order to save to that filepath instead of the temporary folder.

import imgaug.augmenters as iaa
import tempfile
with tempfile.TemporaryDirectory() as folder_path:
 seq = iaa.Sequential([
 iaa.Sequential([
 iaa.Fliplr(0.5),
 iaa.Crop(px=(0, 16))
], random_order=True),
 iaa.SaveDebugImageEveryNBatches(folder_path, 100)
])

[image: SaveDebugImageEveryNBatches]

augmenters.edges

Canny

Apply a canny edge detector to input images.

API link: Canny

Example.
Create an augmenter that generates random blends between images and
their canny edge representations:

import imgaug.augmenters as iaa
aug = iaa.Canny()

[image: Canny]

Example.
Create a canny edge augmenter that generates edge images with a blending
factor of max 50%, i.e. the original (non-edge) image is always at
least partially visible:

aug = iaa.Canny(alpha=(0.0, 0.5))

[image: Canny with varying alpha values]

Example.
Same as in the previous example, but the edge image always uses the
color white for edges and black for the background:

aug = iaa.Canny(
 alpha=(0.0, 0.5),
 colorizer=iaa.RandomColorsBinaryImageColorizer(
 color_true=255,
 color_false=0
)
)

[image: Canny with varying alpha values and white+black edge image]

Example.
Create a canny edge augmenter that initially preprocesses images using
a sobel filter with kernel size of either 3x3 or 13x13 and
alpha-blends with result using a strength of 50% (both images
equally visible) to 100% (only edge image visible).

aug = iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7])

[image: Canny with varying sobel_kernel_size values]

Example.
Create an augmenter that blends a canny edge image with a median-blurred
version of the input image. The median blur uses a fixed kernel size
of 13x13 pixels.

aug = iaa.Alpha(
 (0.0, 1.0),
 iaa.Canny(alpha=1),
 iaa.MedianBlur(13)
)

[image: Blending Canny with MedianBlur]

augmenters.flip

HorizontalFlip

Alias for Fliplr.

API link: HorizontalFlip

VericalFlip

Alias for Flipud.

API link: VerticalFlip

Fliplr

Flip/mirror input images horizontally.

Note

The default value for the probability is 1.0, i.e. all images
will be flipped.

API link: Fliplr

Example.
Flip 50% of all images horizontally:

import imgaug.augmenters as iaa
aug = iaa.Fliplr(0.5)

[image: Horizontal flip]

Flipud

Flip/mirror input images vertically.

Note

The default value for the probability is 1.0, i.e. all images
will be flipped.

API link: Flipud

Example.
Flip 50% of all images vertically:

aug = iaa.Flipud(0.5)

[image: Vertical flip]

augmenters.geometric

Affine

Augmenter to apply affine transformations to images.

API link: Affine

Example.
Scale images to a value of 50 to 150% of their original size:

import imgaug.augmenters as iaa
aug = iaa.Affine(scale=(0.5, 1.5))

[image: Affine scale]

Example.
Scale images to a value of 50 to 150% of their original size,
but do this independently per axis (i.e. sample two values per image):

aug = iaa.Affine(scale={"x": (0.5, 1.5), "y": (0.5, 1.5)})

[image: Affine scale independently]

Example.
Translate images by -20 to +20% on x- and y-axis independently:

aug = iaa.Affine(translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)})

[image: Affine translate percent]

Example.
Translate images by -20 to 20 pixels on x- and y-axis independently:

aug = iaa.Affine(translate_px={"x": (-20, 20), "y": (-20, 20)})

[image: Affine translate pixel]

Example.
Rotate images by -45 to 45 degrees:

aug = iaa.Affine(rotate=(-45, 45))

[image: Affine rotate]

Example.
Shear images by -16 to 16 degrees:

aug = iaa.Affine(shear=(-16, 16))

[image: Affine shear]

Example.
When applying affine transformations, new pixels are often generated, e.g. when
translating to the left, pixels are generated on the right. Various modes
exist to set how these pixels are ought to be filled. Below code shows an
example that uses all modes, sampled randomly per image. If the mode is
constant (fill all with one constant value), then a random brightness
between 0 and 255 is used:

aug = iaa.Affine(translate_percent={"x": -0.20}, mode=ia.ALL, cval=(0, 255))

[image: Affine fill modes]

ScaleX

Apply affine scaling on the x-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: ScaleX

Example.
Create an augmenter that scales images along the width to sizes between
50% and 150%. This does not change the image shape (i.e. height
and width), only the pixels within the image are remapped and potentially
new ones are filled in.

import imgaug.augmenters as iaa
aug = iaa.ScaleX((0.5, 1.5))

[image: ScaleX]

ScaleY

Apply affine scaling on the y-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: ScaleY

Example.
Create an augmenter that scales images along the height to sizes between
50% and 150%. This does not change the image shape (i.e. height
and width), only the pixels within the image are remapped and potentially
new ones are filled in.

import imgaug.augmenters as iaa
aug = iaa.ScaleY((0.5, 1.5))

[image: ScaleY]

TranslateX

Apply affine translation on the x-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: TranslateX

Example.
Create an augmenter that translates images along the x-axis by
-20 to 20 pixels:

import imgaug.augmenters as iaa
aug = iaa.TranslateX(px=(-20, 20))

[image: TranslateX with absolute translation amounts]

Example.
Create an augmenter that translates images along the x-axis by
-10% to 10% (relative to the x-axis size):

aug = iaa.TranslateX(percent=(-0.1, 0.1))

[image: TranslateX with relative translation amounts]

TranslateY

Apply affine translation on the y-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: TranslateY

Example.
Create an augmenter that translates images along the y-axis by
-20 to 20 pixels:

import imgaug.augmenters as iaa
aug = iaa.TranslateY(px=(-20, 20))

[image: TranslateY with absolute translation amounts]

Example.
Create an augmenter that translates images along the y-axis by
-10% to 10% (relative to the y-axis size):

aug = iaa.TranslateY(percent=(-0.1, 0.1))

[image: TranslateY with relative translation amounts]

Rotate

Apply affine rotation on the y-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.
It is the same as Affine(rotate=<value>).

API link: Rotate

Example.
Create an augmenter that rotates images by a random value between -45
and 45 degress:

import imgaug.augmenters as iaa
aug = iaa.Rotate((-45, 45))

[image: Rotate]

ShearX

Apply affine shear on the x-axis to input data.

This is a wrapper around Affine.

API link: ShearX

Example.
Create an augmenter that shears images along the x-axis by random amounts
between -20 and 20 degrees:

import imgaug.augmenters as iaa
aug = iaa.ShearX((-20, 20))

[image: ShearX]

ShearY

Apply affine shear on the y-axis to input data.

This is a wrapper around Affine.

API link: ShearY

Example.
Create an augmenter that shears images along the y-axis by random amounts
between -20 and 20 degrees:

import imgaug.augmenters as iaa
aug = iaa.ShearY((-20, 20))

[image: ShearY]

PiecewiseAffine

Apply affine transformations that differ between local neighbourhoods.

This augmenter places a regular grid of points on an image and randomly
moves the neighbourhood of these point around via affine transformations.
This leads to local distortions.

This is mostly a wrapper around scikit-image’s PiecewiseAffine.
See also Affine for a similar technique.

Note

This augmenter is very slow. See Performance.
Try to use ElasticTransformation instead, which is at least 10x
faster.

Note

For coordinate-based inputs (keypoints, bounding boxes, polygons,
…), this augmenter still has to perform an image-based augmentation,
which will make it significantly slower for such inputs than other
augmenters. See Performance.

API link: PiecewiseAffine

Example.
Distort images locally by moving points around, each with a distance v (percent
relative to image size), where v is sampled per point from N(0, z)
z is sampled per image from the range 0.01 to 0.05:

import imgaug.augmenters as iaa
aug = iaa.PiecewiseAffine(scale=(0.01, 0.05))

[image: PiecewiseAffine]

[image: PiecewiseAffine]

Example.
Effect of increasing scale from 0.01 to 0.3 in eight steps:

[image: PiecewiseAffine varying scales]

Example.
PiecewiseAffine works by placing a regular grid of points on the image
and moving them around. By default this grid consists of 4x4 points.
The below image shows the effect of increasing that value from 2x2 to 16x16
in 8 steps:

[image: PiecewiseAffine varying grid]

PerspectiveTransform

Apply random four point perspective transformations to images.

Each of the four points is placed on the image using a random distance from
its respective corner. The distance is sampled from a normal distribution.
As a result, most transformations don’t change the image very much, while
some “focus” on polygons far inside the image.

The results of this augmenter have some similarity with Crop.

API link: PerspectiveTransform

Example.
Apply perspective transformations using a random scale between 0.01
and 0.15 per image, where the scale is roughly a measure of how far
the perspective transformation’s corner points may be distanced from the
image’s corner points:

import imgaug.augmenters as iaa
aug = iaa.PerspectiveTransform(scale=(0.01, 0.15))

[image: PerspectiveTransform]

Example.
Same as in the previous example, but images are not resized back to
the input image size after augmentation. This will lead to smaller
output images.

aug = iaa.PerspectiveTransform(scale=(0.01, 0.15), keep_size=False)

[image: PerspectiveTransform with keep_size=False]
PerspectiveTransform with keep_size set to False.
Note that the individual images are here padded after augmentation in
order to align them in a grid (i.e. purely for visualization purposes).

ElasticTransformation

Transform images by moving pixels locally around using displacement fields.

The augmenter has the parameters alpha and sigma. alpha
controls the strength of the displacement: higher values mean that pixels
are moved further. sigma controls the smoothness of the displacement:
higher values lead to smoother patterns – as if the image was below water
– while low values will cause indivdual pixels to be moved very
differently from their neighbours, leading to noisy and pixelated images.

A relation of 10:1 seems to be good for alpha and sigma, e.g.
alpha=10 and sigma=1 or alpha=50, sigma=5. For 128x128
a setting of alpha=(0, 70.0), sigma=(4.0, 6.0) may be a good
choice and will lead to a water-like effect.

For a detailed explanation, see

Simard, Steinkraus and Platt
Best Practices for Convolutional Neural Networks applied to Visual
Document Analysis
in Proc. of the International Conference on Document Analysis and
Recognition, 2003

Note

For coordinate-based inputs (keypoints, bounding boxes, polygons,
…), this augmenter still has to perform an image-based augmentation,
which will make it significantly slower for such inputs than other
augmenters. See Performance.

API link: ElasticTransformation

Example.
Distort images locally by moving individual pixels around following
a distortions field with strength 0.25. The strength of the movement is
sampled per pixel from the range 0 to 5.0:

import imgaug.augmenters as iaa
aug = iaa.ElasticTransformation(alpha=(0, 5.0), sigma=0.25)

[image: ElasticTransformation]

Example.
Effect of keeping sigma fixed at 0.25 and increasing alpha from 0 to
5.0 in eight steps:

[image: ElasticTransformation varying alpha]

Example.
Effect of keeping alpha fixed at 2.5 and increasing sigma from 0.01
to 1.0 in eight steps:

[image: ElasticTransformation varying sigma]

Rot90

Rotate images clockwise by multiples of 90 degrees.

This could also be achieved using Affine, but Rot90 is
significantly more efficient.

API link: Rot90

[image: Input image for Rot90 examples]
The below examples use this input image, which slightly deviates
from the examples for other augmenters (i.e. it is not square).

Example.
Rotate all images by 90 degrees.
Resize these images afterwards to keep the size that they had before
augmentation.
This may cause the images to look distorted.

import imgaug.augmenters as iaa
aug = iaa.Rot90(1)

[image: Rot90 with k=1]

Example.
Rotate all images by 90 or 270 degrees.
Resize these images afterwards to keep the size that they had before
augmentation.
This may cause the images to look distorted.

aug = iaa.Rot90([1, 3])

[image: Rot90 with k=1 or k=3]

Example.
Rotate all images by 90, 180 or 270 degrees.
Resize these images afterwards to keep the size that they had before
augmentation.
This may cause the images to look distorted.

aug = iaa.Rot90((1, 3))

[image: Rot90 with k=1 or k=2 or k=3]

Example.
Rotate all images by 90, 180 or 270 degrees.
Does not resize to the original image size afterwards, i.e. each image’s
size may change.

aug = iaa.Rot90((1, 3), keep_size=False)

[image: Rot90 with keep_size=False]
Rot90 with keep_size set to False.
Note that the individual images are here padded after augmentation in
order to align them in a grid (i.e. purely for visualization purposes).

WithPolarWarping

Augmenter that applies other augmenters in a polar-transformed space.

This augmenter first transforms an image into a polar representation,
then applies its child augmenter, then transforms back to cartesian
space. The polar representation is still in the image’s input dtype
(i.e. uint8 stays uint8) and can be visualized. It can be thought
of as an “unrolled” version of the image, where previously circular lines
appear straight. Hence, applying child augmenters in that space can lead
to circular effects. E.g. replacing rectangular pixel areas in the polar
representation with black pixels will lead to curved black areas in
the cartesian result.

This augmenter can create new pixels in the image. It will fill these
with black pixels. For segmentation maps it will fill with class
id 0. For heatmaps it will fill with 0.0.

This augmenter is limited to arrays with a height and/or width of
32767 or less.

Warning

When augmenting coordinates in polar representation, it is possible
that these are shifted outside of the polar image, but are inside the
image plane after transforming back to cartesian representation,
usually on newly created pixels (i.e. black backgrounds).
These coordinates are currently not removed. It is recommended to
not use very strong child transformations when also augmenting
coordinate-based augmentables.

Warning

For bounding boxes, this augmenter suffers from the same problem as
affine rotations applied to bounding boxes, i.e. the resulting
bounding boxes can have unintuitive (seemingly wrong) appearance.
This is due to coordinates being “rotated” that are inside the
bounding box, but do not fall on the object and actually are
background.
It is recommended to use this augmenter with caution when augmenting
bounding boxes.

Warning

For polygons, this augmenter should not be combined with
augmenters that perform automatic polygon recovery for invalid
polygons, as the polygons will frequently appear broken in polar
representation and their “fixed” version will be very broken in
cartesian representation. Augmenters that perform such polygon
recovery are currently PerspectiveTransform, PiecewiseAffine
and ElasticTransformation.

API link: WithPolarWarping

Example.
Apply cropping and padding in polar representation, then warp back to
cartesian representation:

import imgaug.augmenters as iaa
aug = iaa.WithPolarWarping(iaa.CropAndPad(percent=(-0.1, 0.1)))

[image: WithPolarWarping and CropAndPad]

Example.
Apply affine translations in polar representation:

aug = iaa.WithPolarWarping(
 iaa.Affine(
 translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)}
)
)

[image: WithPolarWarping and Affine]

Example.
Apply average pooling in polar representation. This leads to circular
bins:

aug = iaa.WithPolarWarping(iaa.AveragePooling((2, 8)))

[image: WithPolarWarping with AveragePooling]

Jigsaw

Move cells within images similar to jigsaw patterns.

Note

This augmenter will by default pad images until their height is a
multiple of nb_rows. Analogous for nb_cols.

Note

This augmenter will resize heatmaps and segmentation maps to the
image size, then apply similar padding as for the corresponding images
and resize back to the original map size. That also means that images
may change in shape (due to padding), but heatmaps/segmaps will not
change. For heatmaps/segmaps, this deviates from pad augmenters that
will change images and heatmaps/segmaps in corresponding ways and then
keep the heatmaps/segmaps at the new size.

Warning

This augmenter currently only supports augmentation of images,
heatmaps, segmentation maps and keypoints. Other augmentables,
i.e. bounding boxes, polygons and line strings, will result in errors.

API link: Jigsaw

Example.
Create a jigsaw augmenter that splits images into 10x10 cells
and shifts them around by 0 to 2 steps (default setting):

import imgaug.augmenters as iaa
aug = iaa.Jigsaw(nb_rows=10, nb_cols=10)

[image: Jigsaw]

Example.
Create a jigsaw augmenter that splits each image into 1 to 4
cells along each axis:

aug = iaa.Jigsaw(nb_rows=(1, 4), nb_cols=(1, 4))

[image: Jigsaw with random-sized grid]

Example.
Create a jigsaw augmenter that moves the cells in each image by a random
amount between 1 and 5 times (decided per image). Some images will
be barely changed, some will be fairly distorted.

aug = iaa.Jigsaw(nb_rows=10, nb_cols=10, max_steps=(1, 5))

[image: Jigsaw with random number of max_steps]

augmenters.imgcorruptlike

GaussianNoise

Wrapper around gaussian_noise().

Note

This augmenter only affects images. Other data is not changed.

API link: GaussianNoise

The image below visualizes severities 1 to 5 – one severity per row:

[image: GaussianNoise]

Example.
Create an augmenter around
gaussian_noise().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.GaussianNoise(severity=2)

ShotNoise

Wrapper around shot_noise().

Note

This augmenter only affects images. Other data is not changed.

API link: ShotNoise

The image below visualizes severities 1 to 5 – one severity per row:

[image: ShotNoise]

Example.
Create an augmenter around
shot_noise().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ShotNoise(severity=2)

ImpulseNoise

Wrapper around impulse_noise().

Note

This augmenter only affects images. Other data is not changed.

API link: ImpulseNoise

The image below visualizes severities 1 to 5 – one severity per row:

[image: ImpulseNoise]

Example.
Create an augmenter around
impulse_noise().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ImpulseNoise(severity=2)

SpeckleNoise

Wrapper around speckle_noise().

Note

This augmenter only affects images. Other data is not changed.

API link: SpeckleNoise

The image below visualizes severities 1 to 5 – one severity per row:

[image: SpeckleNoise]

Example.
Create an augmenter around
speckle_noise().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.SpeckleNoise(severity=2)

GaussianBlur

Wrapper around gaussian_blur().

Note

This augmenter only affects images. Other data is not changed.

API link: GaussianBlur

The image below visualizes severities 1 to 5 – one severity per row:

[image: GaussianBlur]

Example.
Create an augmenter around
gaussian_blur().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.GaussianBlur(severity=2)

GlassBlur

Wrapper around glass_blur().

Note

This augmenter only affects images. Other data is not changed.

API link: GlassBlur

The image below visualizes severities 1 to 5 – one severity per row:

[image: GlassBlur]

Example.
Create an augmenter around
glass_blur().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.GlassBlur(severity=2)

DefocusBlur

Wrapper around defocus_blur().

Note

This augmenter only affects images. Other data is not changed.

API link: DefocusBlur

The image below visualizes severities 1 to 5 – one severity per row:

[image: DefocusBlur]

Example.
Create an augmenter around
defocus_blur().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.DefocusBlur(severity=2)

MotionBlur

Wrapper around motion_blur().

Note

This augmenter only affects images. Other data is not changed.

API link: MotionBlur

The image below visualizes severities 1 to 5 – one severity per row:

[image: MotionBlur]

Example.
Create an augmenter around
motion_blur().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.MotionBlur(severity=2)

ZoomBlur

Wrapper around zoom_blur().

Note

This augmenter only affects images. Other data is not changed.

API link: ZoomBlur

The image below visualizes severities 1 to 5 – one severity per row:

[image: ZoomBlur]

Example.
Create an augmenter around
zoom_blur().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ZoomBlur(severity=2)

Fog

Wrapper around fog().

Note

This augmenter only affects images. Other data is not changed.

API link: Fog

The image below visualizes severities 1 to 5 – one severity per row:

[image: Fog]

Example.
Create an augmenter around
fog().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Fog(severity=2)

Frost

Wrapper around frost().

Note

This augmenter only affects images. Other data is not changed.

API link: Frost

The image below visualizes severities 1 to 5 – one severity per row:

[image: Frost]

Example.
Create an augmenter around
frost().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Frost(severity=2)

Snow

Wrapper around snow().

Note

This augmenter only affects images. Other data is not changed.

API link: Snow

The image below visualizes severities 1 to 5 – one severity per row:

[image: Snow]

Example.
Create an augmenter around
snow().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Snow(severity=2)

Spatter

Wrapper around spatter().

Note

This augmenter only affects images. Other data is not changed.

API link: Spatter

The image below visualizes severities 1 to 5 – one severity per row:

[image: Spatter]

Example.
Create an augmenter around
spatter().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Spatter(severity=2)

Contrast

Wrapper around contrast().

Note

This augmenter only affects images. Other data is not changed.

API link: Contrast

The image below visualizes severities 1 to 5 – one severity per row:

[image: Contrast]

Example.
Create an augmenter around
contrast().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Contrast(severity=2)

Brightness

Wrapper around brightness().

Note

This augmenter only affects images. Other data is not changed.

API link: Brightness

The image below visualizes severities 1 to 5 – one severity per row:

[image: Brightness]

Example.
Create an augmenter around
brightness().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Brightness(severity=2)

Saturate

Wrapper around saturate().

Note

This augmenter only affects images. Other data is not changed.

API link: Saturate

The image below visualizes severities 1 to 5 – one severity per row:

[image: Saturate]

Example.
Create an augmenter around
saturate().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Saturate(severity=2)

JpegCompression

Wrapper around jpeg_compression().

Note

This augmenter only affects images. Other data is not changed.

API link: JpegCompression

The image below visualizes severities 1 to 5 – one severity per row:

[image: JpegCompression]

Example.
Create an augmenter around
jpeg_compression().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.JpegCompression(severity=2)

Pixelate

Wrapper around jpeg_compression().

Note

This augmenter only affects images. Other data is not changed.

Wrapper around pixelate().

Note

This augmenter only affects images. Other data is not changed.

API link: Pixelate

The image below visualizes severities 1 to 5 – one severity per row:

[image: Pixelate]

Example.
Create an augmenter around
pixelate().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Pixelate(severity=2)

ElasticTransform

Wrapper around elastic_transform().

Note

This augmenter only affects images. Other data is not changed.

API link: ElasticTransform

The image below visualizes severities 1 to 5 – one severity per row:

[image: ElasticTransform]

Example.
Create an augmenter around
elastic_transform().
Apply it to images using e.g. aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ElasticTransform(severity=2)

augmenters.pillike

Solarize

Augmenter with identical outputs to PIL’s solarize() function.

This augmenter inverts all pixel values above a threshold.

The outputs are identical to PIL’s solarize().

API link: Solarize()

Example.
Invert the colors in 50 percent of all images for pixels with a
value between 32 and 128 or more. The threshold is sampled once
per image. The thresholding operation happens per channel.

import imgaug.augmenters as iaa
aug = iaa.Solarize(0.5, threshold=(32, 128))

[image: Solarize]

Posterize

Augmenter with identical outputs to PIL’s posterize() function.

This augmenter quantizes each array component to N bits.

This class is currently an alias for
Posterize, which again is an alias
for UniformColorQuantizationToNBits,
i.e. all three classes are right now guarantueed to have the same
outputs as PIL’s function.

API link: Posterize()

Equalize

Equalize the image histogram.

This augmenter has identical outputs to equalize().

API link: Equalize()

Example.
Equalize the histograms of all input images:

import imgaug.augmenters as iaa
aug = iaa.pillike.Equalize()

[image: Equalize]

Autocontrast

Adjust contrast by cutting off p% of lowest/highest histogram values.

This augmenter has identical outputs to autocontrast().

See autocontrast() for more details.

API link: Autocontrast()

Example.
Modify the contrast of images by cutting off the 0 to 20% lowest
and highest values from the histogram, then stretching it to full length:

import imgaug.augmenters as iaa
aug = iaa.pillike.Autocontrast()

Example.
Modify the contrast of images by cutting off the 10 to 20% lowest
and highest values from the histogram, then stretching it to full length.
The cutoff value is sampled per channel instead of per image.

aug = iaa.pillike.Autocontrast((10, 20), per_channel=True)

[image: Autocontrast]

EnhanceColor

Convert images to grayscale.

This augmenter has identical outputs to Color.

API link: EnhanceColor()

Example.
Create an augmenter to remove a random fraction of color from
input images:

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceColor()

[image: enhancecolor]

EnhanceContrast

Change the contrast of images.

This augmenter has identical outputs to Contrast.

API link: EnhanceContrast()

Example.
Create an augmenter that worsens the contrast of an image by a random
factor:

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceContrast()

[image: EnhanceContrast]

EnhanceBrightness

Change the brightness of images.

This augmenter has identical outputs to
Brightness.

API link: EnhanceBrightness()

Example.
Create an augmenter that worsens the brightness of an image by a random
factor:

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceBrightness()

[image: EnhanceBrightness]

EnhanceSharpness

Change the sharpness of images.

This augmenter has identical outputs to
Sharpness.

API link: EnhanceSharpness()

Example.
Create an augmenter that randomly decreases or increases the sharpness
of an image:

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceSharpness()

[image: EnhanceSharpness]

FilterBlur

Apply a blur filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel PIL.ImageFilter.BLUR.

API link: FilterBlur()

Example.
Create an augmenter that applies a blur filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterBlur()

[image: FilterBlur]

FilterSmooth

Apply a smoothening filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel PIL.ImageFilter.SMOOTH.

API link: FilterSmooth()

Example.
Create an augmenter that applies a smoothening filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterSmooth()

[image: FilterSmooth]

FilterSmoothMore

Apply a strong smoothening filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel PIL.ImageFilter.BLUR.

API link: FilterSmoothMore()

Example.
Create an augmenter that applies a strong smoothening filter kernel to
images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterSmoothMore()

[image: FilterSmoothMore]

FilterEdgeEnhance

Apply an edge enhance filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel
PIL.ImageFilter.EDGE_ENHANCE.

API link: FilterEdgeEnhance()

Example.
Create an augmenter that applies a edge enhancement filter kernel to
images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterEdgeEnhance()

[image: FilterEdgeEnhance]

FilterEdgeEnhanceMore

Apply a strong edge enhancement filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel
PIL.ImageFilter.EDGE_ENHANCE_MORE.

API link: FilterEdgeEnhanceMore()

Example.
Create an augmenter that applies a strong edge enhancement filter kernel
to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterEdgeEnhanceMore()

[image: FilterEdgeEnhanceMore]

FilterFindEdges

Apply a edge detection kernel to images.

This augmenter has identical outputs to
calling filter() with kernel
PIL.ImageFilter.FIND_EDGES.

API link: FilterFindEdges()

Example.
Create an augmenter that applies an edge detection filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterFindEdges()

[image: FilterFindEdges]

FilterContour

Apply a contour detection filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel PIL.ImageFilter.CONTOUR.

API link: FilterContour()

Example.
Create an augmenter that applies a contour detection filter kernel to
images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterContour()

[image: FilterContour]

FilterEmboss

Apply an emboss filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel PIL.ImageFilter.EMBOSS.

API link: FilterEmboss()

Example.
Create an augmenter that applies an emboss filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterEmboss()

[image: FilterEmboss]

FilterSharpen

Apply a sharpening filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel PIL.ImageFilter.SHARPEN.

API link: FilterSharpen()

Example.
Create an augmenter that applies a sharpening filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterSharpen()

[image: FilterSharpen]

FilterDetail

Apply a detail enhancement filter kernel to images.

This augmenter has identical outputs to
calling filter() with kernel PIL.ImageFilter.DETAIL.

API link: FilterDetail()

Example.
Create an augmenter that applies a detail enhancement filter kernel to
images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterDetail()

[image: FilterDetail]

Affine

Apply PIL-like affine transformations to images.

This augmenter has identical outputs to
transform() with parameter method=PIL.Image.AFFINE.

Note

This augmenter can currently only transform image-data.
Batches containing heatmaps, segmentation maps and
coordinate-based augmentables will be rejected with an error.
Use Affine if you have to
transform such inputs.

Note

This augmenter uses the image center as the transformation center.
This has to be explicitly enforced in PIL using corresponding
translation matrices. Without such translation, PIL uses the image
top left corner as the transformation center. To mirror that
behaviour, use center=(0.0, 0.0).

API link: Affine()

Example.
Create an augmenter that applies affine scaling (zoom in/out) to images.
Along the x-axis they are scaled to 80-120% of their size, along
the y-axis to 50-150% (both values randomly and uniformly chosen per
image).

import imgaug.augmenters as iaa
aug = iaa.pillike.Affine(scale={"x": (0.8, 1.2), "y": (0.5, 1.5)})

[image: Affine scale]

Example.
Create an augmenter that translates images along the y-axis by either
-10px or 10px. Newly created pixels are always filled with
the value 128 (along all channels).

aug = iaa.pillike.Affine(translate_px={"x": 0, "y": [-10, 10]},
 fillcolor=128)

[image: Affine translate with fillcolor]

Example.
Rotate an image by -20 to 20 degress and fill up all newly
created pixels with a random RGB color:

aug = iaa.pillike.Affine(rotate=(-20, 20), fillcolor=(0, 256))

[image: Affine rotate with random fillcolor]

See the similar augmenter Affine
for more examples.

augmenters.pooling

AveragePooling

Apply average pooling to images.

This augmenter pools images with kernel sizes H x W by averaging the
pixel values within these windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

This augmenter does not affect heatmaps, segmentation maps or
coordinates-based augmentables (e.g. keypoints, bounding boxes, …).

Note that this augmenter is very similar to AverageBlur.
AverageBlur applies averaging within windows of given kernel size
without striding, while AveragePooling applies striding corresponding
to the kernel size, with optional upscaling afterwards. The upscaling
is configured to create “pixelated”/”blocky” images by default.

API link: AveragePooling

Example.
Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.AveragePooling(2)

[image: AveragePooling]

Example.
Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution:

aug = iaa.AveragePooling(2, keep_size=False)

[image: AveragePooling with keep_size=False]

Example.
Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8:

aug = iaa.AveragePooling([2, 8])

[image: AveragePooling with a choice of two kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

aug = iaa.AveragePooling((1, 7))

[image: AveragePooling with a uniform distribution over kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

aug = iaa.AveragePooling(((1, 7), (1, 7)))

[image: AveragePooling with unsymmetric kernel sizes]

MaxPooling

Apply max pooling to images.

This augmenter pools images with kernel sizes H x W by taking the
maximum pixel value over windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

The maximum within each pixel window is always taken channelwise.

This augmenter does not affect heatmaps, segmentation maps or
coordinates-based augmentables (e.g. keypoints, bounding boxes, …).

API link: MaxPooling

Example.
Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.MaxPooling(2)

[image: MaxPooling]

Example.
Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution:

aug = iaa.MaxPooling(2, keep_size=False)

[image: MaxPooling with keep_size=False]

Example.
Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8:

aug = iaa.MaxPooling([2, 8])

[image: MaxPooling with a choice of two kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

aug = iaa.MaxPooling((1, 7))

[image: MaxPooling with a uniform distribution over kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

aug = iaa.MaxPooling(((1, 7), (1, 7)))

[image: MaxPooling with unsymmetric kernel sizes]

MinPooling

Apply minimum pooling to images.

This augmenter pools images with kernel sizes H x W by taking the
minimum pixel value over windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

The minimum within each pixel window is always taken channelwise.

This augmenter does not affect heatmaps, segmentation maps or
coordinates-based augmentables (e.g. keypoints, bounding boxes, …).

API link: MinPooling

Example.
Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.MinPooling(2)

[image: MinPooling]

Example.
Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution.

aug = iaa.MinPooling(2, keep_size=False)

[image: MinPooling with keep_size=False]

Example.
Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8:

aug = iaa.MinPooling([2, 8])

[image: MinPooling with a choice of two kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

aug = iaa.MinPooling((1, 7))

[image: MinPooling with a uniform distribution over kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

aug = iaa.MinPooling(((1, 7), (1, 7)))

[image: MinPooling with unsymmetric kernel sizes]

MedianPooling

Apply median pooling to images.

This augmenter pools images with kernel sizes H x W by taking the
median pixel value over windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

The median within each pixel window is always taken channelwise.

This augmenter does not affect heatmaps, segmentation maps or
coordinates-based augmentables (e.g. keypoints, bounding boxes, …).

API link: MedianPooling

Example.
Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.MedianPooling(2)

[image: MedianPooling]

Example.
Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution:

aug = iaa.MedianPooling(2, keep_size=False)

[image: MedianPooling with keep_size=False]

Example.
Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8:

aug = iaa.MedianPooling([2, 8])

[image: MedianPooling with a choice of two kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

aug = iaa.MedianPooling((1, 7))

[image: MedianPooling with a uniform distribution over kernel sizes]

Example.
Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

aug = iaa.MedianPooling(((1, 7), (1, 7)))

[image: MedianPooling with unsymmetric kernel sizes]

augmenters.segmentation

Superpixels

Completely or partially transform images to their superpixel representation.

Note

This augmenter is fairly slow. See Performance.

API link: Superpixels

Example.
Generate about 64 superpixels per image. Replace each one with a
probability of 50% by its average pixel color.

import imgaug.augmenters as iaa
aug = iaa.Superpixels(p_replace=0.5, n_segments=64)

[image: Superpixels]

Example.
Generate 16 to 128 superpixels per image. Replace each superpixel with
a probability between 10 and 100% (sampled once per image) by its
average pixel color.

aug = iaa.Superpixels(p_replace=(0.1, 1.0), n_segments=(16, 128))

[image: Superpixels random]

Example.
Effect of setting n_segments to a fixed value of 64 and then
increasing p_replace from 0.0 and 1.0:

[image: Superpixels varying p]

Example.
Effect of setting p_replace to a fixed value of 1.0 and then
increasing n_segments from 1*16 to 9*16=144:

[image: Superpixels varying n]

Voronoi

Average colors of an image within Voronoi cells.

This augmenter performs the following steps:

	Query points_sampler to sample random coordinates of cell
centers. On the image.

	Estimate for each pixel to which voronoi cell (i.e. segment)
it belongs. Each pixel belongs to the cell with the closest center
coordinate (euclidean distance).

	Compute for each cell the average color of the pixels within it.

	Replace the pixels of p_replace percent of all cells by their
average color. Do not change the pixels of (1 - p_replace)
percent of all cells. (The percentages are average values over
many images. Some images may get more/less cells replaced by
their average color.)

API link: Voronoi

Example.
Create an augmenter that places a 20x40 (HxW) grid of cells on
the image and replaces all pixels within each cell by the cell’s average
color. The process is performed at an image size not exceeding 128px on
any side. If necessary, the downscaling is performed using linear
interpolation.

import imgaug.augmenters as iaa
points_sampler = iaa.RegularGridPointsSampler(n_cols=20, n_rows=40)
aug = iaa.Voronoi(points_sampler)

[image: Voronoi with a regular grid points sampler]

Example.
Create a voronoi augmenter that generates a grid of cells dynamically
adapted to the image size. Larger images get more cells. On the x-axis,
the distance between two cells is w * W pixels, where W is the
width of the image and w is always 0.1. On the y-axis,
the distance between two cells is h * H pixels, where H is the
height of the image and h is sampled uniformly from the interval
[0.05, 0.2]. To make the voronoi pattern less regular, about 20
percent of the cell coordinates are randomly dropped (i.e. the remaining
cells grow in size). In contrast to the first example, the image is not
resized (if it was, the sampling would happen after the resizing,
which would affect W and H). Not all voronoi cells are replaced
by their average color, only around 90 percent of them. The
remaining 10 percent’s pixels remain unchanged.

points_sampler = iaa.DropoutPointsSampler(
 iaa.RelativeRegularGridPointsSampler(
 n_cols_frac=(0.05, 0.2),
 n_rows_frac=0.1),
 0.2)
aug = iaa.Voronoi(points_sampler, p_replace=0.9, max_size=None)

[image: Voronoi with a combination of image-size dependent grid point sampler and point dropout]

UniformVoronoi

Uniformly sample Voronoi cells on images and average colors within them.

This augmenter is a shortcut for the combination of Voronoi with
UniformPointsSampler. Hence, it generates a fixed amount of N
random coordinates of voronoi cells on each image. The cell coordinates
are sampled uniformly using the image height and width as maxima.

API link: UniformVoronoi

Example.
Sample for each image uniformly the number of voronoi cells N from the
interval [100, 500]. Then generates N coordinates by sampling
uniformly the x-coordinates from [0, W] and the y-coordinates from
[0, H], where H is the image height and W the image width.
Then uses these coordinates to group the image pixels into voronoi
cells and averages the colors within them. The process is performed at an
image size not exceeding 128px on any side. If necessary, the downscaling
is performed using linear interpolation.

import imgaug.augmenters as iaa
aug = iaa.UniformVoronoi((100, 500))

[image: UniformVoronoi]

Example.
Same as above, but always samples N=250 cells, replaces only
90 percent of them with their average color (the pixels of the
remaining 10 percent are not changed) and performs the transformation
at the original image size.

aug = iaa.UniformVoronoi(250, p_replace=0.9, max_size=None)

[image: UniformVoronoi with p_replace and max_size]

RegularGridVoronoi

Sample Voronoi cells from regular grids and color-average them.

This augmenter is a shortcut for the combination of Voronoi,
RegularGridPointsSampler and DropoutPointsSampler. Hence, it
generates a regular grid with R rows and C columns of coordinates
on each image. Then, it drops p percent of the R*C coordinates
to randomize the grid. Each image pixel then belongs to the voronoi
cell with the closest coordinate.

API link: RegularGridVoronoi

Example.
Place a regular grid of 10x20 (height x width) coordinates on
each image. Randomly drop on average 20 percent of these points
to create a less regular pattern. Then use the remaining coordinates
to group the image pixels into voronoi cells and average the colors
within them. The process is performed at an image size not exceeding
128px on any side. If necessary, the downscaling is performed using
linear interpolation.

import imgaug.augmenters as iaa
aug = iaa.RegularGridVoronoi(10, 20)

[image: RegularGridVoronoi]

Example.
Same as above, generates a grid with randomly 10 to 30 rows,
drops none of the generated points, replaces only 90 percent of
the voronoi cells with their average color (the pixels of the remaining
10 percent are not changed) and performs the transformation
at the original image size.

aug = iaa.RegularGridVoronoi(
 (10, 30), 20, p_drop_points=0.0, p_replace=0.9, max_size=None)

[image: RegularGridVoronoi with p_drop_points, p_replace and max_size]

RelativeRegularGridVoronoi

Sample Voronoi cells from image-dependent grids and color-average them.

This augmenter is a shortcut for the combination of Voronoi,
RegularGridPointsSampler and DropoutPointsSampler. Hence, it
generates a regular grid with R rows and C columns of coordinates
on each image. Then, it drops p percent of the R*C coordinates
to randomize the grid. Each image pixel then belongs to the voronoi
cell with the closest coordinate.

Note

In contrast to the other Voronoi augmenters, this one uses
None as the default value for max_size, i.e. the color averaging
is always performed at full resolution. This enables the augmenter to
make most use of the added points for larger images. It does however
slow down the augmentation process.

API link: RelativeRegularGridVoronoi

Example.
Place a regular grid of R x C coordinates on each image, where
R is the number of rows and computed as R=0.1*H with H being
the height of the input image. C is the number of columns and
analogously estimated from the image width W as C=0.25*W.
Larger images will lead to larger R and C values.
On average, 20 percent of these grid coordinates are randomly
dropped to create a less regular pattern. Then, the remaining coordinates
are used to group the image pixels into voronoi cells and the colors
within them are averaged.

import imgaug.augmenters as iaa
aug = iaa.RelativeRegularGridVoronoi(0.1, 0.25)

[image: RelativeRegularGridVoronoi]

Example.
Same as above, generates a grid with randomly R=r*H rows, where
r is sampled uniformly from the interval [0.03, 0.1] and
C=0.1*W rows. No points are dropped. The augmenter replaces only
90 percent of the voronoi cells with their average color (the pixels
of the remaining 10 percent are not changed). Images larger than
512px are temporarily downscaled (before sampling the grid points)
so that no side exceeds 512px. This improves performance, but
degrades the quality of the resulting image.

aug = iaa.RelativeRegularGridVoronoi(
 (0.03, 0.1), 0.1, p_drop_points=0.0, p_replace=0.9, max_size=512)

[image: RelativeRegularGridVoronoi with p_drop_points, p_replace and max_size]

augmenters.size

Resize

Augmenter that resizes images to specified heights and widths.

API link: Resize

Example.
Resize each image to height=32 and width=64:

import imgaug.augmenters as iaa
aug = iaa.Resize({"height": 32, "width": 64})

[image: Resize to 32x64]

Example.
Resize each image to height=32 and keep the aspect ratio for width the same:

aug = iaa.Resize({"height": 32, "width": "keep-aspect-ratio"})

[image: Resize to 32xKAR]

Example.
Resize each image to something between 50 and 100% of its original size:

aug = iaa.Resize((0.5, 1.0))

[image: Resize to 50 to 100 percent]

Example.
Resize each image’s height to 50-75% of its original size and width to
either 16px or 32px or 64px:

aug = iaa.Resize({"height": (0.5, 0.75), "width": [16, 32, 64]})

[image: Resize with uniform distribution and choice]

CropAndPad

Crop/pad images by pixel amounts or fractions of image sizes.

Cropping removes pixels at the sides (i.e. extracts a subimage from
a given full image). Padding adds pixels to the sides (e.g. black pixels).

Note

This augmenter automatically resizes images back to their original size
after it has augmented them. To deactivate this, add the
parameter keep_size=False.

API link: CropAndPad

Example.
Crop or pad each side by up to 10 percent relative to its original size
(negative values result in cropping, positive in padding):

import imgaug.augmenters as iaa
aug = iaa.CropAndPad(percent=(-0.25, 0.25))

[image: Crop/Pad by -10 to 10 percent]

Example.
Pad each side by 0 to 20 percent. This adds new pixels to the sides. These
pixels will either be filled with a constant value (mode=constant) or filled
with the value on the closest edge (mode=edge). If a constant value is used,
it will be a random value between 0 and 128 (sampled per image).

aug = iaa.CropAndPad(
 percent=(0, 0.2),
 pad_mode=["constant", "edge"],
 pad_cval=(0, 128)
)

[image: Pad by up to 20 percent]

Example.
Pad the top side of each image by 0 to 30 pixels, the right side by 0-10px,
bottom side by 0-30px and left side by 0-10px. Use any of the available modes
to fill new pixels and if the mode is constant then use a constant value
between 0 and 128.

aug = iaa.CropAndPad(
 px=((0, 30), (0, 10), (0, 30), (0, 10)),
 pad_mode=ia.ALL,
 pad_cval=(0, 128)
)

[image: Distributions per side]

Example.
Crop/pad each side by up to 10px. The value will be sampled once per image
and used for all sides (i.e. all sides gain/lose the same number of
rows/colums).

aug = iaa.CropAndPad(
 px=(-10, 10),
 sample_independently=False
)

[image: Same value for all sides]

Pad

Pad images, i.e. adds columns/rows of pixels to them.

This is a shortcut for CropAndPad. It only accepts positive
pixel/percent values.

API link: Pad

Crop

Crop images, i.e. remove columns/rows of pixels at the sides of images.

This is a shortcut for CropAndPad. It only accepts positive
pixel/percent values and transfers them as negative values to CropAndPad.

API link: Crop

PadToFixedSize

Pad images to minimum width/height.

If images are already at the minimum width/height or are larger, they will
not be padded. Note that this also means that images will not be cropped if
they exceed the required width/height.

The augmenter randomly decides per image how to distribute the required
padding amounts over the image axis. E.g. if 2px have to be padded on the
left or right to reach the required width, the augmenter will sometimes
add 2px to the left and 0px to the right, sometimes add 2px to the right
and 0px to the left and sometimes add 1px to both sides. Set position
to center to prevent that.

API link: PadToFixedSize

Example.
For image sides smaller than 100 pixels, pad to 100 pixels. Do
nothing for the other edges. The padding is randomly (uniformly)
distributed over the sides, so that e.g. sometimes most of the required
padding is applied to the left, sometimes to the right (analogous
top/bottom).
The input image here has a size of 80x80.

import imgaug.augmenters as iaa
aug = iaa.PadToFixedSize(width=100, height=100)

[image: Pad to 100x100 with random division of pad amounts onto the different image sides]

Example.
For image sides smaller than 100 pixels, pad to 100 pixels. Do
nothing for the other image sides. The padding is always equally
distributed over the left/right and top/bottom sides.
The input image here has a size of 80x80.

aug = iaa.PadToFixedSize(width=100, height=100, position="center")

[image: Pad to 100x100 with random division of pad amounts onto the different image sides]

Example.
For image sides smaller than 100 pixels, pad to 100 pixels and
use any possible padding mode for that. Do nothing for the other image
sides. The padding is always equally distributed over the left/right and
top/bottom sides.
The input image here has a size of 80x80.

aug = iaa.PadToFixedSize(width=100, height=100, pad_mode=ia.ALL)

[image: Pad to 100x100 with random padding modes]

Example.
Pad images smaller than 100x100 until they reach 100x100.
Analogously, crop images larger than 100x100 until they reach
100x100. The output images therefore have a fixed size of 100x100.
The input image here has a size of 80x120, so that the top/bottom sides
have to be cropped and the left/right sides have to be padded. Note that
the original image was resized to 80x120, leading to a bit of an
distorted appearance.

aug = iaa.Sequential([
 iaa.PadToFixedSize(width=100, height=100),
 iaa.CropToFixedSize(width=100, height=100)
])

[image: Pad and crop to 100x100]

CropToFixedSize

Crop images down to a fixed maximum width/height.

If images are already at the maximum width/height or are smaller, they
will not be cropped. Note that this also means that images will not be
padded if they are below the required width/height.

The augmenter randomly decides per image how to distribute the required
cropping amounts over the image axis. E.g. if 2px have to be cropped on
the left or right to reach the required width, the augmenter will
sometimes remove 2px from the left and 0px from the right, sometimes
remove 2px from the right and 0px from the left and sometimes remove 1px
from both sides. Set position to center to prevent that.

API link: CropToFixedSize

Example.
For image sides larger than 100 pixels, crop to 100 pixels. Do
nothing for the other sides. The cropping amounts are randomly (and
uniformly) distributed over the sides of the image.
The input image here has a size of 120x120.

import imgaug.augmenters as iaa
aug = iaa.CropToFixedSize(width=100, height=100)

[image: Crop down to 100x100 with random division of crop amounts onto the different image sides]

Example.
For sides larger than 100 pixels, crop to 100 pixels. Do nothing
for the other sides. The cropping amounts are always equally distributed
over the left/right sides of the image (and analogously for top/bottom).
The input image here has a size of 120x120.

aug = iaa.CropToFixedSize(width=100, height=100, position="center")

[image: Crop down to 100x100 with random division of crop amounts onto the different image sides]

Example.
Pad images smaller than 100x100 until they reach 100x100.
Analogously, crop images larger than 100x100 until they reach
100x100. The output images therefore have a fixed size of 100x100.
The input image here has a size of 80x120, so that the top/bottom sides
have to be cropped and the left/right sides have to be padded. Note that
the original image was resized to 80x120, leading to a bit of an
distorted appearance.

aug = iaa.Sequential([
 iaa.PadToFixedSize(width=100, height=100),
 iaa.CropToFixedSize(width=100, height=100)
])

[image: Pad and crop to 100x100]

PadToMultiplesOf

Pad images until their height/width is a multiple of a value.

API link: PadToMultiplesOf

Example.
Create an augmenter that pads images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToMultiplesOf(height_multiple=10, width_multiple=6)

CropToMultiplesOf

Crop images down until their height/width is a multiple of a value.

Note

For a given axis size A and multiple M, if A is in the
interval [0 .. M], the axis will not be changed.
As a result, this augmenter can still produce axis sizes that are
not multiples of the given values.

API link: CropToMultiplesOf

Example.
Create an augmenter that crops images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToMultiplesOf(height_multiple=10, width_multiple=6)

CropToPowersOf

Crop images until their height/width is a power of a base.

This augmenter removes pixels from an axis with size S leading to the
new size S' until S' = B^E is fulfilled, where B is a
provided base (e.g. 2) and E is an exponent from the discrete
interval [1 .. inf).

Note

This augmenter does nothing for axes with size less than B^1 = B.
If you have images with S < B^1, it is recommended
to combine this augmenter with a padding augmenter that pads each
axis up to B.

API link: CropToPowersOf

Example.
Create an augmenter that crops each image down to powers of 3 along
the y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e.
2, 4, 8, 16, …).
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToPowersOf(height_base=3, width_base=2)

PadToPowersOf

Pad images until their height/width is a power of a base.

This augmenter adds pixels to an axis with size S leading to the
new size S' until S' = B^E is fulfilled, where B is a
provided base (e.g. 2) and E is an exponent from the discrete
interval [1 .. inf).

API link: PadToPowersOf

Example.
Create an augmenter that pads each image to powers of 3 along the
y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e. 2,
4, 8, 16, …).
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToPowersOf(height_base=3, width_base=2)

CropToAspectRatio

Crop images until their width/height matches an aspect ratio.

This augmenter removes either rows or columns until the image reaches
the desired aspect ratio given in width / height. The cropping
operation is stopped once the desired aspect ratio is reached or the image
side to crop reaches a size of 1. If any side of the image starts
with a size of 0, the image will not be changed.

API link: CropToAspectRatio

Example.
Create an augmenter that crops each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToAspectRatio(2.0)

PadToAspectRatio

Pad images until their width/height matches an aspect ratio.

This augmenter adds either rows or columns until the image reaches
the desired aspect ratio given in width / height.

API link: PadToAspectRatio

Example.
Create an augmenter that pads each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToAspectRatio(2.0)

CropToSquare

Crop images until their width and height are identical.

This is identical to imgaug.augmenters.size.CropToAspectRatio with
aspect_ratio=1.0.

Images with axis sizes of 0 will not be altered.

API link: CropToSquare

Example.
Create an augmenter that crops each image until its square, i.e. height
and width match.
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToSquare()

PadToSquare

Pad images until their height and width are identical.

This augmenter is identical to imgaug.augmenters.size.PadToAspectRatio
with aspect_ratio=1.0.

API link: PadToSquare

Example.
Create an augmenter that pads each image until its square, i.e. height
and width match.
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToSquare()

CenterPadToFixedSize

Pad images equally on all sides up to given minimum heights/widths.

This is an alias for imgaug.augmenters.size.PadToFixedSize with
position="center".
It spreads the pad amounts equally over all image sides, while
imgaug.augmenters.size.PadToFixedSize by defaults spreads them
randomly.

API link: CenterPadToFixedSize

Example.
Create an augmenter that pads images up to 20x30, with the padded
rows added equally on the top and bottom (analogous for the padded
columns).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToFixedSize(height=20, width=30)

CenterCropToFixedSize

Take a crop from the center of each image.

This is an alias for imgaug.augmenters.size.CropToFixedSize with
position="center".

Note

If images already have a width and/or height below the provided
width and/or height then this augmenter will do nothing for the
respective axis. Hence, resulting images can be smaller than the
provided axis sizes.

API link: CenterCropToFixedSize

Example.
Create an augmenter that takes 20x10 sized crops from the center of
images:

import imgaug.augmenters as iaa
crop = iaa.CenterCropToFixedSize(height=20, width=10)

CenterCropToMultiplesOf

Crop images equally on all sides until H/W are multiples of given values.

This is the same as imgaug.augmenters.size.CropToMultiplesOf, but uses
position="center" by default, which spreads the crop amounts equally
over all image sides, while imgaug.augmenters.size.CropToMultiplesOf
by default spreads them randomly.

API link: CenterCropToMultiplesOf

Example.
Create an augmenter that crops images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterCropToMultiplesOf(height_multiple=10, width_multiple=6)

CenterPadToMultiplesOf

Pad images equally on all sides until H/W are multiples of given values.

This is the same as imgaug.augmenters.size.PadToMultiplesOf, but uses
position="center" by default, which spreads the pad amounts equally
over all image sides, while imgaug.augmenters.size.PadToMultiplesOf
by default spreads them randomly.

API link: CenterPadToMultiplesOf

Example.
Create an augmenter that pads images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToMultiplesOf(height_multiple=10, width_multiple=6)

CenterCropToPowersOf

Crop images equally on all sides until H/W is a power of a base.

This is the same as imgaug.augmenters.size.CropToPowersOf, but uses
position="center" by default, which spreads the crop amounts equally
over all image sides, while imgaug.augmenters.size.CropToPowersOf
by default spreads them randomly.

API link: CenterCropToPowersOf

Example.
Create an augmenter that crops each image down to powers of 3 along
the y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e.
2, 4, 8, 16, …).
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToPowersOf(height_base=3, width_base=2)

CenterPadToPowersOf

Pad images equally on all sides until H/W is a power of a base.

This is the same as imgaug.augmenters.size.PadToPowersOf, but uses
position="center" by default, which spreads the pad amounts equally
over all image sides, while imgaug.augmenters.size.PadToPowersOf by
default spreads them randomly.

API link: CenterPadToPowersOf

Example.
Create an augmenter that pads each image to powers of 3 along the
y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e. 2,
4, 8, 16, …).
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToPowersOf(height_base=3, width_base=2)

CenterCropToAspectRatio

Crop images equally on all sides until they reach an aspect ratio.

This is the same as imgaug.augmenters.size.CropToAspectRatio, but uses
position="center" by default, which spreads the crop amounts equally
over all image sides, while imgaug.augmenters.size.CropToAspectRatio
by default spreads them randomly.

API link: CenterCropToAspectRatio

Example.
Create an augmenter that crops each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterCropToAspectRatio(2.0)

CenterPadToAspectRatio

Pad images equally on all sides until H/W matches an aspect ratio.

This is the same as imgaug.augmenters.size.PadToAspectRatio, but uses
position="center" by default, which spreads the pad amounts equally
over all image sides, while imgaug.augmenters.size.PadToAspectRatio
by default spreads them randomly.

API link: CenterPadToAspectRatio

Example.
Create am augmenter that pads each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToAspectRatio(2.0)

CenterCropToSquare

Crop images equally on all sides until their height/width are identical.

In contrast to imgaug.augmenters.size.CropToSquare, this augmenter
always tries to spread the columns/rows to remove equally over both sides of
the respective axis to be cropped.
imgaug.augmenters.size.CropToAspectRatio by default spreads the
croppings randomly.

This augmenter is identical to imgaug.augmenters.size.CropToSquare
with position="center", and thereby the same as
imgaug.augmenters.size.CropToAspectRatio with
aspect_ratio=1.0, position="center".

Images with axis sizes of 0 will not be altered.

API link: CenterCropToSquare

Example.
Create an augmenter that crops each image until its square, i.e. height
and width match.
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterCropToSquare()

CenterPadToSquare

Pad images equally on all sides until their height & width are identical.

This is the same as imgaug.augmenters.size.PadToSquare, but uses
position="center" by default, which spreads the pad amounts equally
over all image sides, while imgaug.augmenters.size.PadToSquare by
default spreads them randomly. This augmenter is thus also identical to
imgaug.augmenters.size.PadToAspectRatio with
aspect_ratio=1.0, position="center".

API link: CenterPadToSquare

Example.
Create an augmenter that pads each image until its square, i.e. height
and width match.
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToSquare()

KeepSizeByResize

Resize images back to their input sizes after applying child augmenters.

Combining this with e.g. a cropping augmenter as the child will lead to
images being resized back to the input size after the crop operation was
applied. Some augmenters have a keep_size argument that achieves the
same goal (if set to True), though this augmenter offers control over
the interpolation mode and which augmentables to resize (images, heatmaps,
segmentation maps).

API link: KeepSizeByResize

Example.
Apply random cropping to input images, then resize them back to their
original input sizes. The resizing is done using this augmenter instead
of the corresponding internal resizing operation in Crop.

import imgaug.augmenters as iaa
aug = iaa.KeepSizeByResize(
 iaa.Crop((20, 40), keep_size=False)
)

[image: KeepSizeByResize + Crop]

Example.
Same as in the previous example, but images are now always resized using
nearest neighbour interpolation.

aug = iaa.KeepSizeByResize(
 iaa.Crop((20, 40), keep_size=False),
 interpolation="nearest"
)

[image: KeepSizeByResize with nearest neighbour interpolation + Crop]

Example.
Similar to the previous example, but images are now sometimes resized
using linear interpolation and sometimes using nearest neighbour
interpolation. Heatmaps are resized using the same interpolation as was
used for the corresponding image. Segmentation maps are not resized and
will therefore remain at their size after cropping.

aug = iaa.KeepSizeByResize(
 iaa.Crop((20, 40), keep_size=False),
 interpolation=["nearest", "cubic"],
 interpolation_heatmaps=iaa.KeepSizeByResize.SAME_AS_IMAGES,
 interpolation_segmaps=iaa.KeepSizeByResize.NO_RESIZE
)

[image: KeepSizeByResize for various augmentables]

augmenters.weather

Note

All examples below use the following input image:

[image: Landscape]

FastSnowyLandscape

Convert non-snowy landscapes to snowy ones.

This augmenter expects to get an image that roughly shows a landscape.

API link: FastSnowyLandscape

Example.
Search for all pixels in the image with a lightness value in HLS
colorspace of less than 140 and increase their lightness by a factor
of 2.5.

import imgaug.augmenters as iaa
aug = iaa.FastSnowyLandscape(
 lightness_threshold=140,
 lightness_multiplier=2.5
)

[image: FastSnowyLandscape]

Example.
Search for all pixels in the image with a lightness value in HLS
colorspace of less than 128 or less than 200 (one of these
values is picked per image) and multiply their lightness by a factor
of x with x being sampled from uniform(1.5, 3.5) (once per
image).

aug = iaa.FastSnowyLandscape(
 lightness_threshold=[128, 200],
 lightness_multiplier=(1.5, 3.5)
)

[image: FastSnowyLandscape with choice and uniform]

Example.
Similar to the previous example, but the lightness threshold is sampled
from uniform(100, 255) (per image) and the multiplier
from uniform(1.0, 4.0) (per image). This seems to produce good and
varied results.

aug = iaa.FastSnowyLandscape(
 lightness_threshold=(100, 255),
 lightness_multiplier=(1.0, 4.0)
)

[image: FastSnowyLandscape with uniform distributions]

Clouds

Add clouds to images.

This is a wrapper around CloudLayer. It executes 1 to 2 layers per
image, leading to varying densities and frequency patterns of clouds.

This augmenter seems to be fairly robust w.r.t. the image size. Tested
with 96x128, 192x256 and 960x1280.

API link: Clouds()

Example.
Create an augmenter that adds clouds to images:

import imgaug.augmenters as iaa
aug = iaa.Clouds()

[image: Clouds]

Fog

Add fog to images.

This is a wrapper around CloudLayer. It executes a single layer per
image with a configuration leading to fairly dense clouds with
low-frequency patterns.

This augmenter seems to be fairly robust w.r.t. the image size. Tested
with 96x128, 192x256 and 960x1280.

API link: Fog()

Example.
Create an augmenter that adds fog to images:

import imgaug.augmenters as iaa
aug = iaa.Fog()

[image: Fog]

CloudLayer

Add a single layer of clouds to an image.

API link: CloudLayer

Snowflakes

Add falling snowflakes to images.

This is a wrapper around SnowflakesLayer. It executes 1 to 3 layers
per image.

API link: Snowflakes()

Example.
Add snowflakes to small images (around 96x128):

import imgaug.augmenters as iaa
aug = iaa.Snowflakes(flake_size=(0.1, 0.4), speed=(0.01, 0.05))

[image: Snowflakes]

Example.
Add snowflakes to medium-sized images (around 192x256):

aug = iaa.Snowflakes(flake_size=(0.2, 0.7), speed=(0.007, 0.03))

Example.
Add snowflakes to large images (around 960x1280):

aug = iaa.Snowflakes(flake_size=(0.7, 0.95), speed=(0.001, 0.03))

SnowflakesLayer

Add a single layer of falling snowflakes to images.

API link: SnowflakesLayer

Rain

Add falling snowflakes to images.

This is a wrapper around
RainLayer. It executes 1 to 3
layers per image.

Note

This augmenter currently seems to work best for medium-sized images
around 192x256. For smaller images, you may want to increase the
speed value to e.g. (0.1, 0.3), otherwise the drops tend to
look like snowflakes. For larger images, you may want to increase
the drop_size to e.g. (0.10, 0.20).

API link: Rain

Example.
Add rain to small images (around 96x128):

import imgaug.augmenters as iaa
aug = iaa.Rain(speed=(0.1, 0.3))

[image: Rain]

Example.
Add rain to medium sized images (around 192x256):

aug = iaa.Rain()

Example.
Add rain to large images (around 960x1280):

aug = iaa.Rain(drop_size=(0.10, 0.20))

RainLayer

Add a single layer of falling raindrops to images.

API link: RainLayer

Performance

Below are performance measurements of each augmenter for image
augmentation (augment_images()), heatmap augmentation
(augment_heatmaps()) and keypoint/landmark augmentation
(augment_keypoints()). (Last updated for 0.3.0)

System: The numbers were computed based on a haswell-generation i7 3.2Ghz
CPU with DDR3 memory. That is a rather dated system by today’s standards.
A modern, high-end system should achieve higher bandwidths.

All experiments were conducted using python 3.7 and numpy 1.17.0. Note that
the precise python/numpy version can have significant impact on your
performance.

Experiments Settings: All augmenters were run with reasonable parameter
choices that should reflect expected real-world usage, while avoiding too
simple parameter values that would lead to inflated scores. Some parameter
choices are listed below, the remaining ones can be looked up in
measure_performance.py. Kernel sizes were all set to 3x3, unless
otherwise mentioned. The inputs focused on a small and large image-size
setting, using 64x64x3 and 224x224x3 as the respective sizes. The base
image was taken from skimage.data.astronaut [http://scikit-image.org/docs/dev/api/skimage.data.html#skimage.data.astronaut], which should be a representative
real-world image. Batch sizes of 1 and 128 were tested. Each augmenter
was run at least 40 times on the generated input and the average of the
measured runtimes was computed to derive bandwidth in mbit per second and th
raw number of augmented items (e.g. images) per second.

Results Overview

From the results, the following points can be derived.

Inputs:

	Use large batch sizes whenever possible. Many augmenters are significantly
faster with these.

	Large image sizes lead to higher throughput based on mbit/sec.
Smaller images lead to lower throughput, but significantly more
items/sec (roughly 4-10x more). Use small images whenever possible.

	For keypoint-based and heatmap-based augmentation, try to increase the
number of items per augmented instance. E.g. augment_keypoints() accepts
a list of KeypointsOnImage instances, with each such instance
representing the keypoints on an image. Try to place for each image all
keypoints in the respective KeypointsOnImage instance instead of
splitting them into multiple such instances (which would be more work
anyways). The same is true for bounding boxes, heatmaps and segmentation
maps.

	Keypoint- and heatmap-based inputs are only affected by augmenters that
change the geometry of the image (e.g. Crop or Affine). Other
augmenters are essentially free to execute as they do not perform any
changes.

	Keypoint-based augmentation is very fast for almost all augmenters,
reaching several 100k keypoints per second. Slower augmenters are
ElasticTransformation and PiecewiseAffine, as these currently have
to fall back to image-based algorithms.

Parameter choices:

	When possible, nearest neighbour interpolation or linear interpolation
should be used as these are significantly faster than other options. Most
augmenters that use interpolation offer either an order parameter
(0=nearest neighbour, 1=linear) or an interpolation parameter
(“nearest”, “linear”).

	Using keep_size=True is the default setting in all augmenters that
change image sizes. It is convenient, as it ensures that image sizes are
not altered by the augmentation. It does however incur a significant
performance penalty, often more than halving the bandwidth. Try
keep_size=False when possible. You can still resize images manually after
augmentation or by using KeepSizeByResize(Sequential(<augmenters>)).

	When augmenters offer modes to fill newly created pixels in user-defined
ways (e.g. pad_mode=constant in Pad to fill up all padded pixels
with a specified constant color), using edge instead of constant
will usually not incur a significant performance penalty.

Specific Augmenter suggestions:

	For augmenters where an elementwise sibling exists (e.g. Multiply and
MultiplyElementwise), the elementwise augmenter is usually significantly
slower than the non-elementwise one.

	If blurring is required, AverageBlur is the fastest choice, followed
by GaussianBlur.

	Augmenters that operate on coarser images (e.g. CoarseDropout vs
Dropout) can be significantly faster than their non-coarse siblings.

	Contrast normalizing augmenters are all comparable in performance, except
for histogram-based ones, which are significantly slower.

	PiecewiseAffine is a very slow augmenter and should usually be replaced
by ElasticTransformation, which achieves similar outputs and is quite a bit
faster.

	Superpixels is a fairly slow augmenter and should usually be wrapped in
e.g. Sometimes to not apply it very often and reduce its performance
impact.

	Weather augmenters other than FastSnowyLandscape are rather slow and
should only be used when sensible.

Images

Numbers below are for small images (64x64x3) and large
images (224x224x3). B=1 denotes a batch size of 1, B=128 one
of 128.

In mbit/sec:

	
	64x64x3, uint8

	224x224x3, uint8

	Augmenter

	B=1

	B=128

	B=1

	B=128

	Sequential (2xIdentity)

	1114.3

	24601.3

	9815.7

	41557.9

	Sequential (2xIdentity, random_order)

	903.3

	25450.9

	8697.9

	44898.0

	SomeOf (1-3, 3xIdentity)

	226.2

	3800.6

	2114.2

	5298.8

	SomeOf (1-3, 3xIdentity, random_order)

	220.9

	3717.7

	2037.7

	6109.3

	OneOf (3xIdentity)

	533.9

	7941.3

	4486.2

	9188.2

	Sometimes (Identity)

	367.3

	12894.4

	3763.7

	16674.9

	WithChannels ([1,2], Identity)

	541.2

	4932.7

	3668.9

	5067.2

	Identity

	1364.5

	26741.2

	11791.9

	41261.7

	Noop

	1341.4

	27020.1

	11611.5

	43892.6

	Lambda (return input)

	1262.1

	24919.0

	10837.8

	45355.8

	AssertLambda (return True)

	1244.8

	26346.3

	10864.2

	41681.0

	AssertShape (None, H, W, None)

	1068.8

	14590.1

	9860.2

	39299.2

	ChannelShuffle (0.5)

	418.4

	3159.3

	3285.1

	6240.3

	Add

	137.7

	595.5

	1972.4

	3917.6

	AddElementwise

	201.3

	307.5

	909.8

	1038.9

	AdditiveGaussianNoise

	167.5

	218.5

	695.9

	764.6

	AdditiveLaplaceNoise

	147.2

	185.2

	419.3

	446.9

	AdditivePoissonNoise

	122.5

	151.0

	294.5

	305.2

	Multiply

	240.3

	770.4

	2156.3

	4443.5

	MultiplyElementwise

	188.0

	276.9

	876.7

	972.0

	Cutout (1 iter, constant fill)

	151.0

	1288.6

	1723.9

	11726.9

	Dropout (1-5%)

	225.9

	353.6

	995.3

	1155.3

	CoarseDropout (1-5%, size=1-10%)

	133.4

	172.6

	1039.0

	1219.8

	Dropout2d (10%)

	324.1

	5696.8

	3569.2

	23901.3

	TotalDropout (10%)

	450.4

	19944.9

	4948.5

	39754.0

	ReplaceElementwise

	129.9

	161.9

	676.8

	760.5

	ImpulseNoise

	112.4

	135.2

	469.9

	499.1

	SaltAndPepper

	118.9

	141.1

	643.7

	711.4

	CoarseSaltAndPepper

	86.9

	98.6

	666.4

	725.9

	Salt

	99.8

	114.2

	590.8

	639.7

	CoarseSalt

	78.6

	86.5

	606.6

	659.1

	Pepper

	97.9

	105.7

	589.5

	640.8

	CoarsePepper

	78.7

	86.1

	605.5

	660.8

	Invert (10%)

	266.5

	5468.8

	2992.8

	22669.1

	JpegCompression (50-99%)

	81.9

	103.7

	420.6

	458.5

	Cartoon

	6.0

	5.8

	7.1

	6.6

	BlendAlpha (Identity)

	128.7

	402.0

	810.2

	993.7

	BlendAlphaElementwise (Identity)

	130.7

	207.0

	450.3

	453.7

	BlendAlphaSimplexNoise (Identity)

	24.7

	28.3

	175.4

	186.9

	BlendAlphaFrequencyNoise (Identity)

	33.2

	36.5

	210.8

	221.4

	BlendAlphaSomeColors (Identity)

	64.2

	161.0

	330.7

	450.6

	BlendAlphaHorizontalL.Grad. (Identity)

	87.5

	238.1

	416.3

	533.4

	BlendAlphaVerticalL.Grad. (Identity)

	87.9

	231.9

	407.5

	508.0

	BlendAlphaRegularGrid (Identity)

	85.0

	230.2

	398.7

	503.6

	BlendAlphaCheckerboard (Identity)

	86.0

	200.2

	399.0

	487.2

	GaussianBlur (sigma=(1,5))

	191.7

	532.7

	1528.9

	2530.2

	AverageBlur

	245.4

	1474.4

	2021.4

	4530.9

	MedianBlur

	129.8

	257.4

	267.7

	304.9

	BilateralBlur

	101.3

	269.3

	281.9

	346.3

	MotionBlur

	56.2

	64.1

	541.7

	579.6

	MeanShiftBlur

	1.4

	1.4

	1.3

	1.1

	RandAugment (n=2, m=(6,12))

	24.0

	128.1

	222.4

	488.9

	WithColorspace (HSV, Identity)

	291.6

	974.1

	1691.5

	2141.7

	WithBrightnessChannels (Identity)

	43.5

	736.9

	1097.9

	1605.2

	MultiplyAndAddToBrightness

	71.4

	251.4

	665.1

	1043.4

	MultiplyBrightness

	113.4

	396.8

	850.6

	1237.8

	AddToBrightness

	109.3

	347.8

	841.2

	1200.0

	WithHueAndSaturation

	168.1

	334.5

	687.6

	719.3

	MultiplyHueAndSaturation

	82.5

	152.1

	440.5

	481.0

	MultiplyHue

	74.3

	150.1

	438.3

	489.6

	MultiplySaturation

	57.6

	150.4

	442.1

	498.4

	RemoveSaturation

	70.9

	150.6

	433.1

	509.1

	AddToHueAndSaturation

	131.1

	443.1

	828.5

	1151.9

	AddToHue

	150.2

	455.8

	858.3

	1153.3

	AddToSaturation

	139.9

	460.5

	865.3

	1151.9

	ChangeColorspace (HSV)

	257.9

	923.8

	2258.6

	3962.7

	Grayscale

	143.1

	308.5

	632.4

	759.7

	KMeansColorQuantization (2-16 colors)

	30.3

	37.5

	183.5

	197.3

	UniformColorQuantization (2-16 colors)

	127.9

	354.5

	1512.0

	2601.1

	UniformColorQuant.NBits (1-7 bits)

	142.7

	357.3

	1508.6

	2575.1

	Posterize (1-7 bits)

	136.4

	356.7

	1506.4

	2579.3

	GammaContrast

	169.9

	304.3

	1832.4

	2471.9

	SigmoidContrast

	153.9

	234.2

	1551.7

	2046.2

	LogContrast

	183.9

	303.1

	1819.4

	2455.2

	LinearContrast

	214.2

	391.9

	2048.0

	2965.7

	AllChannelsHistogramEqualization

	519.5

	1559.9

	1858.7

	2271.9

	HistogramEqualization

	268.5

	892.9

	1470.4

	1801.0

	AllChannelsCLAHE

	112.9

	326.2

	878.5

	1475.8

	CLAHE

	112.7

	442.1

	824.7

	1446.8

	Convolve (3x3)

	430.6

	1442.0

	2833.3

	4043.5

	Sharpen

	176.7

	261.5

	1282.2

	1542.9

	Emboss

	176.9

	262.5

	1334.3

	1604.0

	EdgeDetect

	234.2

	392.3

	1696.6

	2056.0

	DirectedEdgeDetect

	90.3

	107.5

	827.8

	886.4

	Canny

	54.6

	103.9

	280.3

	349.6

	Fliplr (p=100%)

	446.1

	2507.3

	3359.3

	6261.2

	Flipud (p=100%)

	564.7

	9721.4

	5475.0

	13807.5

	Affine (order=0, constant)

	75.8

	255.3

	856.4

	1934.4

	Affine (order=1, constant)

	75.5

	236.2

	773.5

	1539.2

	Affine (order=3, constant)

	69.3

	194.6

	473.5

	680.5

	Affine (order=1, edge)

	68.1

	229.4

	744.3

	1493.8

	Affine (order=1, constant, skimage)

	39.2

	73.6

	180.0

	203.1

	PiecewiseAffine (4x4, order=1, constant)

	3.9

	4.3

	25.6

	25.4

	PiecewiseAffine (4x4, order=0, constant)

	4.3

	4.5

	30.6

	30.4

	PiecewiseAffine (4x4, order=1, edge)

	4.1

	4.4

	25.4

	25.3

	PiecewiseAffine (8x8, order=1, constant)

	0.9

	0.9

	8.4

	8.2

	PerspectiveTransform

	96.5

	473.9

	885.5

	1789.6

	PerspectiveTransform (keep_size)

	92.5

	313.1

	688.3

	1144.2

	ElasticTransformation (order=0, constant)

	82.5

	158.3

	543.1

	668.8

	ElasticTransformation (order=1, constant)

	80.6

	149.2

	499.7

	606.4

	ElasticTransformation (order=1, nearest)

	80.5

	150.1

	494.4

	606.1

	ElasticTransformation (order=1, reflect)

	81.5

	149.1

	500.4

	604.1

	Rot90

	273.5

	3981.3

	3416.2

	23912.1

	Rot90 (keep_size)

	265.8

	2193.9

	1983.7

	3528.7

	WithPolarWarping (Identity)

	259.1

	639.9

	948.2

	1076.6

	Jigsaw (rows/cols=(3,8), 1 step)

	62.5

	107.0

	728.7

	1119.5

	AveragePooling

	97.1

	175.8

	434.7

	506.6

	AveragePooling (keep_size)

	91.1

	148.5

	392.8

	461.7

	MaxPooling

	100.7

	187.6

	460.6

	545.0

	MaxPooling (keep_size)

	92.7

	158.6

	431.4

	493.4

	MinPooling

	102.7

	187.6

	467.5

	549.5

	MinPooling (keep_size)

	95.1

	157.5

	426.1

	501.6

	MedianPooling

	94.3

	171.6

	557.5

	690.0

	MedianPooling (keep_size)

	90.1

	146.4

	513.8

	612.0

	imgcorruptlike.GaussianNoise((1,5))

	70.9

	130.5

	180.7

	191.7

	imgcorruptlike.ShotNoise((1,5))

	52.0

	68.0

	83.9

	85.6

	imgcorruptlike.ImpulseNoise((1,5))

	62.6

	89.1

	143.0

	150.0

	imgcorruptlike.SpeckleNoise((1,5))

	81.5

	130.8

	175.4

	187.9

	imgcorruptlike.GaussianBlur((1,5))

	72.0

	114.9

	195.8

	215.4

	imgcorruptlike.GlassBlur((1,5))

	2.0

	2.3

	2.1

	2.2

	imgcorruptlike.DefocusBlur((1,5))

	56.8

	82.6

	134.5

	136.4

	imgcorruptlike.MotionBlur((1,5))

	19.2

	22.6

	62.5

	62.6

	imgcorruptlike.ZoomBlur((1,5))

	8.0

	9.1

	11.6

	11.3

	imgcorruptlike.Fog((1,5))

	33.1

	50.9

	171.0

	178.4

	imgcorruptlike.Frost((1,5))

	10.0

	11.2

	113.2

	116.8

	imgcorruptlike.Snow((1,5))

	26.1

	29.3

	68.9

	67.8

	imgcorruptlike.Spatter((1,5))

	54.2

	69.0

	135.7

	141.3

	imgcorruptlike.Contrast((1,5))

	113.7

	206.4

	364.7

	420.1

	imgcorruptlike.Brightness((1,5))

	38.1

	46.2

	48.1

	54.2

	imgcorruptlike.Saturate((1,5))

	34.7

	46.0

	48.4

	54.0

	imgcorruptlike.JpegCompression((1,5))

	82.7

	165.2

	473.9

	549.1

	imgcorruptlike.Pixelate((1,5))

	141.5

	321.1

	1013.5

	1443.7

	imgcorruptlike.ElasticTransform((1,5))

	36.1

	44.1

	56.2

	58.6

	pillike.Solarize (p=1.0)

	183.2

	843.5

	1801.5

	4531.2

	pillike.Posterize (1-7 bits)

	120.7

	360.9

	1449.0

	2578.7

	pillike.Equalize

	163.9

	288.2

	1349.4

	1651.2

	pillike.Autocontrast

	69.5

	98.6

	748.8

	860.6

	pillike.EnhanceColor

	190.3

	587.5

	937.4

	1223.3

	pillike.EnhanceContrast

	164.2

	370.0

	842.4

	1048.7

	pillike.EnhanceBrightness

	212.9

	630.2

	1017.1

	1318.0

	pillike.EnhanceSharpness

	178.8

	422.3

	590.4

	685.5

	pillike.FilterBlur

	233.6

	375.4

	459.2

	484.6

	pillike.FilterSmooth

	327.7

	588.8

	911.2

	1006.7

	pillike.FilterSmoothMore

	250.2

	374.5

	465.4

	483.8

	pillike.FilterEdgeEnhance

	288.4

	530.9

	817.9

	890.3

	pillike.FilterEdgeEnhanceMore

	293.1

	523.0

	791.9

	854.0

	pillike.FilterFindEdges

	297.9

	530.3

	756.3

	817.9

	pillike.FilterContour

	285.2

	523.1

	746.7

	803.2

	pillike.FilterEmboss

	282.2

	586.0

	910.7

	1000.1

	pillike.FilterSharpen

	256.6

	579.5

	868.7

	945.4

	pillike.FilterDetail

	304.5

	586.4

	880.1

	970.5

	pillike.Affine

	66.3

	302.8

	709.5

	1787.3

	Superpixels (max_size=64, cubic)

	9.4

	10.4

	118.4

	121.8

	Superpixels (max_size=64, linear)

	9.9

	10.4

	118.7

	122.6

	Superpixels (max_size=128, linear)

	8.0

	10.6

	49.5

	49.2

	Superpixels (max_size=224, linear)

	7.6

	10.6

	19.5

	19.1

	UniformVoronoi
(250-1000k points, linear)

	2.7

	3.6

	12.1

	12.0

	RegularGridVoronoi
(16-31 rows/cols)

	3.5

	3.6

	12.0

	12.1

	RelativeRegularGridVoronoi
(7%-14% rows/cols)

	3.7

	3.7

	4.0

	4.0

	Resize (nearest)

	186.3

	735.5

	1988.3

	4347.1

	Resize (linear)

	176.0

	629.9

	1537.8

	2701.5

	Resize (cubic)

	177.0

	559.4

	1187.7

	1804.3

	CropAndPad

	118.9

	700.3

	1422.4

	5080.6

	CropAndPad (edge)

	118.9

	705.6

	1449.5

	5085.0

	CropAndPad (keep_size)

	104.7

	376.3

	1018.1

	1863.5

	Crop

	153.0

	1293.5

	1974.8

	8596.2

	Crop (keep_size)

	130.8

	501.6

	1275.2

	2401.9

	Pad

	122.2

	678.8

	1384.0

	4678.5

	Pad (edge)

	118.7

	683.5

	1390.6

	4572.7

	Pad (keep_size)

	101.6

	371.7

	954.2

	1708.9

	PadToFixedSize

	130.8

	916.5

	1653.7

	5908.8

	CropToFixedSize

	228.9

	3102.1

	2756.7

	11098.3

	KeepSizeByResize
(CropToFixedSize(nearest))

	139.8

	880.7

	1471.7

	3604.7

	KeepSizeByResize
(CropToFixedSize(linear))

	134.2

	761.3

	1230.6

	2456.9

	KeepSizeByResize
(CropToFixedSize(cubic))

	133.0

	660.3

	1002.8

	1682.4

	FastSnowyLandscape

	116.8

	243.5

	483.0

	542.8

	Clouds

	16.9

	20.3

	61.7

	61.1

	Fog

	31.3

	33.9

	98.3

	99.5

	CloudLayer

	30.7

	33.0

	99.1

	98.9

	Snowflakes

	14.2

	15.1

	91.3

	85.5

	SnowflakesLayer

	28.5

	30.3

	173.5

	173.2

	Rain

	11.1

	11.6

	58.5

	54.2

	RainLayer

	22.0

	23.5

	110.4

	112.1

In images/sec:

	
	64x64x3, uint8

	224x224x3, uint8

	Augmenter

	B=1

	B=128

	B=1

	B=128

	Sequential (2xIdentity)

	11885.5

	262413.9

	8547.0

	36186.5

	Sequential (2xIdentity, random_order)

	9635.6

	271476.0

	7573.7

	39094.8

	SomeOf (1-3, 3xIdentity)

	2412.6

	40539.6

	1840.9

	4613.9

	SomeOf (1-3, 3xIdentity, random_order)

	2356.3

	39655.4

	1774.3

	5319.7

	OneOf (3xIdentity)

	5695.0

	84707.6

	3906.3

	8000.6

	Sometimes (Identity)

	3917.9

	137540.7

	3277.2

	14519.7

	WithChannels ([1,2], Identity)

	5772.9

	52615.6

	3194.7

	4412.2

	Identity

	14554.8

	285239.9

	10267.7

	35928.5

	Noop

	14308.5

	288214.7

	10110.7

	38219.4

	Lambda (return input)

	13462.3

	265802.2

	9437.0

	39493.5

	AssertLambda (return True)

	13277.6

	281027.4

	9460.0

	36293.6

	AssertShape (None, H, W, None)

	11400.9

	155628.0

	8585.7

	34219.7

	ChannelShuffle (0.5)

	4462.7

	33699.4

	2860.5

	5433.8

	Add

	1468.7

	6351.5

	1717.5

	3411.2

	AddElementwise

	2147.0

	3279.9

	792.2

	904.6

	AdditiveGaussianNoise

	1787.2

	2330.6

	605.9

	665.8

	AdditiveLaplaceNoise

	1570.5

	1975.4

	365.1

	389.2

	AdditivePoissonNoise

	1306.5

	1610.3

	256.5

	265.7

	Multiply

	2563.5

	8217.8

	1877.6

	3869.2

	MultiplyElementwise

	2005.8

	2953.5

	763.4

	846.4

	Cutout (1 iter, constant fill)

	1611.1

	13745.5

	1501.1

	10211.1

	Dropout (1-5%)

	2409.4

	3771.3

	866.7

	1006.0

	CoarseDropout (1-5%, size=1-10%)

	1423.1

	1840.8

	904.7

	1062.1

	Dropout2d (10%)

	3457.4

	60765.5

	3107.9

	20812.0

	TotalDropout (10%)

	4804.7

	212745.7

	4308.9

	34615.7

	ReplaceElementwise

	1385.7

	1727.3

	589.3

	662.2

	ImpulseNoise

	1199.5

	1442.0

	409.2

	434.6

	SaltAndPepper

	1267.9

	1504.9

	560.5

	619.4

	CoarseSaltAndPepper

	926.8

	1051.4

	580.3

	632.1

	Salt

	1064.4

	1218.0

	514.5

	557.0

	CoarseSalt

	838.3

	923.2

	528.2

	573.9

	Pepper

	1043.9

	1127.7

	513.3

	558.0

	CoarsePepper

	839.9

	918.5

	527.3

	575.4

	Invert (10%)

	2842.5

	58334.2

	2606.0

	19739.1

	JpegCompression (50-99%)

	873.3

	1106.0

	366.2

	399.3

	Cartoon

	64.0

	61.6

	6.2

	5.8

	BlendAlpha (Identity)

	1373.3

	4288.0

	705.5

	865.3

	BlendAlphaElementwise (Identity)

	1393.6

	2207.6

	392.1

	395.1

	BlendAlphaSimplexNoise (Identity)

	263.7

	302.2

	152.8

	162.7

	BlendAlphaFrequencyNoise (Identity)

	354.2

	389.8

	183.6

	192.8

	BlendAlphaSomeColors (Identity)

	684.8

	1717.7

	288.0

	392.4

	BlendAlphaHorizontalL.Grad. (Identity)

	933.1

	2539.4

	362.5

	464.4

	BlendAlphaVerticalL.Grad. (Identity)

	937.3

	2473.5

	354.8

	442.3

	BlendAlphaRegularGrid (Identity)

	906.5

	2455.6

	347.2

	438.5

	BlendAlphaCheckerboard (Identity)

	917.6

	2135.5

	347.4

	424.2

	GaussianBlur (sigma=(1,5))

	2045.3

	5681.7

	1331.3

	2203.2

	AverageBlur

	2617.3

	15727.3

	1760.1

	3945.2

	MedianBlur

	1384.8

	2745.8

	233.1

	265.5

	BilateralBlur

	1080.3

	2872.0

	245.5

	301.5

	MotionBlur

	599.6

	683.8

	471.6

	504.7

	MeanShiftBlur

	15.3

	14.5

	1.1

	1.0

	RandAugment (n=2, m=(6,12))

	255.7

	1366.3

	193.7

	425.7

	WithColorspace (HSV, Identity)

	3110.5

	10389.9

	1472.9

	1864.8

	WithBrightnessChannels (Identity)

	464.3

	7860.5

	956.0

	1397.7

	MultiplyAndAddToBrightness

	761.1

	2682.0

	579.1

	908.5

	MultiplyBrightness

	1209.1

	4232.3

	740.7

	1077.8

	AddToBrightness

	1165.7

	3710.0

	732.5

	1044.9

	WithHueAndSaturation

	1793.2

	3568.3

	598.7

	626.3

	MultiplyHueAndSaturation

	880.0

	1622.2

	383.5

	418.8

	MultiplyHue

	792.7

	1601.0

	381.6

	426.3

	MultiplySaturation

	614.6

	1604.2

	384.9

	434.0

	RemoveSaturation

	756.1

	1606.7

	377.1

	443.3

	AddToHueAndSaturation

	1398.0

	4726.3

	721.5

	1003.0

	AddToHue

	1602.0

	4862.4

	747.3

	1004.3

	AddToSaturation

	1491.8

	4912.4

	753.4

	1003.0

	ChangeColorspace (HSV)

	2750.6

	9853.8

	1966.7

	3450.5

	Grayscale

	1526.8

	3290.8

	550.6

	661.5

	KMeansColorQuantization (2-16 colors)

	323.3

	400.4

	159.7

	171.8

	UniformColorQuantization (2-16 colors)

	1364.2

	3781.6

	1316.6

	2264.9

	UniformColorQuant.NBits (1-7 bits)

	1521.9

	3811.1

	1313.6

	2242.3

	Posterize (1-7 bits)

	1455.0

	3805.0

	1311.7

	2245.9

	GammaContrast

	1812.4

	3245.3

	1595.6

	2152.4

	SigmoidContrast

	1641.5

	2498.6

	1351.1

	1781.8

	LogContrast

	1962.1

	3233.2

	1584.2

	2137.8

	LinearContrast

	2285.2

	4180.7

	1783.3

	2582.4

	AllChannelsHistogramEqualization

	5540.9

	16639.1

	1618.4

	1978.2

	HistogramEqualization

	2863.9

	9524.3

	1280.3

	1568.2

	AllChannelsCLAHE

	1204.0

	3480.0

	765.0

	1285.1

	CLAHE

	1202.2

	4716.2

	718.1

	1259.8

	Convolve (3x3)

	4593.4

	15381.1

	2467.1

	3520.9

	Sharpen

	1885.1

	2789.7

	1116.5

	1343.5

	Emboss

	1887.4

	2799.9

	1161.9

	1396.6

	EdgeDetect

	2497.6

	4184.9

	1477.3

	1790.2

	DirectedEdgeDetect

	963.3

	1146.6

	720.8

	771.8

	Canny

	582.2

	1108.6

	244.0

	304.4

	Fliplr (p=100%)

	4758.0

	26744.7

	2925.1

	5452.0

	Flipud (p=100%)

	6023.3

	103695.3

	4767.3

	12022.8

	Affine (order=0, constant)

	808.8

	2723.2

	745.7

	1684.4

	Affine (order=1, constant)

	805.8

	2519.9

	673.5

	1340.2

	Affine (order=3, constant)

	739.2

	2075.6

	412.3

	592.5

	Affine (order=1, edge)

	726.5

	2447.5

	648.1

	1300.7

	Affine (order=1, constant, skimage)

	417.8

	785.3

	156.7

	176.8

	PiecewiseAffine (4x4, order=1, constant)

	41.9

	46.4

	22.3

	22.1

	PiecewiseAffine (4x4, order=0, constant)

	45.4

	47.9

	26.7

	26.5

	PiecewiseAffine (4x4, order=1, edge)

	43.6

	46.4

	22.1

	22.1

	PiecewiseAffine (8x8, order=1, constant)

	9.6

	10.0

	7.3

	7.2

	PerspectiveTransform

	1029.6

	5054.7

	771.1

	1558.3

	PerspectiveTransform (keep_size)

	986.5

	3340.2

	599.4

	996.3

	ElasticTransformation (order=0, constant)

	880.3

	1688.1

	472.9

	582.4

	ElasticTransformation (order=1, constant)

	859.3

	1591.7

	435.1

	528.0

	ElasticTransformation (order=1, nearest)

	858.2

	1601.2

	430.5

	527.7

	ElasticTransformation (order=1, reflect)

	868.9

	1590.0

	435.7

	526.0

	Rot90

	2917.1

	42467.5

	2974.6

	20821.4

	Rot90 (keep_size)

	2835.5

	23402.1

	1727.3

	3072.6

	WithPolarWarping (Identity)

	2764.2

	6825.5

	825.7

	937.4

	Jigsaw (rows/cols=(3,8), 1 step)

	666.4

	1141.2

	634.5

	974.8

	AveragePooling

	1035.7

	1875.7

	378.5

	441.2

	AveragePooling (keep_size)

	971.3

	1584.3

	342.0

	402.0

	MaxPooling

	1074.4

	2000.8

	401.1

	474.5

	MaxPooling (keep_size)

	988.8

	1691.9

	375.7

	429.7

	MinPooling

	1095.3

	2000.8

	407.1

	478.5

	MinPooling (keep_size)

	1014.9

	1679.8

	371.0

	436.7

	MedianPooling

	1006.0

	1830.6

	485.5

	600.8

	MedianPooling (keep_size)

	961.1

	1561.4

	447.4

	532.9

	imgcorruptlike.GaussianNoise((1,5))

	756.7

	1391.8

	157.4

	166.9

	imgcorruptlike.ShotNoise((1,5))

	554.9

	725.7

	73.0

	74.5

	imgcorruptlike.ImpulseNoise((1,5))

	667.6

	950.0

	124.5

	130.6

	imgcorruptlike.SpeckleNoise((1,5))

	869.7

	1395.3

	152.7

	163.6

	imgcorruptlike.GaussianBlur((1,5))

	768.0

	1225.9

	170.5

	187.6

	imgcorruptlike.GlassBlur((1,5))

	21.7

	25.0

	1.8

	1.9

	imgcorruptlike.DefocusBlur((1,5))

	606.1

	881.0

	117.1

	118.8

	imgcorruptlike.MotionBlur((1,5))

	204.5

	241.3

	54.5

	54.6

	imgcorruptlike.ZoomBlur((1,5))

	85.7

	97.2

	10.1

	9.9

	imgcorruptlike.Fog((1,5))

	352.7

	543.3

	148.9

	155.3

	imgcorruptlike.Frost((1,5))

	107.0

	120.0

	98.6

	101.7

	imgcorruptlike.Snow((1,5))

	278.7

	312.6

	60.0

	59.1

	imgcorruptlike.Spatter((1,5))

	578.1

	735.7

	118.1

	123.0

	imgcorruptlike.Contrast((1,5))

	1212.6

	2201.8

	317.5

	365.8

	imgcorruptlike.Brightness((1,5))

	406.3

	493.3

	41.9

	47.2

	imgcorruptlike.Saturate((1,5))

	369.8

	490.8

	42.1

	47.1

	imgcorruptlike.JpegCompression((1,5))

	882.6

	1761.9

	412.6

	478.1

	imgcorruptlike.Pixelate((1,5))

	1509.0

	3425.1

	882.5

	1257.1

	imgcorruptlike.ElasticTransform((1,5))

	384.6

	470.0

	48.9

	51.0

	pillike.Solarize (p=1.0)

	1954.2

	8997.3

	1568.6

	3945.5

	pillike.Posterize (1-7 bits)

	1288.0

	3849.2

	1261.7

	2245.4

	pillike.Equalize

	1748.5

	3074.6

	1175.0

	1437.8

	pillike.Autocontrast

	741.4

	1052.1

	652.0

	749.3

	pillike.EnhanceColor

	2029.5

	6266.6

	816.2

	1065.2

	pillike.EnhanceContrast

	1751.2

	3946.7

	733.6

	913.2

	pillike.EnhanceBrightness

	2271.3

	6722.4

	885.6

	1147.7

	pillike.EnhanceSharpness

	1907.0

	4504.8

	514.1

	596.9

	pillike.FilterBlur

	2491.3

	4004.4

	399.8

	422.0

	pillike.FilterSmooth

	3495.0

	6280.4

	793.5

	876.6

	pillike.FilterSmoothMore

	2669.2

	3995.1

	405.2

	421.2

	pillike.FilterEdgeEnhance

	3076.8

	5662.9

	712.2

	775.2

	pillike.FilterEdgeEnhanceMore

	3126.6

	5579.1

	689.6

	743.6

	pillike.FilterFindEdges

	3177.4

	5656.8

	658.6

	712.2

	pillike.FilterContour

	3042.2

	5580.0

	650.2

	699.4

	pillike.FilterEmboss

	3010.1

	6251.0

	793.0

	870.8

	pillike.FilterSharpen

	2737.3

	6181.6

	756.4

	823.2

	pillike.FilterDetail

	3248.1

	6255.5

	766.3

	845.1

	pillike.Affine

	707.5

	3229.4

	617.8

	1556.3

	Superpixels (max_size=64, cubic)

	100.2

	111.0

	103.1

	106.1

	Superpixels (max_size=64, linear)

	106.0

	111.4

	103.4

	106.7

	Superpixels (max_size=128, linear)

	84.9

	112.9

	43.1

	42.8

	Superpixels (max_size=224, linear)

	81.6

	113.1

	17.0

	16.7

	UniformVoronoi
(250-1000k points, linear)

	28.4

	38.8

	10.5

	10.4

	RegularGridVoronoi
(16-31 rows/cols)

	37.7

	38.7

	10.4

	10.5

	RelativeRegularGridVoronoi
(7%-14% rows/cols)

	39.2

	39.0

	3.4

	3.5

	Resize (nearest)

	1987.7

	7844.9

	1731.3

	3785.2

	Resize (linear)

	1877.8

	6718.6

	1339.0

	2352.3

	Resize (cubic)

	1887.5

	5966.6

	1034.2

	1571.1

	CropAndPad

	1268.3

	7470.3

	1238.6

	4423.9

	CropAndPad (edge)

	1268.3

	7526.5

	1262.1

	4427.7

	CropAndPad (keep_size)

	1117.2

	4013.7

	886.5

	1622.6

	Crop

	1632.5

	13797.2

	1719.6

	7485.2

	Crop (keep_size)

	1395.5

	5350.3

	1110.3

	2091.5

	Pad

	1303.7

	7240.5

	1205.1

	4073.8

	Pad (edge)

	1266.5

	7290.4

	1210.8

	3981.6

	Pad (keep_size)

	1084.1

	3964.9

	830.9

	1488.0

	PadToFixedSize

	1394.9

	9776.5

	1439.9

	5145.1

	CropToFixedSize

	2441.5

	33089.5

	2400.4

	9663.8

	KeepSizeByResize
(CropToFixedSize(nearest))

	1491.3

	9393.7

	1281.5

	3138.8

	KeepSizeByResize
(CropToFixedSize(linear))

	1431.7

	8121.0

	1071.5

	2139.3

	KeepSizeByResize
(CropToFixedSize(cubic))

	1418.5

	7043.0

	873.2

	1464.9

	FastSnowyLandscape

	1246.1

	2597.6

	420.6

	472.6

	Clouds

	180.6

	216.2

	53.7

	53.2

	Fog

	334.1

	361.5

	85.6

	86.7

	CloudLayer

	327.1

	352.4

	86.3

	86.2

	Snowflakes

	151.5

	161.2

	79.5

	74.5

	SnowflakesLayer

	304.2

	323.6

	151.1

	150.8

	Rain

	118.4

	123.9

	50.9

	47.2

	RainLayer

	234.6

	251.1

	96.1

	97.6

Heatmaps

Numbers below are for heatmaps on large images, i.e. 224x224x3. Smaller
images were skipped for brevity. The heatmaps themselves can be
small (64x64xN) or large (224x224xN), with N denoting the number
of heatmaps per HeatmapsOnImage instance (i.e. the number of channels in
the heatmaps array), for which below 1 and 5 are used. B=1 denotes
a batch size of 1 , B=128 one of 128.

mbit/sec for 64x64x5 or 224x224x5 heatmaps on 224x224x3 images:

	
	64x64x5 on 224x224x3

	224x224x5 on 224x224x3

	Augmenter

	B=1

	B=128

	B=1

	B=128

	Sequential (2xIdentity)

	1184.9

	5580.5

	10238.2

	18880.1

	Sequential (2xIdentity, random_order)

	1104.8

	5543.8

	9429.3

	18711.0

	SomeOf (1-3, 3xIdentity)

	720.2

	5165.0

	6854.4

	18491.2

	SomeOf (1-3, 3xIdentity, random_order)

	706.3

	5160.3

	6742.9

	18378.7

	OneOf (3xIdentity)

	1025.9

	5388.7

	9095.4

	18752.7

	Sometimes (Identity)

	831.1

	5479.9

	7836.0

	18087.9

	WithChannels ([1,2], Identity)

	901.2

	2622.7

	6464.3

	7555.7

	Identity

	1329.3

	5606.5

	10585.6

	18165.5

	Noop

	1351.5

	5611.4

	10479.4

	18100.9

	Lambda (return input)

	1297.5

	5567.3

	10284.4

	18183.9

	AssertLambda (return True)

	1300.8

	5567.1

	10235.6

	18390.9

	AssertShape (None, H, W, None)

	1271.6

	5431.1

	10001.8

	18122.9

	ChannelShuffle (0.5)

	1351.2

	5589.4

	10447.6

	18398.7

	Add

	1360.6

	5590.4

	10432.7

	18313.5

	AddElementwise

	1361.6

	5640.5

	10443.3

	18461.2

	AdditiveGaussianNoise

	1351.0

	5616.6

	10528.6

	18322.0

	AdditiveLaplaceNoise

	1362.5

	5568.4

	10364.0

	18428.9

	AdditivePoissonNoise

	1359.3

	5620.1

	10447.9

	18302.7

	Multiply

	1349.5

	5619.9

	10354.5

	18464.5

	MultiplyElementwise

	1351.1

	5580.9

	10203.0

	18475.7

	Cutout (1 iter, constant fill)

	1349.3

	5584.4

	10434.1

	18855.2

	Dropout (1-5%)

	1371.0

	5635.7

	10357.0

	18710.0

	CoarseDropout (1-5%, size=1-10%)

	1344.5

	5618.2

	10530.4

	18843.6

	Dropout2d (10%)

	859.7

	5068.6

	7527.2

	18211.5

	TotalDropout (10%)

	965.1

	5453.2

	8083.1

	17953.0

	ReplaceElementwise

	1359.0

	5603.3

	10451.3

	18728.0

	ImpulseNoise

	1359.5

	5602.0

	10516.4

	18677.8

	SaltAndPepper

	1352.8

	5635.6

	10447.3

	18837.6

	CoarseSaltAndPepper

	1356.7

	5614.1

	10310.9

	18774.5

	Salt

	1348.9

	5576.4

	10497.3

	18706.0

	CoarseSalt

	1339.5

	5584.0

	10521.0

	18413.7

	Pepper

	1365.9

	5583.9

	10475.6

	18299.0

	CoarsePepper

	1352.6

	6526.4

	10546.9

	18453.0

	Invert (10%)

	1364.9

	6532.4

	10436.1

	18373.2

	JpegCompression (50-99%)

	1366.4

	6563.1

	10513.6

	18392.1

	Cartoon

	1340.7

	6543.2

	10352.2

	18300.8

	BlendAlpha (Identity)

	662.3

	2880.4

	5086.3

	11840.4

	BlendAlphaElementwise (Identity)

	298.6

	451.2

	1251.4

	1356.3

	BlendAlphaSimplexNoise (Identity)

	100.7

	122.9

	800.4

	890.9

	BlendAlphaFrequencyNoise (Identity)

	125.3

	147.0

	882.5

	973.2

	BlendAlphaSomeColors (Identity)

	n/a

	n/a

	n/a

	n/a

	BlendAlphaHorizontalL.Grad. (Identity)

	259.0

	534.5

	1243.2

	1467.4

	BlendAlphaVerticalL.Grad. (Identity)

	253.6

	491.5

	1219.2

	1435.7

	BlendAlphaRegularGrid (Identity)

	242.7

	479.7

	1200.4

	1430.1

	BlendAlphaCheckerboard (Identity)

	246.2

	461.2

	1212.2

	1406.5

	GaussianBlur (sigma=(1,5))

	1274.8

	6491.3

	10490.6

	26259.7

	AverageBlur

	1266.5

	6470.4

	10485.1

	26336.5

	MedianBlur

	1274.3

	6516.3

	10496.8

	26060.9

	BilateralBlur

	1277.1

	6503.2

	10455.4

	26262.4

	MotionBlur

	1261.7

	6515.3

	10305.2

	26288.1

	MeanShiftBlur

	1285.3

	6645.9

	10363.5

	26386.9

	RandAugment (n=2, m=(6,12))

	n/a

	n/a

	n/a

	n/a

	WithColorspace (HSV, Identity)

	1185.0

	6766.3

	10008.5

	26301.1

	WithBrightnessChannels (Identity)

	1192.7

	6776.9

	10012.8

	26110.1

	MultiplyAndAddToBrightness

	1072.6

	6750.4

	9290.9

	26234.2

	MultiplyBrightness

	1176.3

	6767.6

	9863.5

	26148.5

	AddToBrightness

	1117.8

	6759.0

	9902.6

	26310.4

	WithHueAndSaturation

	1152.0

	6768.5

	10050.7

	26305.8

	MultiplyHueAndSaturation

	1170.8

	6808.5

	9967.6

	26312.0

	MultiplyHue

	868.0

	3343.3

	6367.6

	9554.2

	MultiplySaturation

	861.3

	3353.0

	6426.9

	9911.0

	RemoveSaturation

	875.9

	3337.8

	6363.9

	10280.3

	AddToHueAndSaturation

	1304.3

	6766.2

	10446.2

	18294.3

	AddToHue

	1339.0

	6785.4

	10526.2

	18075.2

	AddToSaturation

	1336.5

	6799.2

	10456.1

	18036.2

	ChangeColorspace (HSV)

	1278.9

	6776.7

	10554.9

	17845.5

	Grayscale

	1298.5

	6832.6

	10475.2

	17750.9

	KMeansColorQuantization (2-16 colors)

	1285.0

	6794.2

	10472.9

	17924.0

	UniformColorQuantization (2-16 colors)

	1286.6

	6813.7

	10553.4

	17893.7

	UniformColorQuant.NBits (1-7 bits)

	1309.5

	6819.9

	10343.9

	18027.2

	Posterize (1-7 bits)

	1357.7

	6843.1

	10515.6

	17936.6

	GammaContrast

	1337.8

	6800.4

	10495.7

	18009.0

	SigmoidContrast

	1337.0

	6806.4

	10466.6

	17873.3

	LogContrast

	1344.0

	6762.3

	10463.7

	17979.1

	LinearContrast

	1349.4

	6793.7

	10413.8

	17880.6

	AllChannelsHistogramEqualization

	1365.5

	6783.6

	10488.7

	17966.1

	HistogramEqualization

	1364.7

	6801.1

	10477.2

	18043.7

	AllChannelsCLAHE

	1330.2

	6800.5

	10415.1

	18008.3

	CLAHE

	1372.3

	6833.8

	10539.7

	18011.7

	Convolve (3x3)

	1356.2

	6806.5

	10419.5

	17923.5

	Sharpen

	1339.8

	6799.7

	10392.9

	17963.2

	Emboss

	1354.7

	6767.9

	10413.8

	17964.7

	EdgeDetect

	1368.3

	6769.3

	10518.3

	18015.8

	DirectedEdgeDetect

	1358.6

	6795.3

	10466.6

	17960.0

	Canny

	1344.4

	6789.5

	10480.2

	17991.9

	Fliplr (p=100%)

	1064.6

	6145.1

	8835.8

	17531.4

	Flipud (p=100%)

	1080.3

	6538.2

	8888.0

	17864.5

	Affine (order=0, constant)

	255.7

	654.9

	1134.6

	1380.3

	Affine (order=1, constant)

	264.3

	654.2

	1139.9

	1380.2

	Affine (order=3, constant)

	262.5

	654.2

	1129.1

	1379.6

	Affine (order=1, edge)

	260.1

	654.5

	1137.4

	1382.3

	Affine (order=1, constant, skimage)

	161.4

	267.1

	372.0

	396.9

	PiecewiseAffine (4x4, order=1, constant)

	19.3

	20.6

	51.5

	51.9

	PiecewiseAffine (4x4, order=0, constant)

	19.5

	20.4

	51.0

	51.9

	PiecewiseAffine (4x4, order=1, edge)

	19.4

	20.4

	51.3

	52.1

	PiecewiseAffine (8x8, order=1, constant)

	5.6

	5.6

	31.3

	31.8

	PerspectiveTransform

	258.5

	925.1

	1411.7

	2010.3

	PerspectiveTransform (keep_size)

	225.5

	603.7

	1094.5

	1435.9

	ElasticTransformation (order=0, constant)

	69.4

	97.6

	1217.6

	1466.5

	ElasticTransformation (order=1, constant)

	70.5

	97.6

	1204.3

	1469.5

	ElasticTransformation (order=1, nearest)

	70.0

	96.1

	1211.0

	1471.5

	ElasticTransformation (order=1, reflect)

	70.3

	96.0

	1215.7

	1442.0

	Rot90

	748.1

	5247.6

	7075.9

	24324.3

	Rot90 (keep_size)

	574.6

	2012.9

	3971.2

	6407.7

	WithPolarWarping (Identity)

	622.5

	1869.3

	2621.8

	2846.1

	Jigsaw (rows/cols=(3,8), 1 step)

	117.7

	171.8

	1500.0

	1745.7

	AveragePooling

	516.2

	1850.0

	4782.4

	11003.4

	AveragePooling (keep_size)

	1243.4

	6670.4

	10415.7

	18658.7

	MaxPooling

	528.5

	1844.9

	4879.3

	11378.2

	MaxPooling (keep_size)

	1274.8

	6704.8

	10582.7

	18947.4

	MinPooling

	521.7

	1871.9

	4895.7

	11346.4

	MinPooling (keep_size)

	1273.7

	6721.3

	10444.5

	18924.3

	MedianPooling

	523.9

	1870.4

	4888.3

	11389.8

	MedianPooling (keep_size)

	1265.8

	6728.4

	10477.3

	19011.2

	imgcorruptlike.GaussianNoise((1,5))

	1279.1

	6750.4

	10470.0

	19034.0

	imgcorruptlike.ShotNoise((1,5))

	1277.7

	6764.5

	10524.5

	19094.6

	imgcorruptlike.ImpulseNoise((1,5))

	1252.8

	6745.3

	10458.3

	18995.2

	imgcorruptlike.SpeckleNoise((1,5))

	1262.7

	6708.5

	10519.9

	19177.5

	imgcorruptlike.GaussianBlur((1,5))

	1271.5

	6695.1

	10375.6

	19022.0

	imgcorruptlike.GlassBlur((1,5))

	1279.0

	6740.8

	10482.6

	19049.7

	imgcorruptlike.DefocusBlur((1,5))

	1264.1

	6725.7

	10457.5

	19217.5

	imgcorruptlike.MotionBlur((1,5))

	1285.1

	6735.1

	10389.7

	19075.6

	imgcorruptlike.ZoomBlur((1,5))

	1281.2

	6754.2

	10308.4

	19113.0

	imgcorruptlike.Fog((1,5))

	1277.6

	6663.9

	10386.9

	19102.4

	imgcorruptlike.Frost((1,5))

	1280.2

	6737.7

	10449.3

	19018.7

	imgcorruptlike.Snow((1,5))

	1264.4

	6732.5

	10613.1

	19058.9

	imgcorruptlike.Spatter((1,5))

	1248.5

	6735.6

	10394.4

	19034.4

	imgcorruptlike.Contrast((1,5))

	1251.7

	6737.4

	10483.9

	19127.2

	imgcorruptlike.Brightness((1,5))

	1266.7

	6748.6

	10519.9

	19071.4

	imgcorruptlike.Saturate((1,5))

	1270.4

	6771.8

	10566.0

	19137.2

	imgcorruptlike.JpegCompression((1,5))

	1256.7

	6735.9

	10589.2

	19063.4

	imgcorruptlike.Pixelate((1,5))

	1282.2

	6739.7

	10463.6

	19135.8

	imgcorruptlike.ElasticTransform((1,5))

	1255.9

	6715.8

	10436.7

	19070.7

	pillike.Solarize (p=1.0)

	1274.0

	6747.8

	10415.5

	19055.4

	pillike.Posterize (1-7 bits)

	1278.4

	6738.6

	10475.7

	19121.8

	pillike.Equalize

	1274.1

	6758.1

	10450.9

	18984.7

	pillike.Autocontrast

	1259.0

	6723.7

	10419.1

	19153.8

	pillike.EnhanceColor

	1272.0

	6719.8

	10397.4

	19100.6

	pillike.EnhanceContrast

	1257.2

	6720.5

	10479.4

	19114.6

	pillike.EnhanceBrightness

	1267.2

	6732.6

	10512.5

	19060.7

	pillike.EnhanceSharpness

	1241.9

	6735.0

	10433.6

	19169.2

	pillike.FilterBlur

	1259.5

	6661.7

	10495.7

	19037.5

	pillike.FilterSmooth

	1247.8

	6718.1

	10483.4

	19175.0

	pillike.FilterSmoothMore

	1240.1

	6690.4

	10318.6

	19040.7

	pillike.FilterEdgeEnhance

	1265.3

	6717.4

	10390.9

	19204.5

	pillike.FilterEdgeEnhanceMore

	1270.1

	6728.4

	10098.6

	19124.4

	pillike.FilterFindEdges

	1266.7

	6751.5

	10353.5

	19197.6

	pillike.FilterContour

	1249.3

	6694.9

	10333.1

	19034.4

	pillike.FilterEmboss

	1267.5

	6767.2

	10476.8

	19171.0

	pillike.FilterSharpen

	1271.6

	6737.6

	10398.5

	19048.9

	pillike.FilterDetail

	1281.0

	6780.6

	10496.7

	19178.6

	pillike.Affine

	n/a

	n/a

	n/a

	n/a

	Superpixels (max_size=64, cubic)

	1295.0

	6561.1

	10527.2

	19141.9

	Superpixels (max_size=64, linear)

	1257.2

	6569.5

	10486.4

	19180.4

	Superpixels (max_size=128, linear)

	1260.1

	6512.3

	10486.7

	19117.8

	Superpixels (max_size=224, linear)

	1280.0

	6589.3

	10361.3

	19276.4

	UniformVoronoi
(250-1000k points, linear)

	1289.5

	6565.9

	10375.7

	19086.6

	RegularGridVoronoi
(16-31 rows/cols)

	1284.1

	6565.6

	10567.1

	19060.5

	RelativeRegularGridVoronoi
(7%-14% rows/cols)

	1282.7

	6580.6

	10424.6

	19091.2

	Resize (nearest)

	485.9

	1426.2

	3312.5

	5714.1

	Resize (linear)

	500.5

	1344.2

	3064.6

	5086.9

	Resize (cubic)

	492.0

	1267.1

	2730.4

	4282.9

	CropAndPad

	417.4

	1488.9

	2927.0

	5460.7

	CropAndPad (edge)

	414.1

	1486.4

	2919.0

	5424.1

	CropAndPad (keep_size)

	337.4

	855.3

	1956.8

	2668.5

	Crop

	529.6

	2379.2

	5026.1

	13314.0

	Crop (keep_size)

	406.8

	1097.0

	2568.4

	4182.3

	Pad

	405.3

	1367.0

	2601.9

	4112.4

	Pad (edge)

	402.4

	1365.7

	2615.3

	4084.5

	Pad (keep_size)

	329.1

	801.9

	1703.2

	2199.6

	PadToFixedSize

	441.9

	1683.2

	2947.0

	5516.7

	CropToFixedSize

	630.4

	2987.1

	5543.8

	14467.0

	KeepSizeByResize
(CropToFixedSize(nearest))

	402.9

	1293.7

	2947.5

	5232.6

	KeepSizeByResize
(CropToFixedSize(linear))

	398.9

	1223.9

	2707.1

	4705.7

	KeepSizeByResize
(CropToFixedSize(cubic))

	395.7

	1160.9

	2440.0

	4000.6

	FastSnowyLandscape

	1266.6

	6468.7

	10481.2

	27221.8

	Clouds

	719.1

	5982.0

	6979.2

	26382.3

	Fog

	1284.1

	6527.3

	10390.2

	27196.8

	CloudLayer

	1268.0

	6527.0

	10328.0

	27134.4

	Snowflakes

	717.6

	5974.3

	6852.2

	26335.0

	SnowflakesLayer

	1282.2

	6503.1

	10732.7

	27190.9

	Rain

	723.3

	5951.5

	6901.8

	26338.2

	RainLayer

	1189.0

	6438.2

	10457.1

	26940.0

Number of heatmap instances per sec for 64x64x5 or 224x224x5 heatmaps on 224x224x3 images:

	
	64x64x5 on 224x224x3

	224x224x5 on 224x224x3

	Augmenter

	B=1

	B=128

	B=1

	B=128

	Sequential (2xIdentity)

	9479.6

	44643.9

	6686.2

	12329.9

	Sequential (2xIdentity, random_order)

	8838.1

	44350.4

	6157.9

	12219.4

	SomeOf (1-3, 3xIdentity)

	5761.4

	41319.8

	4476.3

	12075.9

	SomeOf (1-3, 3xIdentity, random_order)

	5650.8

	41282.8

	4403.5

	12002.4

	OneOf (3xIdentity)

	8207.1

	43109.2

	5939.9

	12246.6

	Sometimes (Identity)

	6648.8

	43839.3

	5117.4

	11812.5

	WithChannels ([1,2], Identity)

	7209.9

	20981.2

	4221.6

	4934.3

	Identity

	10634.7

	44851.8

	6913.0

	11863.2

	Noop

	10812.0

	44891.4

	6843.7

	11821.0

	Lambda (return input)

	10379.6

	44538.3

	6716.4

	11875.2

	AssertLambda (return True)

	10406.7

	44536.9

	6684.5

	12010.4

	AssertShape (None, H, W, None)

	10172.8

	43448.8

	6531.8

	11835.3

	ChannelShuffle (0.5)

	10809.8

	44715.3

	6822.9

	12015.4

	Add

	10884.9

	44723.0

	6813.2

	11959.8

	AddElementwise

	10892.6

	45124.3

	6820.1

	12056.3

	AdditiveGaussianNoise

	10807.8

	44932.5

	6875.8

	11965.4

	AdditiveLaplaceNoise

	10899.7

	44547.2

	6768.3

	12035.2

	AdditivePoissonNoise

	10874.6

	44960.6

	6823.1

	11952.8

	Multiply

	10796.3

	44959.0

	6762.1

	12058.5

	MultiplyElementwise

	10808.7

	44647.6

	6663.2

	12065.8

	Cutout (1 iter, constant fill)

	10794.6

	44675.1

	6814.1

	12313.6

	Dropout (1-5%)

	10967.9

	45085.7

	6763.8

	12218.8

	CoarseDropout (1-5%, size=1-10%)

	10756.2

	44945.9

	6877.0

	12306.0

	Dropout2d (10%)

	6877.6

	40548.7

	4915.7

	11893.2

	TotalDropout (10%)

	7721.0

	43625.5

	5278.8

	11724.4

	ReplaceElementwise

	10871.7

	44826.6

	6825.3

	12230.5

	ImpulseNoise

	10875.7

	44816.0

	6867.9

	12197.7

	SaltAndPepper

	10822.3

	45085.0

	6822.7

	12302.1

	CoarseSaltAndPepper

	10853.6

	44912.4

	6733.7

	12260.9

	Salt

	10791.0

	44611.6

	6855.3

	12216.2

	CoarseSalt

	10716.2

	44671.6

	6870.8

	12025.3

	Pepper

	10927.1

	44671.0

	6841.2

	11950.4

	CoarsePepper

	10821.1

	52210.9

	6887.8

	12050.9

	Invert (10%)

	10919.3

	52259.6

	6815.4

	11998.8

	JpegCompression (50-99%)

	10931.5

	52505.0

	6866.0

	12011.2

	Cartoon

	10725.2

	52345.4

	6760.6

	11951.6

	BlendAlpha (Identity)

	5298.2

	23043.2

	3321.7

	7732.5

	BlendAlphaElementwise (Identity)

	2388.4

	3609.9

	817.2

	885.7

	BlendAlphaSimplexNoise (Identity)

	805.7

	983.0

	522.7

	581.8

	BlendAlphaFrequencyNoise (Identity)

	1002.4

	1175.6

	576.3

	635.6

	BlendAlphaSomeColors (Identity)

	n/a

	n/a

	n/a

	n/a

	BlendAlphaHorizontalL.Grad. (Identity)

	2072.0

	4275.7

	811.9

	958.3

	BlendAlphaVerticalL.Grad. (Identity)

	2029.2

	3931.6

	796.2

	937.6

	BlendAlphaRegularGrid (Identity)

	1941.8

	3837.9

	784.0

	933.9

	BlendAlphaCheckerboard (Identity)

	1969.7

	3689.2

	791.6

	918.6

	GaussianBlur (sigma=(1,5))

	10198.4

	51930.5

	6851.0

	17149.2

	AverageBlur

	10132.1

	51763.5

	6847.4

	17199.4

	MedianBlur

	10194.0

	52130.6

	6855.1

	17019.4

	BilateralBlur

	10216.7

	52025.7

	6828.0

	17151.0

	MotionBlur

	10093.6

	52122.1

	6730.0

	17167.8

	MeanShiftBlur

	10282.4

	53167.2

	6768.0

	17232.3

	RandAugment (n=2, m=(6,12))

	n/a

	n/a

	n/a

	n/a

	WithColorspace (HSV, Identity)

	9479.7

	54130.4

	6536.1

	17176.2

	WithBrightnessChannels (Identity)

	9541.3

	54215.5

	6539.0

	17051.5

	MultiplyAndAddToBrightness

	8581.1

	54003.0

	6067.5

	17132.6

	MultiplyBrightness

	9410.6

	54140.9

	6441.5

	17076.6

	AddToBrightness

	8942.4

	54072.0

	6467.0

	17182.3

	WithHueAndSaturation

	9215.7

	54148.2

	6563.7

	17179.3

	MultiplyHueAndSaturation

	9366.5

	54467.8

	6509.5

	17183.4

	MultiplyHue

	6943.9

	26746.8

	4158.4

	6239.5

	MultiplySaturation

	6890.2

	26823.7

	4197.1

	6472.5

	RemoveSaturation

	7006.9

	26702.7

	4156.0

	6713.7

	AddToHueAndSaturation

	10434.8

	54129.4

	6822.0

	11947.3

	AddToHue

	10711.8

	54283.0

	6874.2

	11804.2

	AddToSaturation

	10692.0

	54393.9

	6828.5

	11778.8

	ChangeColorspace (HSV)

	10231.2

	54213.2

	6893.0

	11654.2

	Grayscale

	10387.7

	54661.1

	6841.0

	11592.4

	KMeansColorQuantization (2-16 colors)

	10280.3

	54353.4

	6839.4

	11705.5

	UniformColorQuantization (2-16 colors)

	10292.9

	54509.9

	6892.0

	11685.7

	UniformColorQuant.NBits (1-7 bits)

	10476.1

	54559.5

	6755.2

	11772.9

	Posterize (1-7 bits)

	10861.3

	54744.7

	6867.4

	11713.7

	GammaContrast

	10702.7

	54403.1

	6854.3

	11761.0

	SigmoidContrast

	10696.1

	54451.1

	6835.3

	11672.4

	LogContrast

	10751.8

	54098.5

	6833.4

	11741.5

	LinearContrast

	10795.1

	54349.9

	6800.9

	11677.1

	AllChannelsHistogramEqualization

	10924.1

	54268.6

	6849.7

	11733.0

	HistogramEqualization

	10917.2

	54409.1

	6842.2

	11783.6

	AllChannelsCLAHE

	10641.3

	54403.8

	6801.7

	11760.6

	CLAHE

	10978.3

	54670.0

	6883.1

	11762.7

	Convolve (3x3)

	10849.8

	54451.7

	6804.5

	11705.1

	Sharpen

	10718.5

	54397.6

	6787.2

	11731.0

	Emboss

	10838.0

	54143.0

	6800.8

	11732.0

	EdgeDetect

	10946.7

	54154.6

	6869.1

	11765.4

	DirectedEdgeDetect

	10868.6

	54362.6

	6835.3

	11729.0

	Canny

	10755.1

	54316.1

	6844.2

	11749.8

	Fliplr (p=100%)

	8516.7

	49161.0

	5770.3

	11449.1

	Flipud (p=100%)

	8642.8

	52305.2

	5804.4

	11666.6

	Affine (order=0, constant)

	2045.6

	5238.8

	741.0

	901.4

	Affine (order=1, constant)

	2114.6

	5233.6

	744.4

	901.3

	Affine (order=3, constant)

	2100.4

	5233.6

	737.4

	901.0

	Affine (order=1, edge)

	2080.8

	5236.2

	742.8

	902.7

	Affine (order=1, constant, skimage)

	1291.6

	2137.1

	242.9

	259.2

	PiecewiseAffine (4x4, order=1, constant)

	154.3

	164.8

	33.6

	33.9

	PiecewiseAffine (4x4, order=0, constant)

	155.8

	163.5

	33.3

	33.9

	PiecewiseAffine (4x4, order=1, edge)

	155.2

	163.4

	33.5

	34.0

	PiecewiseAffine (8x8, order=1, constant)

	44.8

	44.9

	20.4

	20.7

	PerspectiveTransform

	2068.0

	7401.0

	921.9

	1312.8

	PerspectiveTransform (keep_size)

	1804.2

	4829.3

	714.8

	937.7

	ElasticTransformation (order=0, constant)

	555.2

	780.9

	795.2

	957.7

	ElasticTransformation (order=1, constant)

	564.2

	780.9

	786.5

	959.7

	ElasticTransformation (order=1, nearest)

	559.9

	769.1

	790.9

	961.0

	ElasticTransformation (order=1, reflect)

	562.3

	768.3

	793.9

	941.7

	Rot90

	5985.0

	41980.6

	4621.0

	15885.2

	Rot90 (keep_size)

	4596.8

	16103.2

	2593.4

	4184.6

	WithPolarWarping (Identity)

	4979.9

	14954.7

	1712.2

	1858.7

	Jigsaw (rows/cols=(3,8), 1 step)

	941.8

	1374.1

	979.6

	1140.1

	AveragePooling

	4129.7

	14799.8

	3123.2

	7185.9

	AveragePooling (keep_size)

	9947.3

	53363.1

	6802.1

	12185.3

	MaxPooling

	4227.7

	14759.2

	3186.5

	7430.7

	MaxPooling (keep_size)

	10198.2

	53638.1

	6911.1

	12373.8

	MinPooling

	4173.4

	14975.5

	3197.2

	7409.9

	MinPooling (keep_size)

	10189.7

	53770.8

	6820.9

	12358.7

	MedianPooling

	4191.0

	14963.4

	3192.3

	7438.3

	MedianPooling (keep_size)

	10126.2

	53827.5

	6842.3

	12415.4

	imgcorruptlike.GaussianNoise((1,5))

	10233.1

	54003.5

	6837.6

	12430.4

	imgcorruptlike.ShotNoise((1,5))

	10221.4

	54116.1

	6873.2

	12469.9

	imgcorruptlike.ImpulseNoise((1,5))

	10022.6

	53962.0

	6829.9

	12405.0

	imgcorruptlike.SpeckleNoise((1,5))

	10101.6

	53668.1

	6870.1

	12524.1

	imgcorruptlike.GaussianBlur((1,5))

	10172.3

	53560.8

	6775.9

	12422.5

	imgcorruptlike.GlassBlur((1,5))

	10231.6

	53926.2

	6845.8

	12440.6

	imgcorruptlike.DefocusBlur((1,5))

	10112.5

	53805.7

	6829.4

	12550.2

	imgcorruptlike.MotionBlur((1,5))

	10280.8

	53881.1

	6785.1

	12457.6

	imgcorruptlike.ZoomBlur((1,5))

	10249.5

	54033.7

	6732.0

	12481.9

	imgcorruptlike.Fog((1,5))

	10220.8

	53311.2

	6783.3

	12475.1

	imgcorruptlike.Frost((1,5))

	10241.5

	53901.9

	6824.1

	12420.4

	imgcorruptlike.Snow((1,5))

	10115.0

	53859.8

	6931.0

	12446.7

	imgcorruptlike.Spatter((1,5))

	9988.2

	53884.5

	6788.2

	12430.6

	imgcorruptlike.Contrast((1,5))

	10013.3

	53899.3

	6846.6

	12491.3

	imgcorruptlike.Brightness((1,5))

	10133.9

	53989.0

	6870.2

	12454.8

	imgcorruptlike.Saturate((1,5))

	10163.1

	54174.7

	6900.2

	12497.8

	imgcorruptlike.JpegCompression((1,5))

	10053.6

	53886.8

	6915.4

	12449.6

	imgcorruptlike.Pixelate((1,5))

	10257.9

	53917.3

	6833.4

	12496.9

	imgcorruptlike.ElasticTransform((1,5))

	n/a

	n/a

	n/a

	n/a

	pillike.Solarize (p=1.0)

	10192.1

	53982.3

	6802.0

	12444.3

	pillike.Posterize (1-7 bits)

	10227.5

	53909.2

	6841.3

	12487.7

	pillike.Equalize

	10192.7

	54064.7

	6825.1

	12398.2

	pillike.Autocontrast

	10071.7

	53789.6

	6804.3

	12508.6

	pillike.EnhanceColor

	10176.0

	53758.3

	6790.1

	12473.9

	pillike.EnhanceContrast

	10057.3

	53764.1

	6843.7

	12483.0

	pillike.EnhanceBrightness

	10137.6

	53860.6

	6865.3

	12447.8

	pillike.EnhanceSharpness

	9935.5

	53879.9

	6813.8

	12518.6

	pillike.FilterBlur

	10075.9

	53293.9

	6854.4

	12432.7

	pillike.FilterSmooth

	9982.0

	53744.7

	6846.3

	12522.5

	pillike.FilterSmoothMore

	9920.8

	53523.5

	6738.7

	12434.8

	pillike.FilterEdgeEnhance

	10122.4

	53739.0

	6785.9

	12541.7

	pillike.FilterEdgeEnhanceMore

	10161.0

	53826.9

	6595.0

	12489.4

	pillike.FilterFindEdges

	10133.6

	54011.7

	6761.5

	12537.2

	pillike.FilterContour

	9994.2

	53559.4

	6748.1

	12430.6

	pillike.FilterEmboss

	10139.8

	54137.7

	6842.0

	12519.8

	pillike.FilterSharpen

	10172.6

	53900.8

	6790.9

	12440.1

	pillike.FilterDetail

	10248.3

	54244.5

	6855.0

	12524.8

	pillike.Affine

	n/a

	n/a

	n/a

	n/a

	Superpixels (max_size=64, cubic)

	10359.8

	52488.8

	6874.9

	12500.8

	Superpixels (max_size=64, linear)

	10057.4

	52556.2

	6848.3

	12526.0

	Superpixels (max_size=128, linear)

	10080.4

	52098.7

	6848.5

	12485.1

	Superpixels (max_size=224, linear)

	10239.8

	52714.2

	6766.6

	12588.7

	UniformVoronoi
(250-1000k points, linear)

	10315.7

	52527.3

	6775.9

	12464.7

	RegularGridVoronoi
(16-31 rows/cols)

	10273.0

	52524.5

	6901.0

	12447.7

	RelativeRegularGridVoronoi
(7%-14% rows/cols)

	10261.5

	52644.6

	6807.9

	12467.7

	Resize (nearest)

	3887.2

	11409.5

	2163.3

	3731.6

	Resize (linear)

	4004.2

	10753.6

	2001.4

	3322.1

	Resize (cubic)

	3936.0

	10136.8

	1783.1

	2797.0

	CropAndPad

	3339.4

	11911.4

	1911.5

	3566.2

	CropAndPad (edge)

	3312.9

	11891.2

	1906.3

	3542.2

	CropAndPad (keep_size)

	2699.4

	6842.7

	1277.9

	1742.7

	Crop

	4236.7

	19033.3

	3282.4

	8694.9

	Crop (keep_size)

	3254.2

	8776.2

	1677.3

	2731.3

	Pad

	3242.5

	10935.9

	1699.2

	2685.6

	Pad (edge)

	3219.3

	10925.4

	1708.0

	2667.4

	Pad (keep_size)

	2633.0

	6415.0

	1112.3

	1436.5

	PadToFixedSize

	3535.1

	13465.6

	1924.5

	3602.7

	CropToFixedSize

	5043.4

	23896.6

	3620.4

	9447.9

	KeepSizeByResize
(CropToFixedSize(nearest))

	3223.5

	10349.5

	1924.9

	3417.2

	KeepSizeByResize
(CropToFixedSize(linear))

	3191.6

	9791.4

	1767.9

	3073.1

	KeepSizeByResize
(CropToFixedSize(cubic))

	3165.5

	9287.2

	1593.5

	2612.6

	FastSnowyLandscape

	10132.9

	51749.5

	6844.8

	17777.5

	Clouds

	5753.1

	47856.2

	4557.8

	17229.3

	Fog

	10272.6

	52218.0

	6785.4

	17761.2

	CloudLayer

	10143.9

	52216.4

	6744.8

	17720.4

	Snowflakes

	5740.8

	47794.5

	4474.9

	17198.4

	SnowflakesLayer

	10257.8

	52025.2

	7009.1

	17757.3

	Rain

	5786.5

	47612.3

	4507.3

	17200.5

	RainLayer

	9512.3

	51505.4

	6829.1

	17593.5

Keypoints and Bounding Boxes

Numbers below are for keypoints on small and large images.
Each KeypointsOnImage instance contained 10 Keypoint instances.
B=1 denotes a batch size of 1 , B=128 one of 128.

The numbers for bounding boxes can be derived by dividing each value by 4.

Number of augmented Keypoint instances per sec (divide by 10 for KeypointsOnImage instances):

	
	10 KPs on 224x224x3

	Augmenter

	B=1

	B=128

	Sequential (2xIdentity)

	37012.5

	1082118.9

	Sequential (2xIdentity, random_order)

	29576.2

	1018050.4

	SomeOf (1-3, 3xIdentity)

	14592.0

	524940.8

	SomeOf (1-3, 3xIdentity, random_order)

	14223.8

	518189.2

	OneOf (3xIdentity)

	26817.8

	734837.0

	Sometimes (Identity)

	18553.2

	818134.7

	WithChannels ([1,2], Identity)

	33973.0

	569703.3

	Identity

	42157.2

	1072697.7

	Noop

	42000.7

	1069077.8

	Lambda (return input)

	38945.8

	1036321.0

	AssertLambda (return True)

	37957.5

	1032700.9

	AssertShape (None, H, W, None)

	34536.2

	805366.0

	ChannelShuffle (0.5)

	41079.3

	1064524.5

	Add

	41118.5

	1065848.9

	AddElementwise

	40655.1

	1059295.9

	AdditiveGaussianNoise

	40977.6

	1048931.1

	AdditiveLaplaceNoise

	40870.1

	1064200.9

	AdditivePoissonNoise

	40427.3

	1056247.5

	Multiply

	40921.6

	1054364.0

	MultiplyElementwise

	40417.9

	1065871.4

	Cutout (1 iter, constant fill)

	41902.8

	1063992.8

	Dropout (1-5%)

	40515.3

	1052003.2

	CoarseDropout (1-5%, size=1-10%)

	40723.5

	1057345.9

	Dropout2d (10%)

	15761.6

	460892.5

	TotalDropout (10%)

	19089.1

	817259.6

	ReplaceElementwise

	40863.7

	996760.1

	ImpulseNoise

	41210.6

	983126.4

	SaltAndPepper

	42135.2

	993933.0

	CoarseSaltAndPepper

	41175.5

	1003854.8

	Salt

	41061.6

	1001330.9

	CoarseSalt

	40894.0

	988559.6

	Pepper

	41267.4

	1006313.5

	CoarsePepper

	41782.6

	1005808.2

	Invert (10%)

	41179.3

	1013027.7

	JpegCompression (50-99%)

	41222.5

	1002183.3

	Cartoon

	41742.7

	1016170.7

	BlendAlpha (Identity)

	13638.3

	231006.1

	BlendAlphaElementwise (Identity)

	7628.0

	15529.5

	BlendAlphaSimplexNoise (Identity)

	1805.8

	2281.7

	BlendAlphaFrequencyNoise (Identity)

	2417.1

	2942.4

	BlendAlphaSomeColors (Identity)

	n/a

	n/a

	BlendAlphaHorizontalL.Grad. (Identity)

	6762.3

	24122.5

	BlendAlphaVerticalL.Grad. (Identity)

	6420.3

	19841.8

	BlendAlphaRegularGrid (Identity)

	6007.6

	18590.6

	BlendAlphaCheckerboard (Identity)

	6039.8

	16668.2

	GaussianBlur (sigma=(1,5))

	40927.0

	1086402.0

	AverageBlur

	41359.6

	1067578.3

	MedianBlur

	41554.1

	1071704.2

	BilateralBlur

	41461.5

	1077808.8

	MotionBlur

	41110.4

	1076676.1

	MeanShiftBlur

	41129.7

	1062169.5

	RandAugment (n=2, m=(6,12))

	n/a

	n/a

	WithColorspace (HSV, Identity)

	36815.8

	1046132.3

	WithBrightnessChannels (Identity)

	36561.2

	1039062.1

	MultiplyAndAddToBrightness

	28022.1

	964196.3

	MultiplyBrightness

	35559.8

	1017404.7

	AddToBrightness

	35527.7

	1022234.8

	WithHueAndSaturation

	35777.0

	1024870.5

	MultiplyHueAndSaturation

	35910.5

	1021646.0

	MultiplyHue

	29659.9

	592502.1

	MultiplySaturation

	28923.3

	600158.0

	RemoveSaturation

	29378.7

	598766.6

	AddToHueAndSaturation

	40986.2

	1119725.2

	AddToHue

	41381.9

	1103111.1

	AddToSaturation

	41058.4

	1114935.0

	ChangeColorspace (HSV)

	40768.4

	1117990.4

	Grayscale

	41099.1

	1100846.1

	KMeansColorQuantization (2-16 colors)

	42215.3

	1103010.2

	UniformColorQuantization (2-16 colors)

	41109.3

	1112418.4

	UniformColorQuant.NBits (1-7 bits)

	41959.8

	1096977.3

	Posterize (1-7 bits)

	41053.5

	1095550.6

	GammaContrast

	41231.7

	1080049.3

	SigmoidContrast

	40382.1

	1100256.5

	LogContrast

	40291.1

	1106150.6

	LinearContrast

	41104.0

	1107891.5

	AllChannelsHistogramEqualization

	40714.5

	1080249.2

	HistogramEqualization

	41734.9

	1090530.2

	AllChannelsCLAHE

	41319.9

	1100346.7

	CLAHE

	41405.8

	1114551.1

	Convolve (3x3)

	41350.9

	1102244.4

	Sharpen

	40292.7

	1104893.9

	Emboss

	41969.9

	1100852.1

	EdgeDetect

	40670.9

	1103836.8

	DirectedEdgeDetect

	40743.0

	1106445.4

	Canny

	40905.1

	1091215.8

	Fliplr (p=100%)

	23140.1

	706230.7

	Flipud (p=100%)

	23031.6

	699545.0

	Affine (order=0, constant)

	6562.1

	33646.8

	Affine (order=1, constant)

	6531.6

	33854.2

	Affine (order=3, constant)

	6551.7

	33967.8

	Affine (order=1, edge)

	6539.0

	34790.0

	Affine (order=1, constant, skimage)

	6545.8

	34800.9

	PiecewiseAffine (4x4, order=1, constant)

	124.5

	128.0

	PiecewiseAffine (4x4, order=0, constant)

	124.9

	125.9

	PiecewiseAffine (4x4, order=1, edge)

	124.5

	126.0

	PiecewiseAffine (8x8, order=1, constant)

	56.8

	57.1

	PerspectiveTransform

	7538.8

	65378.6

	PerspectiveTransform (keep_size)

	6866.2

	34643.2

	ElasticTransformation (order=0, constant)

	1443.7

	1698.9

	ElasticTransformation (order=1, constant)

	1403.2

	1699.2

	ElasticTransformation (order=1, nearest)

	1387.6

	1703.0

	ElasticTransformation (order=1, reflect)

	1438.2

	1724.1

	Rot90

	15168.5

	332321.6

	Rot90 (keep_size)

	14909.9

	326491.3

	WithPolarWarping (Identity)

	15354.0

	103429.7

	Jigsaw (rows/cols=(3,8), 1 step)

	5414.4

	11859.6

	AveragePooling

	10527.7

	58352.0

	AveragePooling (keep_size)

	40770.0

	1077687.6

	MaxPooling

	10744.3

	57821.0

	MaxPooling (keep_size)

	40547.7

	1083825.7

	MinPooling

	10595.1

	57142.4

	MinPooling (keep_size)

	40991.0

	1081313.9

	MedianPooling

	10725.2

	57799.0

	MedianPooling (keep_size)

	40305.6

	1084803.9

	imgcorruptlike.GaussianNoise((1,5))

	40730.9

	1087593.4

	imgcorruptlike.ShotNoise((1,5))

	41105.6

	1074974.5

	imgcorruptlike.ImpulseNoise((1,5))

	40888.7

	1092987.1

	imgcorruptlike.SpeckleNoise((1,5))

	40711.9

	1070581.5

	imgcorruptlike.GaussianBlur((1,5))

	40999.5

	1082354.5

	imgcorruptlike.GlassBlur((1,5))

	41458.0

	1080668.9

	imgcorruptlike.DefocusBlur((1,5))

	40992.6

	1078547.8

	imgcorruptlike.MotionBlur((1,5))

	42025.0

	1043556.9

	imgcorruptlike.ZoomBlur((1,5))

	40322.1

	1090790.9

	imgcorruptlike.Fog((1,5))

	41586.4

	1074558.5

	imgcorruptlike.Frost((1,5))

	40853.3

	1090004.7

	imgcorruptlike.Snow((1,5))

	40003.9

	1086178.6

	imgcorruptlike.Spatter((1,5))

	41532.1

	1076336.5

	imgcorruptlike.Contrast((1,5))

	40690.3

	1089199.7

	imgcorruptlike.Brightness((1,5))

	41673.2

	1078498.0

	imgcorruptlike.Saturate((1,5))

	40142.6

	1082613.8

	imgcorruptlike.JpegCompression((1,5))

	41298.2

	1090813.8

	imgcorruptlike.Pixelate((1,5))

	40576.9

	1078943.8

	imgcorruptlike.ElasticTransform((1,5))

	n/a

	n/a

	pillike.Solarize (p=1.0)

	40884.9

	1050872.0

	pillike.Posterize (1-7 bits)

	41180.4

	1079403.7

	pillike.Equalize

	40595.3

	1093551.1

	pillike.Autocontrast

	40986.2

	1083557.4

	pillike.EnhanceColor

	41340.6

	1095687.7

	pillike.EnhanceContrast

	41217.6

	1082945.4

	pillike.EnhanceBrightness

	41036.4

	1084161.3

	pillike.EnhanceSharpness

	41666.4

	1102461.7

	pillike.FilterBlur

	40530.9

	1093928.5

	pillike.FilterSmooth

	41571.7

	1092077.1

	pillike.FilterSmoothMore

	40467.9

	1099664.6

	pillike.FilterEdgeEnhance

	40796.9

	1084941.3

	pillike.FilterEdgeEnhanceMore

	41247.9

	1092474.1

	pillike.FilterFindEdges

	41696.2

	1096042.6

	pillike.FilterContour

	40493.4

	1092456.3

	pillike.FilterEmboss

	41637.7

	1099112.3

	pillike.FilterSharpen

	41646.0

	1098764.4

	pillike.FilterDetail

	40681.9

	1104490.8

	pillike.Affine

	n/a

	n/a

	Superpixels (max_size=64, cubic)

	42058.7

	1086970.3

	Superpixels (max_size=64, linear)

	40705.6

	1090370.0

	Superpixels (max_size=128, linear)

	41916.8

	1093384.5

	Superpixels (max_size=224, linear)

	41026.1

	1056588.1

	UniformVoronoi
(250-1000k points, linear)

	41827.0

	1070845.2

	RegularGridVoronoi
(16-31 rows/cols)

	40995.0

	1074150.0

	RelativeRegularGridVoronoi
(7%-14% rows/cols)

	41378.2

	1109759.1

	Resize (nearest)

	11282.7

	53402.6

	Resize (linear)

	11297.8

	53518.4

	Resize (cubic)

	11210.7

	52994.5

	CropAndPad

	8939.7

	79988.7

	CropAndPad (edge)

	8870.1

	79660.3

	CropAndPad (keep_size)

	7565.8

	33852.5

	Crop

	10042.0

	80279.6

	Crop (keep_size)

	8376.0

	34519.8

	Pad

	8946.2

	79155.3

	Pad (edge)

	8950.1

	79899.8

	Pad (keep_size)

	7589.9

	34261.0

	PadToFixedSize

	10459.6

	255851.2

	CropToFixedSize

	13165.0

	269638.4

	KeepSizeByResize
(CropToFixedSize(nearest))

	8923.0

	55861.6

	KeepSizeByResize
(CropToFixedSize(linear))

	8876.8

	55959.4

	KeepSizeByResize
(CropToFixedSize(cubic))

	8877.9

	56122.5

	FastSnowyLandscape

	39966.1

	1080643.5

	Clouds

	14326.3

	548492.1

	Fog

	41600.9

	1069986.2

	CloudLayer

	40820.5

	1085618.5

	Snowflakes

	14110.5

	536123.0

	SnowflakesLayer

	40336.6

	1086376.4

	Rain

	13720.2

	533951.5

	RainLayer

	40263.1

	1086607.3

dtype support

The function augment_images(), which all augmenters in imgaug offer,
works by default with numpy arrays. In most cases, these arrays will have the numpy dtype uint8,
i.e. the images will have values in the range [0, 255]. This is the datatype returned by
most image loading functions. Sometimes however you may want to augment other datatypes,
e.g. float64. While all augmenters support uint8, the support for other datatypes varies.
The tables further below show which datatype is supported by which augmenter (alongside the dtype
support in some helper functions). The API of each augmenter may contain more details.

Note: Whenever possible it is suggested to use uint8 as that is the most thoroughly tested
dtype. In general, the use of large dtypes (i.e. uint64, int64, float128) is
discouraged, even when they are marked as supported. That is because writing correct tests for
these dtypes can be difficult as no larger dtypes are available to which values can be temporarily
cast. Additionally, when using inputs for which precise discrete values are important (e.g.
segmentation maps, where an accidental change by 1 would break the map), medium sized dtypes
(uint32, int32) should be used with caution. This is because other libraries may convert
temporarily to float64, which could lead to inaccuracies for some numbers.

Legend

Support level (color of table cells):

	Green: Datatype is considered supported by the augmenter.

	Yellow: Limited support for the datatype, e.g. due to inaccuracies around large values.
See the API for the respective augmenter for more details.

	Red: Datatype is not supported by the augmenter.

Test level (symbols in table cells):

	+++: Datatype support is thoroughly tested (via unittests or integration tests).

	++: Datatype support is tested, though not thoroughly.

	+: Datatype support is indirectly tested via tests for other augmenters.

	-: Datatype support is not tested.

	?: Unknown support level for the datatype.

imgaug helper functions

[image: dtype support imgaug.imgaug]
Dtype support of helper functions in imgaug,
e.g. import imgaug; imgaug.imresize_single_image(array, size).

imgaug.augmenters.meta

[image: dtype support for augmenters in imgaug.augmenters.meta]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.meta.

imgaug.augmenters.arithmetic

[image: dtype support for augmenters in imgaug.augmenters.arithmetic]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.arithmetic.

imgaug.augmenters.blend

[image: dtype support for augmenters in imgaug.augmenters.blend]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.blend.

imgaug.augmenters.blur

[image: dtype support for augmenters in imgaug.augmenters.blur]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.blur.

imgaug.augmenters.collections

[image: dtype support for augmenters in imgaug.augmenters.collections]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.collections.

imgaug.augmenters.color

[image: dtype support for augmenters in imgaug.augmenters.color]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.color.

imgaug.augmenters.contrast

[image: dtype support for augmenters in imgaug.augmenters.contrast]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.contrast.

imgaug.augmenters.convolutional

[image: dtype support for augmenters in imgaug.augmenters.convolutional]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.convolutional.

imgaug.augmenters.debug

[image: dtype support for augmenters in imgaug.augmenters.debug]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.debug.

imgaug.augmenters.edges

[image: dtype support for augmenters in imgaug.augmenters.edges]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.edges.

imgaug.augmenters.flip

[image: dtype support for augmenters in imgaug.augmenters.flip]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.flip.

imgaug.augmenters.geometric

[image: dtype support for augmenters in imgaug.augmenters.geometric]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.geometric.

imgaug.augmenters.imgcorruptlike

[image: dtype support for augmenters in imgaug.augmenters.imgcorruptlike]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.imgcorruptlike.

imgaug.augmenters.pillike

[image: dtype support for augmenters in imgaug.augmenters.pillike]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.pillike.

imgaug.augmenters.segmentation

[image: dtype support for augmenters in imgaug.augmenters.segmentation]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.segmentation.

imgaug.augmenters.size

[image: dtype support for augmenters in imgaug.augmenters.size]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.size.

imgaug.augmenters.weather

[image: dtype support for augmenters in imgaug.augmenters.weather]
Image dtypes supported by augmenters and helper functions in
imgaug.augmenters.weather.

Jupyter Notebooks

Several jupyter notebooks are available that provide tutorials about imgaug’s functionality.
They are hosted at imgaug-doc/notebooks [https://github.com/aleju/imgaug-doc/tree/master/notebooks].
The notebooks can be downloaded to interactively modify the examples.

	List of Notebooks:

	
	A01 - Load and Augment an Image [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/A01%20-%20Load%20and%20Augment%20an%20Image.ipynb]

	A03 - Multicore Augmentation [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/A03%20-%20Multicore%20Augmentation.ipynb]

	B01 - Augment Keypoints (aka Landmarks) [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B01%20-%20Augment%20Keypoints.ipynb]

	B02 - Augment Bounding Boxes [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B02%20-%20Augment%20Bounding%20Boxes.ipynb]

	B03 - Augment Polygons [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B03%20-%20Augment%%20Polygons.ipynb]

	B06 - Augment Line Strings [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B06%20-%20Augment%20Line%20Strings.ipynb]

	B04 - Augment Heatmaps [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B04%20-%20Augment%20Heatmaps.ipynb]

	B05 - Augment Segmentation Maps [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B05%20-%20Augment%20Segmentation%20Maps.ipynb]

	C01 - Using Probability Distributions as Parameters [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C01%20-%20Using%20Probability%20Distributions%20as%20Parameters.ipynb]

	C02 - Using imgaug with more Control Flow [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C02%20-%20Using%20imgaug%20with%20more%20Control%20Flow.ipynb]

	C03 - Stochastic and Deterministic Augmentation [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C03%20-%20Stochastic%20and%20Deterministic%20Augmentation.ipynb]

	C04 - Copying Random States and Using Multiple Augmentation Sequences [https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C04%20-%20Copying%20Random%20States%20and%20Using%20Multiple%20Augmentation%20Sequences.ipynb]

API

	imgaug

	imgaug.parameters

	imgaug.multicore

	imgaug.dtypes

	imgaug.random
	Definitions

	imgaug.validation

	imgaug.augmentables.base

	imgaug.augmentables.batches

	imgaug.augmentables.bbs

	imgaug.augmentables.heatmaps

	imgaug.augmentables.kps

	imgaug.augmentables.lines

	imgaug.augmentables.normalization

	imgaug.augmentables.polys

	imgaug.augmentables.segmaps

	imgaug.augmentables.utils

	imgaug.augmenters.arithmetic

	imgaug.augmenters.artistic

	imgaug.augmenters.base

	imgaug.augmenters.blend

	imgaug.augmenters.blur

	imgaug.augmenters.collections

	imgaug.augmenters.color

	imgaug.augmenters.contrast

	imgaug.augmenters.convolutional

	imgaug.augmenters.debug

	imgaug.augmenters.edges

	imgaug.augmenters.flip

	imgaug.augmenters.geometric

	imgaug.augmenters.imgcorruptlike

	imgaug.augmenters.meta

	imgaug.augmenters.pillike

	imgaug.augmenters.pooling

	imgaug.augmenters.segmentation

	imgaug.augmenters.size

	imgaug.augmenters.weather

imgaug

Collection of basic functions used throughout imgaug.

	
imgaug.imgaug.BackgroundAugmenter(*args, **kwargs)

	

	
imgaug.imgaug.Batch(*args, **kwargs)

	

	
imgaug.imgaug.BatchLoader(*args, **kwargs)

	

	
imgaug.imgaug.BoundingBox(*args, **kwargs)

	

	
imgaug.imgaug.BoundingBoxesOnImage(*args, **kwargs)

	

	
exception imgaug.imgaug.DeprecationWarning

	Bases: Warning

Warning for deprecated calls.

Since python 2.7 DeprecatedWarning is silent by default. So we define
our own DeprecatedWarning here so that it is not silent by default.

	
imgaug.imgaug.HeatmapsOnImage(*args, **kwargs)

	

	
class imgaug.imgaug.HooksHeatmaps(activator=None, propagator=None, preprocessor=None, postprocessor=None)

	Bases: imgaug.imgaug.HooksImages

Class to intervene with heatmap augmentation runs.

This is e.g. useful to dynamically deactivate some augmenters.

This class is currently the same as the one for images. This may or may
not change in the future.

Methods

	is_activated(self, images, augmenter, …)

	Estimate whether an augmenter may be executed.

	is_propagating(self, images, augmenter, …)

	Estimate whether an augmenter may call its children.

	postprocess(self, images, augmenter, parents)

	Postprocess input data per augmenter after augmentation.

	preprocess(self, images, augmenter, parents)

	Preprocess input data per augmenter before augmentation.

	
class imgaug.imgaug.HooksImages(activator=None, propagator=None, preprocessor=None, postprocessor=None)

	Bases: object

Class to intervene with image augmentation runs.

This is e.g. useful to dynamically deactivate some augmenters.

	Parameters

	
	activator (None or callable, optional) – A function that gives permission to execute an augmenter.
The expected interface is:

``f(images, augmenter, parents, default)``

where images are the input images to augment, augmenter is the
instance of the augmenter to execute, parents are previously
executed augmenters and default is an expected default value to be
returned if the activator function does not plan to make a decision
for the given inputs.

	propagator (None or callable, optional) – A function that gives permission to propagate the augmentation further
to the children of an augmenter. This happens after the activator.
In theory, an augmenter may augment images itself (if allowed by the
activator) and then execute child augmenters afterwards (if allowed by
the propagator). If the activator returned False, the propagation
step will never be executed.
The expected interface is:

``f(images, augmenter, parents, default)``

with all arguments having identical meaning to the activator.

	preprocessor (None or callable, optional) – A function to call before an augmenter performed any augmentations.
The interface is:

f(images, augmenter, parents)

with all arguments having identical meaning to the activator.
It is expected to return the input images, optionally modified.

	postprocessor (None or callable, optional) – A function to call after an augmenter performed augmentations.
The interface is the same as for the preprocessor.

Examples

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.GaussianBlur(3.0, name="blur"),
>>> iaa.Dropout(0.05, name="dropout"),
>>> iaa.Affine(translate_px=-5, name="affine")
>>>])
>>> images = [np.zeros((10, 10), dtype=np.uint8)]
>>>
>>> def activator(images, augmenter, parents, default):
>>> return False if augmenter.name in ["blur", "dropout"] else default
>>>
>>> seq_det = seq.to_deterministic()
>>> images_aug = seq_det.augment_images(images)
>>> heatmaps = [np.random.rand(*(3, 10, 10))]
>>> heatmaps_aug = seq_det.augment_images(
>>> heatmaps,
>>> hooks=ia.HooksImages(activator=activator)
>>>)

This augments images and their respective heatmaps in the same way.
The heatmaps however are only modified by Affine, not by
GaussianBlur or Dropout.

Methods

	is_activated(self, images, augmenter, …)

	Estimate whether an augmenter may be executed.

	is_propagating(self, images, augmenter, …)

	Estimate whether an augmenter may call its children.

	postprocess(self, images, augmenter, parents)

	Postprocess input data per augmenter after augmentation.

	preprocess(self, images, augmenter, parents)

	Preprocess input data per augmenter before augmentation.

	
is_activated(self, images, augmenter, parents, default)

	Estimate whether an augmenter may be executed.

This also affects propagation of data to child augmenters.

	Returns

	If True, the augmenter may be executed.
Otherwise False.

	Return type

	bool

	
is_propagating(self, images, augmenter, parents, default)

	Estimate whether an augmenter may call its children.

This function decides whether an augmenter with children is allowed
to call these in order to further augment the inputs.
Note that if the augmenter itself performs augmentations (before/after
calling its children), these may still be executed, even if this
method returns False.

	Returns

	If True, the augmenter may propagate data to its children.
Otherwise False.

	Return type

	bool

	
postprocess(self, images, augmenter, parents)

	Postprocess input data per augmenter after augmentation.

	Returns

	The input images, optionally modified.

	Return type

	(N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W) ndarray

	
preprocess(self, images, augmenter, parents)

	Preprocess input data per augmenter before augmentation.

	Returns

	The input images, optionally modified.

	Return type

	(N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W) ndarray

	
class imgaug.imgaug.HooksKeypoints(activator=None, propagator=None, preprocessor=None, postprocessor=None)

	Bases: imgaug.imgaug.HooksImages

Class to intervene with keypoint augmentation runs.

This is e.g. useful to dynamically deactivate some augmenters.

This class is currently the same as the one for images. This may or may
not change in the future.

Methods

	is_activated(self, images, augmenter, …)

	Estimate whether an augmenter may be executed.

	is_propagating(self, images, augmenter, …)

	Estimate whether an augmenter may call its children.

	postprocess(self, images, augmenter, parents)

	Postprocess input data per augmenter after augmentation.

	preprocess(self, images, augmenter, parents)

	Preprocess input data per augmenter before augmentation.

	
imgaug.imgaug.Keypoint(*args, **kwargs)

	

	
imgaug.imgaug.KeypointsOnImage(*args, **kwargs)

	

	
imgaug.imgaug.MultiPolygon(*args, **kwargs)

	

	
imgaug.imgaug.Polygon(*args, **kwargs)

	

	
imgaug.imgaug.PolygonsOnImage(*args, **kwargs)

	

	
imgaug.imgaug.SegmentationMapsOnImage(*args, **kwargs)

	

	
imgaug.imgaug.angle_between_vectors(v1, v2)

	Calculcate the angle in radians between vectors v1 and v2.

From
http://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python

	Parameters

	
	v1 ((N,) ndarray) – First vector.

	v2 ((N,) ndarray) – Second vector.

	Returns

	Angle in radians.

	Return type

	float

Examples

>>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([0, 1, 0]))
1.570796...

>>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([1, 0, 0]))
0.0

>>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([-1, 0, 0]))
3.141592...

	
imgaug.imgaug.apply_lut(image, table)

	Map an input image to a new one using a lookup table.

Added in 0.4.0.

Supported dtypes:

See apply_lut_().

	Parameters

	
	image (ndarray) – See apply_lut_().

	table (ndarray or list of ndarray) – See apply_lut_().

	Returns

	Image after mapping via lookup table.

	Return type

	ndarray

	
imgaug.imgaug.apply_lut_(image, table)

	Map an input image in-place to a new one using a lookup table.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – Image of dtype uint8 and shape (H,W) or (H,W,C).

	table (ndarray or list of ndarray) – Table of dtype uint8 containing the mapping from old to new
values. Either a list of C (256,) arrays or a single
array of shape (256,) or (256, C) or (1, 256, C).
In case of (256,) the same table is used for all channels,
otherwise a channelwise table is used and C is expected to match
the number of channels.

	Returns

	Image after mapping via lookup table.
This might be the same array instance as provided via image.

	Return type

	ndarray

	
imgaug.imgaug.avg_pool(arr, block_size, pad_mode='reflect', pad_cval=128, preserve_dtype=True, cval=None)

	Resize an array using average pooling.

Defaults to pad_mode="reflect" to ensure that padded values do not
affect the average.

Supported dtypes:

See pool().

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool.
See pool() for details.

	block_size (int or tuple of int or tuple of int) – Size of each block of values to pool.
See pool() for details.

	pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder.
See pad() for details.

	pad_cval (number, optional) – Padding value.
See pool() for details.

	preserve_dtype (bool, optional) – Whether to preserve the input array dtype.
See pool() for details.

	cval (None or number, optional) – Deprecated. Old name for pad_cval.

	Returns

	Array after average pooling.

	Return type

	(H’,W’) ndarray or (H’,W’,C’) ndarray

	
imgaug.imgaug.caller_name()

	Return the name of the caller, e.g. a function.

	Returns

	The name of the caller as a string

	Return type

	str

	
imgaug.imgaug.compute_geometric_median(*args, **kwargs)

	

	
imgaug.imgaug.compute_line_intersection_point(x1, y1, x2, y2, x3, y3, x4, y4)

	Compute the intersection point of two lines.

Taken from https://stackoverflow.com/a/20679579 .

	Parameters

	
	x1 (number) – x coordinate of the first point on line 1.
(The lines extends beyond this point.)

	y1 (number) – y coordinate of the first point on line 1.
(The lines extends beyond this point.)

	x2 (number) – x coordinate of the second point on line 1.
(The lines extends beyond this point.)

	y2 (number) – y coordinate of the second point on line 1.
(The lines extends beyond this point.)

	x3 (number) – x coordinate of the first point on line 2.
(The lines extends beyond this point.)

	y3 (number) – y coordinate of the first point on line 2.
(The lines extends beyond this point.)

	x4 (number) – x coordinate of the second point on line 2.
(The lines extends beyond this point.)

	y4 (number) – y coordinate of the second point on line 2.
(The lines extends beyond this point.)

	Returns

	The coordinate of the intersection point as a tuple (x, y).
If the lines are parallel (no intersection point or an infinite number
of them), the result is False.

	Return type

	tuple of number or bool

	
imgaug.imgaug.compute_paddings_for_aspect_ratio(*args, **kwargs)

	

	
imgaug.imgaug.compute_paddings_to_reach_exponents_of(*args, **kwargs)

	

	
imgaug.imgaug.compute_paddings_to_reach_multiples_of(*args, **kwargs)

	

	
imgaug.imgaug.copy_random_state(random_state, force_copy=False)

	Deprecated. Use imgaug.random.copy_generator_unless_global_rng instead.

Copy an existing numpy (random number) generator.

	Parameters

	
	random_state (numpy.random.Generator or numpy.random.RandomState) – The generator to copy.

	force_copy (bool, optional) – If True, this function will always create a copy of every random
state. If False, it will not copy numpy’s default random state,
but all other random states.

	Returns

	rs_copy – The copied random state.

	Return type

	numpy.random.RandomState

	
imgaug.imgaug.current_random_state()

	Deprecated. Use imgaug.random.get_global_rng instead.

Get or create the current global RNG of imgaug.

Note that the first call to this function will create a global RNG.

	Returns

	The global RNG to use.

	Return type

	imgaug.random.RNG

	
class imgaug.imgaug.deprecated(alt_func=None, behavior='warn', removed_version=None, comment=None)

	Bases: object

Decorator to mark deprecated functions with warning.

Adapted from
<https://github.com/scikit-image/scikit-image/blob/master/skimage/_shared/utils.py>.

	Parameters

	
	alt_func (None or str, optional) – If given, tell user what function to use instead.

	behavior ({‘warn’, ‘raise’}, optional) – Behavior during call to deprecated function: warn means that the
user is warned that the function is deprecated; raise means that
an error is raised.

	removed_version (None or str, optional) – The package version in which the deprecated function will be removed.

	comment (None or str, optional) – An optional comment that will be appended to the warning message.

Methods

	__call__(self, func)

	Call self as a function.

	
imgaug.imgaug.derive_random_state(random_state)

	Deprecated. Use imgaug.random.derive_generator_ instead.

Derive a child numpy random generator from another one.

	Parameters

	random_state (numpy.random.Generator or numpy.random.RandomState) – The generator from which to derive a new child generator.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
In both cases a derived child generator.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.imgaug.derive_random_states(random_state, n=1)

	Deprecated. Use imgaug.random.derive_generators_ instead.

Derive child numpy random generators from another one.

	Parameters

	
	random_state (numpy.random.Generator or numpy.random.RandomState) – The generator from which to derive new child generators.

	n (int, optional) – Number of child generators to derive.

	Returns

	In numpy <=1.16 a list of RandomState s,
in 1.17+ a list of Generator s.
In both cases lists of derived child generators.

	Return type

	list of numpy.random.Generator or list of numpy.random.RandomState

	
imgaug.imgaug.do_assert(condition, message='Assertion failed.')

	Assert that a condition holds or raise an Exception otherwise.

This was added because assert statements are removed in optimized code.
It replaced assert statements throughout the library, but that was
reverted again for readability and performance reasons.

	Parameters

	
	condition (bool) – If False, an exception is raised.

	message (str, optional) – Error message.

	
imgaug.imgaug.draw_grid(images, rows=None, cols=None)

	Combine multiple images into a single grid-like image.

Calling this function with four images of the same shape and rows=2,
cols=2 will combine the four images to a single image array of shape
(2*H, 2*W, C), where H is the height of any of the images
(analogous W) and C is the number of channels of any image.

Calling this function with four images of the same shape and rows=4,
cols=1 is analogous to calling numpy.vstack() on the images.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; fully tested

	uint32: yes; fully tested

	uint64: yes; fully tested

	int8: yes; fully tested

	int16: yes; fully tested

	int32: yes; fully tested

	int64: yes; fully tested

	float16: yes; fully tested

	float32: yes; fully tested

	float64: yes; fully tested

	float128: yes; fully tested

	bool: yes; fully tested

	Parameters

	
	images ((N,H,W,3) ndarray or iterable of (H,W,3) array) – The input images to convert to a grid.

	rows (None or int, optional) – The number of rows to show in the grid.
If None, it will be automatically derived.

	cols (None or int, optional) – The number of cols to show in the grid.
If None, it will be automatically derived.

	Returns

	Image of the generated grid.

	Return type

	(H’,W’,3) ndarray

	
imgaug.imgaug.draw_text(img, y, x, text, color=(0, 255, 0), size=25)

	Draw text on an image.

This uses by default DejaVuSans as its font, which is included in this
library.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: yes; not tested

	float64: no

	float128: no

	bool: no

TODO check if other dtypes could be enabled

	Parameters

	
	img ((H,W,3) ndarray) – The image array to draw text on.
Expected to be of dtype uint8 or float32 (expected value
range is [0.0, 255.0]).

	y (int) – x-coordinate of the top left corner of the text.

	x (int) – y- coordinate of the top left corner of the text.

	text (str) – The text to draw.

	color (iterable of int, optional) – Color of the text to draw. For RGB-images this is expected to be an
RGB color.

	size (int, optional) – Font size of the text to draw.

	Returns

	Input image with text drawn on it.

	Return type

	(H,W,3) ndarray

	
imgaug.imgaug.dummy_random_state()

	Deprecated. Use imgaug.random.convert_seed_to_rng instead.

Create a dummy random state using a seed of 1.

	Returns

	The new random state.

	Return type

	imgaug.random.RNG

	
imgaug.imgaug.flatten(nested_iterable)

	Flatten arbitrarily nested lists/tuples.

Code partially taken from https://stackoverflow.com/a/10824420.

	Parameters

	nested_iterable – A list or tuple of arbitrarily nested values.

	Yields

	any – All values in nested_iterable, flattened.

	
imgaug.imgaug.forward_random_state(random_state)

	Deprecated. Use imgaug.random.advance_generator_ instead.

Advance a numpy random generator’s internal state.

	Parameters

	random_state (numpy.random.Generator or numpy.random.RandomState) – Generator of which to advance the internal state.

	
imgaug.imgaug.imresize_many_images(images, sizes=None, interpolation=None)

	Resize each image in a list or array to a specified size.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested (3)

	int16: yes; tested

	int32: limited; tested (4)

	int64: no (2)

	float16: yes; tested (5)

	float32: yes; tested

	float64: yes; tested

	float128: no (1)

	bool: yes; tested (6)

	
	rejected by cv2.imresize

	
	results too inaccurate

	
	mapped internally to int16 when interpolation!=”nearest”

	
	only supported for interpolation=”nearest”, other interpolations
lead to cv2 error

	
	mapped internally to float32

	
	mapped internally to uint8

	Parameters

	
	images ((N,H,W,[C]) ndarray or list of (H,W,[C]) ndarray) – Array of the images to resize.
Usually recommended to be of dtype uint8.

	sizes (float or iterable of int or iterable of float) – The new size of the images, given either as a fraction (a single
float) or as a (height, width) tuple of two integers or as a
(height fraction, width fraction) tuple of two floats.

	interpolation (None or str or int, optional) – The interpolation to use during resize.
If int, then expected to be one of:

	cv2.INTER_NEAREST (nearest neighbour interpolation)

	cv2.INTER_LINEAR (linear interpolation)

	cv2.INTER_AREA (area interpolation)

	cv2.INTER_CUBIC (cubic interpolation)

If str, then expected to be one of:

	nearest (identical to cv2.INTER_NEAREST)

	linear (identical to cv2.INTER_LINEAR)

	area (identical to cv2.INTER_AREA)

	cubic (identical to cv2.INTER_CUBIC)

If None, the interpolation will be chosen automatically. For size
increases, area interpolation will be picked and for size
decreases, linear interpolation will be picked.

	Returns

	Array of the resized images.

	Return type

	(N,H’,W’,[C]) ndarray

Examples

>>> import imgaug as ia
>>> images = np.zeros((2, 8, 16, 3), dtype=np.uint8)
>>> images_resized = ia.imresize_many_images(images, 2.0)
>>> images_resized.shape
(2, 16, 32, 3)

Convert two RGB images of height 8 and width 16 to images of
height 2*8=16 and width 2*16=32.

>>> images_resized = ia.imresize_many_images(images, (2.0, 4.0))
>>> images_resized.shape
(2, 16, 64, 3)

Convert two RGB images of height 8 and width 16 to images of
height 2*8=16 and width 4*16=64.

>>> images_resized = ia.imresize_many_images(images, (16, 32))
>>> images_resized.shape
(2, 16, 32, 3)

Converts two RGB images of height 8 and width 16 to images of
height 16 and width 32.

	
imgaug.imgaug.imresize_single_image(image, sizes, interpolation=None)

	Resize a single image.

Supported dtypes:

See imresize_many_images().

	Parameters

	
	image ((H,W,C) ndarray or (H,W) ndarray) – Array of the image to resize.
Usually recommended to be of dtype uint8.

	sizes (float or iterable of int or iterable of float) – See imresize_many_images().

	interpolation (None or str or int, optional) – See imresize_many_images().

	Returns

	The resized image.

	Return type

	(H’,W’,C) ndarray or (H’,W’) ndarray

	
imgaug.imgaug.imshow(image, backend='matplotlib')

	Show an image in a window.

Supported dtypes:

	uint8: yes; not tested

	uint16: ?

	uint32: ?

	uint64: ?

	int8: ?

	int16: ?

	int32: ?

	int64: ?

	float16: ?

	float32: ?

	float64: ?

	float128: ?

	bool: ?

	Parameters

	
	image ((H,W,3) ndarray) – Image to show.

	backend ({‘matplotlib’, ‘cv2’}, optional) – Library to use to show the image. May be either matplotlib or
OpenCV (‘cv2’). OpenCV tends to be faster, but apparently causes more
technical issues.

	
imgaug.imgaug.is_callable(val)

	Check whether a variable is a callable, e.g. a function.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a callable. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_float_array(val)

	Check whether a variable is a numpy float array.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a numpy float array. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_generator(val)

	Check whether a variable is a generator.

	Parameters

	val – The variable to check.

	Returns

	True is the variable is a generator. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_integer_array(val)

	Check whether a variable is a numpy integer array.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a numpy integer array. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_iterable(val)

	Checks whether a variable is iterable.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is an iterable. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_np_array(val)

	Check whether a variable is a numpy array.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a numpy array. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_np_scalar(val)

	Check whether a variable is a numpy scalar.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a numpy scalar. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_single_bool(val)

	Check whether a variable is a bool.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a bool. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_single_float(val)

	Check whether a variable is a float.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a float. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_single_integer(val)

	Check whether a variable is an int.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is an int. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_single_number(val)

	Check whether a variable is a number, i.e. an int or float.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a number. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.is_string(val)

	Check whether a variable is a string.

	Parameters

	val – The variable to check.

	Returns

	True if the variable is a string. Otherwise False.

	Return type

	bool

	
imgaug.imgaug.max_pool(arr, block_size, pad_mode='edge', pad_cval=0, preserve_dtype=True, cval=None)

	Resize an array using max-pooling.

Defaults to pad_mode="edge" to ensure that padded values do not affect
the maximum, even if the dtype was something else than uint8.

Supported dtypes:

See pool().

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool.
See pool() for details.

	block_size (int or tuple of int or tuple of int) – Size of each block of values to pool.
See pool() for details.

	pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder.
See pad() for details.

	pad_cval (number, optional) – Padding value.
See pool() for details.

	preserve_dtype (bool, optional) – Whether to preserve the input array dtype.
See pool() for details.

	cval (None or number, optional) – Deprecated. Old name for pad_cval.

	Returns

	Array after max-pooling.

	Return type

	(H’,W’) ndarray or (H’,W’,C’) ndarray

	
imgaug.imgaug.median_pool(arr, block_size, pad_mode='reflect', pad_cval=128, preserve_dtype=True)

	Resize an array using median-pooling.

Defaults to pad_mode="reflect" to ensure that padded values do not
affect the average.

Supported dtypes:

See pool().

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool.
See pool() for details.

	block_size (int or tuple of int or tuple of int) – Size of each block of values to pool.
See pool() for details.

	pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder.
See pad() for details.

	pad_cval (number, optional) – Padding value.
See pool() for details.

	preserve_dtype (bool, optional) – Whether to preserve the input array dtype.
See pool() for details.

	Returns

	Array after min-pooling.

	Return type

	(H’,W’) ndarray or (H’,W’,C’) ndarray

	
imgaug.imgaug.min_pool(arr, block_size, pad_mode='edge', pad_cval=255, preserve_dtype=True)

	Resize an array using min-pooling.

Defaults to pad_mode="edge" to ensure that padded values do not affect
the minimum, even if the dtype was something else than uint8.

Supported dtypes:

See pool().

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool.
See pool() for details.

	block_size (int or tuple of int or tuple of int) – Size of each block of values to pool.
See pool() for details.

	pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder.
See pad() for details.

	pad_cval (number, optional) – Padding value.
See pool() for details.

	preserve_dtype (bool, optional) – Whether to preserve the input array dtype.
See pool() for details.

	Returns

	Array after min-pooling.

	Return type

	(H’,W’) ndarray or (H’,W’,C’) ndarray

	
imgaug.imgaug.new_random_state(seed=None, fully_random=False)

	Deprecated. Use imgaug.random.convert_seed_to_rng instead.

Create a new numpy random number generator.

	Parameters

	
	seed (None or int, optional) – The seed value to use. If None and fully_random is False,
the seed will be derived from the global RNG. If fully_random is
True, the seed will be provided by the OS.

	fully_random (bool, optional) – Whether the seed will be provided by the OS.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
Both are initialized with the provided seed.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.imgaug.normalize_random_state(random_state)

	Deprecated. Use imgaug.random.normalize_generator instead.

Normalize various inputs to a numpy random generator.

	Parameters

	random_state (None or int or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.bit_generator.SeedSequence or numpy.random.RandomState) – See normalize_generator().

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator (even if
the input was a RandomState).

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.imgaug.pad(*args, **kwargs)

	

	
imgaug.imgaug.pad_to_aspect_ratio(*args, **kwargs)

	

	
imgaug.imgaug.pad_to_multiples_of(*args, **kwargs)

	

	
imgaug.imgaug.pool(arr, block_size, func, pad_mode='constant', pad_cval=0, preserve_dtype=True, cval=None)

	Resize an array by pooling values within blocks.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested (2)

	uint64: no (1)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested (2)

	int64: no (1)

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested (2)

	bool: yes; tested

	
	results too inaccurate (at least when using np.average as func)

	
	Note that scikit-image documentation says that the wrapped
pooling function converts inputs to float64. Actual tests
showed no indication of that happening (at least when using
preserve_dtype=True).

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool. Ideally of datatype float64.

	block_size (int or tuple of int) –

Spatial size of each group of values to pool, aka kernel size.

	If a single int, then a symmetric block of that size along
height and width will be used.

	If a tuple of two values, it is assumed to be the block size
along height and width of the image-like, with pooling happening
per channel.

	If a tuple of three values, it is assumed to be the block size
along height, width and channels.

	func (callable) – Function to apply to a given block in order to convert it to a single
number, e.g. numpy.average(), numpy.min(),
numpy.max().

	pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder. See pad() for details.

	pad_cval (number, optional) – Value to use for padding if mode is constant.
See numpy.pad() for details.

	preserve_dtype (bool, optional) – Whether to convert the array back to the input datatype if it is
changed away from that in the pooling process.

	cval (None or number, optional) – Deprecated. Old name for pad_cval.

	Returns

	Array after pooling.

	Return type

	(H’,W’) ndarray or (H’,W’,C’) ndarray

	
imgaug.imgaug.quokka(size=None, extract=None)

	Return an image of a quokka as a numpy array.

	Parameters

	
	size (None or float or tuple of int, optional) – Size of the output image. Input into
imresize_single_image(). Usually expected to be a
tuple (H, W), where H is the desired height and W is
the width. If None, then the image will not be resized.

	extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage) –

Subarea of the quokka image to extract:

	If None, then the whole image will be used.

	If str square, then a squared area
(x: 0 to max 643, y: 0 to max 643) will be extracted from
the image.

	If a tuple, then expected to contain four number s
denoting (x1, y1, x2, y2).

	If a BoundingBox, then that
bounding box’s area will be extracted from the image.

	If a BoundingBoxesOnImage,
then expected to contain exactly one bounding box and a shape
matching the full image dimensions (i.e. (643, 960, *)).
Then the one bounding box will be used similar to
BoundingBox above.

	Returns

	The image array of dtype uint8.

	Return type

	(H,W,3) ndarray

	
imgaug.imgaug.quokka_bounding_boxes(size=None, extract=None)

	Return example bounding boxes on the standard example quokke image.

Currently only a single bounding box is returned that covers the quokka.

	Parameters

	
	size (None or float or tuple of int or tuple of float, optional) – Size of the output image on which the BBs are placed. If None, then
the BBs are not projected to any new size (positions on the original
image are used). float s lead to relative size changes, int s
to absolute sizes in pixels.

	extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage) – Subarea to extract from the image. See quokka().

	Returns

	Example BBs on the quokka image.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
imgaug.imgaug.quokka_heatmap(size=None, extract=None)

	Return a heatmap (here: depth map) for the standard example quokka image.

	Parameters

	
	size (None or float or tuple of int, optional) – See quokka().

	extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage) – See quokka().

	Returns

	Depth map as an heatmap object. Values close to 0.0 denote objects
that are close to the camera. Values close to 1.0 denote objects
that are furthest away (among all shown objects).

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
imgaug.imgaug.quokka_keypoints(size=None, extract=None)

	Return example keypoints on the standard example quokke image.

The keypoints cover the eyes, ears, nose and paws.

	Parameters

	
	size (None or float or tuple of int or tuple of float, optional) – Size of the output image on which the keypoints are placed. If
None, then the keypoints are not projected to any new size
(positions on the original image are used). float s lead to
relative size changes, int s to absolute sizes in pixels.

	extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage) – Subarea to extract from the image. See quokka().

	Returns

	Example keypoints on the quokka image.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
imgaug.imgaug.quokka_polygons(size=None, extract=None)

	Returns example polygons on the standard example quokke image.

The result contains one polygon, covering the quokka’s outline.

	Parameters

	
	size (None or float or tuple of int or tuple of float, optional) – Size of the output image on which the polygons are placed. If None,
then the polygons are not projected to any new size (positions on the
original image are used). float s lead to relative size changes,
int s to absolute sizes in pixels.

	extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage) – Subarea to extract from the image. See quokka().

	Returns

	Example polygons on the quokka image.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
imgaug.imgaug.quokka_segmentation_map(size=None, extract=None)

	Return a segmentation map for the standard example quokka image.

	Parameters

	
	size (None or float or tuple of int, optional) – See quokka().

	extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage) – See quokka().

	Returns

	Segmentation map object.

	Return type

	imgaug.augmentables.segmaps.SegmentationMapsOnImage

	
imgaug.imgaug.quokka_square(size=None)

	Return an (square) image of a quokka as a numpy array.

	Parameters

	size (None or float or tuple of int, optional) – Size of the output image. Input into
imresize_single_image(). Usually expected to be a
tuple (H, W), where H is the desired height and W is
the width. If None, then the image will not be resized.

	Returns

	The image array of dtype uint8.

	Return type

	(H,W,3) ndarray

	
imgaug.imgaug.seed(entropy=None, seedval=None)

	Set the seed of imgaug’s global RNG.

The global RNG controls most of the “randomness” in imgaug.

The global RNG is the default one used by all augmenters. Under special
circumstances (e.g. when an augmenter is switched to deterministic mode),
the global RNG is replaced with a local one. The state of that replacement
may be dependent on the global RNG’s state at the time of creating the
child RNG.

Note

This function is not yet marked as deprecated, but might be in the
future. The preferred way to seed imgaug is via
seed().

	Parameters

	
	entropy (int) – The seed value to use.

	seedval (None or int, optional) – Deprecated since 0.4.0.

	
imgaug.imgaug.show_grid(images, rows=None, cols=None)

	Combine multiple images into a single image and plot the result.

This will show a window of the results of draw_grid().

Supported dtypes:

	minimum of (

	draw_grid(),
imshow()

)

	Parameters

	
	images ((N,H,W,3) ndarray or iterable of (H,W,3) array) – See draw_grid().

	rows (None or int, optional) – See draw_grid().

	cols (None or int, optional) – See draw_grid().

	
imgaug.imgaug.warn(msg, category=<class 'UserWarning'>, stacklevel=2)

	Generate a a warning with stacktrace.

	Parameters

	
	msg (str) – The message of the warning.

	category (class) – The class of the warning to produce.

	stacklevel (int, optional) – How many steps above this function to “jump” in the stacktrace when
displaying file and line number of the error message.
Usually 2.

	
imgaug.imgaug.warn_deprecated(msg, stacklevel=2)

	Generate a non-silent deprecation warning with stacktrace.

The used warning is imgaug.imgaug.DeprecationWarning.

	Parameters

	
	msg (str) – The message of the warning.

	stacklevel (int, optional) – How many steps above this function to “jump” in the stacktrace when
displaying file and line number of the error message.
Usually 2

imgaug.parameters

Classes and methods to use for parameters of augmenters.

This module contains e.g. classes representing probability
distributions (guassian, poisson etc.), classes representing noise sources
and methods to normalize parameter-related user inputs.

	
class imgaug.parameters.Absolute(other_param)

	Bases: imgaug.parameters.StochasticParameter

Convert the samples of another parameter to their absolute values.

	Parameters

	other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be modified.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Absolute(iap.Uniform(-1.0, 1.0))

Convert a uniform distribution from [-1.0, 1.0) to [0.0, 1.0].

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Add(other_param, val, elementwise=False)

	Bases: imgaug.parameters.StochasticParameter

Add to the samples of another stochastic parameter.

	Parameters

	
	other_param (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Samples of val will be added to samples of this parameter.
Let S be the requested shape of samples, then the datatype
behaviour is as follows:

	If a single number, this number will be used as a
constant value to fill an array of shape S.

	If a tuple of two number s (a, b), an array of
shape S will be filled with uniformly sampled values from
the continuous interval [a, b).

	If a list of number, an array of shape S will be
filled with randomly picked values from the list.

	If a StochasticParameter, that parameter will be
queried once per call to generate an array of shape S.

“per call” denotes a call of Add.draw_sample() or
Add.draw_samples().

	val (number or tuple of two number or list of number or imgaug.parameters.StochasticParameter) – Value to add to the samples of other_param.
Datatype behaviour is analogous to other_param, though if
elementwise=False (the default), only a single sample will be
generated per call instead of S.

	elementwise (bool, optional) – Controls the sampling behaviour of val.
If set to False, a single samples will be requested from val and
used as the constant multiplier.
If set to True, samples of shape S will be requested from
val and added elementwise with the samples of other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Add(Uniform(0.0, 1.0), 1.0)

Convert a uniform distribution from [0.0, 1.0) to [1.0, 2.0).

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Beta(alpha, beta, epsilon=0.0001)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a (continuous) beta distribution.

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – alpha parameter of the beta distribution.
Expected value range is (0, inf). Values below 0 are
automatically clipped to 0+epsilon.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Beta.draw_sample() or
Beta.draw_samples().

	beta (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Beta parameter of the beta distribution. Analogous to alpha.

	epsilon (number) – Clipping parameter. If alpha or beta end up <=0, they are clipped to 0+epsilon.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Beta(0.4, 0.6)

Create a beta distribution with alpha=0.4 and beta=0.6.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Binomial(p)

	Bases: imgaug.parameters.StochasticParameter

Binomial distribution.

	Parameters

	p (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Probability of the binomial distribution. Expected to be in the
interval [0.0, 1.0].

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Binomial.draw_sample() or
Binomial.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Binomial(Uniform(0.01, 0.2))

Create a binomial distribution that uses a varying probability between
0.01 and 0.2, randomly and uniformly estimated once per sampling
call.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.ChiSquare(df)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a (continuous) chi-square distribution.

This is a wrapper around numpy’s numpy.random.chisquare().

	Parameters

	df (int or tuple of two int or list of int or imgaug.parameters.StochasticParameter) –

Degrees of freedom. Expected value range is [1, inf).

	If a single int, this int will be used as a
constant value.

	If a tuple of two int s (a, b), the value will be
sampled from the discrete interval [a..b] once per call.

	If a list of int, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of ChiSquare.draw_sample() or
ChiSquare.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.ChiSquare(df=2)

Create a chi-square distribution with two degrees of freedom.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Choice(a, replace=True, p=None)

	Bases: imgaug.parameters.StochasticParameter

Parameter that samples value from a list of allowed values.

	Parameters

	
	a (iterable) – List of allowed values.
Usually expected to be int s, float s or str s.
May also contain StochasticParameter s. Each
StochasticParameter that is randomly picked will automatically be
replaced by a sample of itself (or by N samples if the parameter
was picked N times).

	replace (bool, optional) – Whether to perform sampling with or without replacing.

	p (None or iterable of number, optional) – Probabilities of each element in a.
Must have the same length as a (if provided).

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Choice([5, 17, 25], p=[0.25, 0.5, 0.25])
>>> sample = param.draw_sample()
>>> assert sample in [5, 17, 25]

Create and sample from a parameter, which will produce with 50%
probability the sample 17 and in the other 50% of all cases the
sample 5 or 25..

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Clip(other_param, minval=None, maxval=None)

	Bases: imgaug.parameters.StochasticParameter

Clip another parameter to a defined value range.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – The other parameter, which’s values are to be clipped.

	minval (None or number, optional) – The minimum value to use.
If None, no minimum will be used.

	maxval (None or number, optional) – The maximum value to use.
If None, no maximum will be used.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Clip(Normal(0, 1.0), minval=-2.0, maxval=2.0)

Create a standard gaussian distribution, which’s values never go below
-2.0 or above 2.0. Note that this will lead to small “bumps” of
higher probability at -2.0 and 2.0, as values below/above these
will be clipped to them. For smoother limitations on gaussian
distributions, see TruncatedNormal.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Deterministic(value)

	Bases: imgaug.parameters.StochasticParameter

Parameter that is a constant value.

If N values are sampled from this parameter, it will return N times
V, where V is the constant value.

	Parameters

	value (number or str or imgaug.parameters.StochasticParameter) – A constant value to use.
A string may be provided to generate arrays of strings.
If this is a StochasticParameter, a single value will be sampled
from it exactly once and then used as the constant value.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Deterministic(10)
>>> param.draw_sample()
10

Will always sample the value 10.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.DeterministicList(values)

	Bases: imgaug.parameters.StochasticParameter

Parameter that repeats elements from a list in the given order.

E.g. of samples of shape (A, B, C) are requested, this parameter will
return the first A*B*C elements, reshaped to (A, B, C) from the
provided list. If the list contains less than A*B*C elements, it
will (by default) be tiled until it is long enough (i.e. the sampling
will start again at the first element, if necessary multiple times).

Added in 0.4.0.

	Parameters

	values (ndarray or iterable of number) – An iterable of values to sample from in the order within the iterable.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.DiscreteUniform(a, b)

	Bases: imgaug.parameters.StochasticParameter

Uniform distribution over the discrete interval [a..b].

	Parameters

	
	a (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Lower bound of the interval.
If a>b, a and b will automatically be flipped.
If a==b, all generated values will be identical to a.

	If a single int, this int will be used as a
constant value.

	If a tuple of two int s (a, b), the value will be
sampled from the discrete interval [a..b] once per call.

	If a list of int, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of DiscreteUniform.draw_sample() or
DiscreteUniform.draw_samples().

	b (int or imgaug.parameters.StochasticParameter) – Upper bound of the interval. Analogous to a.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.DiscreteUniform(10, Choice([20, 30, 40]))
>>> sample = param.draw_sample()
>>> assert 10 <= sample <= 40

Create a discrete uniform distribution which’s interval differs between
calls and can be [10..20], [10..30] or [10..40].

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Discretize(other_param, round=True)

	Bases: imgaug.parameters.StochasticParameter

Convert a continuous distribution to a discrete one.

This will round the values and then cast them to integers.
Values sampled from already discrete distributions are not changed.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – The other parameter, which’s values are to be discretized.

	round (bool, optional) – Whether to round before converting to integer dtype.

Added in 0.4.0.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Discretize(iap.Normal(0, 1.0))

Create a discrete standard gaussian distribution.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Divide(other_param, val, elementwise=False)

	Bases: imgaug.parameters.StochasticParameter

Divide the samples of another stochastic parameter.

This parameter will automatically prevent division by zero (uses 1.0)
as the denominator in these cases.

	Parameters

	
	other_param (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be divided by val.
Let S be the requested shape of samples, then the datatype
behaviour is as follows:

	If a single number, this number will be used as a
constant value to fill an array of shape S.

	If a tuple of two number s (a, b), an array of
shape S will be filled with uniformly sampled values from
the continuous interval [a, b).

	If a list of number, an array of shape S will be
filled with randomly picked values from the list.

	If a StochasticParameter, that parameter will be
queried once per call to generate an array of shape S.

“per call” denotes a call of Divide.draw_sample() or
Divide.draw_samples().

	val (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Denominator to use.
Datatype behaviour is analogous to other_param, though if
elementwise=False (the default), only a single sample will be
generated per call instead of S.

	elementwise (bool, optional) – Controls the sampling behaviour of val.
If set to False, a single samples will be requested from val and
used as the constant denominator.
If set to True, samples of shape S will be requested from
val and used to divide the samples of other_param elementwise.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Divide(iap.Uniform(0.0, 1.0), 2)

Convert a uniform distribution [0.0, 1.0) to [0, 0.5).

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.ForceSign(other_param, positive, mode='invert', reroll_count_max=2)

	Bases: imgaug.parameters.StochasticParameter

Convert a parameter’s samples to either positive or negative values.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be modified.

	positive (bool) – Whether to force all signs to be positive (True) or
negative (False).

	mode ({‘invert’, ‘reroll’}, optional) – Method to change the signs. Valid values are invert and reroll.
invert means that wrong signs are simply flipped.
reroll means that all samples with wrong signs are sampled again,
optionally many times, until they randomly end up having the correct
sign.

	reroll_count_max (int, optional) – If mode is set to reroll, this determines how often values may
be rerolled before giving up and simply flipping the sign (as in
mode="invert"). This shouldn’t be set too high, as rerolling is
expensive.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.ForceSign(iap.Poisson(1), positive=False)

Create a poisson distribution with alpha=1 that is flipped towards
negative values.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.FrequencyNoise(exponent=(-4, 4), size_px_max=(4, 32), upscale_method=['linear', 'nearest'])

	Bases: imgaug.parameters.StochasticParameter

Parameter to generate noise of varying frequencies.

This parameter expects to sample noise for 2d planes, i.e. for
sizes (H, W, [C]) and will return a value in the range [0.0, 1.0]
per spatial location in that plane.

The exponent controls the frequencies and therefore noise patterns.
Small values (around -4.0) will result in large blobs. Large values
(around 4.0) will result in small, repetitive patterns.

The noise is sampled from low resolution planes and
upscaled to the requested height and width. The size of the low
resolution plane may be defined (high values can be slow) and the
interpolation method for upscaling can be set.

	Parameters

	
	exponent (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Exponent to use when scaling in the frequency domain.
Sane values are in the range -4 (large blobs) to 4 (small
patterns). To generate cloud-like structures, use roughly -2.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

	size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Maximum height and width in pixels of the low resolution plane.
Upon any sampling call, the requested shape will be downscaled until
the height or width (whichever is larger) does not exceed this maximum
value anymore. Then the noise will be sampled at that shape and later
upscaled back to the requested shape.

	If a single int, this int will be used as a
constant value.

	If a tuple of two int s (a, b), the value will be
sampled from the discrete interval [a..b] once per call.

	If a list of int, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of FrequencyNoise.draw_sample() or
FrequencyNoise.draw_samples().

	upscale_method (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – After generating the noise maps in low resolution environments, they
have to be upscaled to the originally requested shape (i.e. usually
the image size). This parameter controls the interpolation method to
use. See also imresize_many_images() for a
description of possible values.

	If imgaug.ALL, then either nearest or linear or
area or cubic is picked per iteration (all same
probability).

	If str, then that value will always be used as the method
(must be nearest or linear or area or cubic).

	If list of str, then a random value will be picked from
that list per call.

	If StochasticParameter, then a random value will be
sampled from that parameter per call.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.FrequencyNoise(
>>> exponent=-2,
>>> size_px_max=(16, 32),
>>> upscale_method="linear")

Create a parameter that produces noise with cloud-like patterns.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.FromLowerResolution(other_param, size_percent=None, size_px=None, method='nearest', min_size=1)

	Bases: imgaug.parameters.StochasticParameter

Parameter to sample from other parameters at lower image resolutions.

This parameter is intended to be used with parameters that would usually
sample one value per pixel (or one value per pixel and channel). Instead
of sampling from the other parameter at full resolution, it samples at
lower resolution, e.g. 0.5*H x 0.5*W with H being the height and
W being the width. After the low-resolution sampling this parameter
then upscales the result to HxW.

This parameter is intended to produce coarse samples. E.g. combining
this with Binomial can lead to large rectangular areas of
1 s and 0 s.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – The other parameter which is to be sampled on a coarser image.

	size_percent (None or number or iterable of number or imgaug.parameters.StochasticParameter, optional) – Size of the 2d sampling plane in percent of the requested size.
I.e. this is relative to the size provided in the call to
draw_samples(size). Lower values will result in smaller sampling
planes, which are then upsampled to size. This means that lower
values will result in larger rectangles. The size may be provided as
a constant value or a tuple (a, b), which will automatically be
converted to the continuous uniform range [a, b) or a
StochasticParameter, which will be queried per call to
FromLowerResolution.draw_sample() and
FromLowerResolution.draw_samples().

	size_px (None or number or iterable of numbers or imgaug.parameters.StochasticParameter, optional) – Size of the 2d sampling plane in pixels.
Lower values will result in smaller sampling planes, which are then
upsampled to the input size of draw_samples(size).
This means that lower values will result in larger rectangles.
The size may be provided as a constant value or a tuple (a, b),
which will automatically be converted to the discrete uniform
range [a..b] or a StochasticParameter, which will be
queried once per call to FromLowerResolution.draw_sample() and
FromLowerResolution.draw_samples().

	method (str or int or imgaug.parameters.StochasticParameter, optional) – Upsampling/interpolation method to use. This is used after the sampling
is finished and the low resolution plane has to be upsampled to the
requested size in draw_samples(size, ...). The method may be
the same as in imresize_many_images(). Usually
nearest or linear are good choices. nearest will result
in rectangles with sharp edges and linear in rectangles with
blurry and round edges. The method may be provided as a
StochasticParameter, which will be queried once per call to
FromLowerResolution.draw_sample() and
FromLowerResolution.draw_samples().

	min_size (int, optional) – Minimum size in pixels of the low resolution sampling plane.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.FromLowerResolution(
>>> Binomial(0.05),
>>> size_px=(2, 16),
>>> method=Choice(["nearest", "linear"]))

Samples from a binomial distribution with p=0.05. The sampling plane
will always have a size HxWxC with H and W being independently sampled
from [2..16] (i.e. it may range from 2x2xC up to 16x16xC max,
but may also be e.g. 4x8xC). The upsampling method will be nearest
in 50% of all cases and linear in the other 50 percent. The result
will sometimes be rectangular patches of sharp 1 s surrounded by
0 s and sometimes blurry blobs of 1``s, surrounded by values
``<1.0.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.IterativeNoiseAggregator(other_param, iterations=(1, 3), aggregation_method=['max', 'avg'])

	Bases: imgaug.parameters.StochasticParameter

Aggregate multiple iterations of samples from another parameter.

This is supposed to be used in conjunction with SimplexNoise or
FrequencyNoise. If a shape S is requested, it will request
I times S samples from the underlying parameter, where I is
the number of iterations. The I arrays will be combined to a single
array of shape S using an aggregation method, e.g. simple averaging.

	Parameters

	
	other_param (StochasticParameter) – The other parameter from which to sample one or more times.

	iterations (int or iterable of int or list of int or imgaug.parameters.StochasticParameter, optional) –

The number of iterations.

	If a single int, this int will be used as a
constant value.

	If a tuple of two int s (a, b), the value will be
sampled from the discrete interval [a..b] once per call.

	If a list of int, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of
IterativeNoiseAggregator.draw_sample() or
IterativeNoiseAggregator.draw_samples().

	aggregation_method (imgaug.ALL or {‘min’, ‘avg’, ‘max’} or list of str or imgaug.parameters.StochasticParameter, optional) – The method to use to aggregate the samples of multiple iterations
to a single output array. All methods combine several arrays of
shape S each to a single array of shape S and hence work
elementwise. Known methods are min (take the minimum over all
iterations), max (take the maximum) and avg (take the average).

	If an str, it must be one of the described methods and
will be used for all calls..

	If a list of str, it must contain one or more of the
described methods and a random one will be samples once per call.

	If imgaug.ALL, then equivalent to the list
["min", "max", "avg"].

	If StochasticParameter, a value will be sampled from
that parameter once per call and must be one of the described
methods..

“per call” denotes a call of
IterativeNoiseAggregator.draw_sample() or
IterativeNoiseAggregator.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> noise = iap.IterativeNoiseAggregator(
>>> iap.SimplexNoise(),
>>> iterations=(2, 5),
>>> aggregation_method="max")

Create a parameter that – upon each call – generates 2 to 5
arrays of simplex noise with the same shape. Then it combines these
noise maps to a single map using elementwise maximum.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Laplace(loc, scale)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a (continuous) laplace distribution.

This is a wrapper around numpy’s numpy.random.laplace().

	Parameters

	
	loc (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – The position of the distribution peak, similar to the mean in normal
distributions.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Laplace.draw_sample() or
Laplace.draw_samples().

	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – The exponential decay factor, similar to the standard deviation in
gaussian distributions.
If this parameter reaches 0, the output array will be filled with
loc.
Datatype behaviour is the analogous to loc.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Laplace(0, 1.0)

Create a laplace distribution, which’s peak is at 0 and decay is
1.0.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Multiply(other_param, val, elementwise=False)

	Bases: imgaug.parameters.StochasticParameter

Multiply the samples of another stochastic parameter.

	Parameters

	
	other_param (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be multiplied with val.
Let S be the requested shape of samples, then the datatype
behaviour is as follows:

	If a single number, this number will be used as a
constant value to fill an array of shape S.

	If a tuple of two number s (a, b), an array of
shape S will be filled with uniformly sampled values from
the continuous interval [a, b).

	If a list of number, an array of shape S will be
filled with randomly picked values from the list.

	If a StochasticParameter, that parameter will be
queried once per call to generate an array of shape S.

“per call” denotes a call of Multiply.draw_sample() or
Multiply.draw_samples().

	val (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Multiplier to use.
Datatype behaviour is analogous to other_param, though if
elementwise=False (the default), only a single sample will be
generated per call instead of S.

	elementwise (bool, optional) – Controls the sampling behaviour of val.
If set to False, a single samples will be requested from val and
used as the constant multiplier.
If set to True, samples of shape S will be requested from
val and multiplied elementwise with the samples of other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Multiply(iap.Uniform(0.0, 1.0), -1)

Convert a uniform distribution from [0.0, 1.0) to (-1.0, 0.0].

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
imgaug.parameters.Negative(other_param, mode='invert', reroll_count_max=2)

	Convert another parameter’s results to negative values.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be
modified.

	mode ({‘invert’, ‘reroll’}, optional) – How to change the signs. Valid values are invert and reroll.
invert means that wrong signs are simply flipped.
reroll means that all samples with wrong signs are sampled again,
optionally many times, until they randomly end up having the correct
sign.

	reroll_count_max (int, optional) – If mode is set to reroll, this determines how often values may
be rerolled before giving up and simply flipping the sign (as in
mode="invert"). This shouldn’t be set too high, as rerolling is
expensive.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Negative(iap.Normal(0, 1), mode="reroll")

Create a gaussian distribution that has only negative values.
If any positive value is sampled in the process, that sample is resampled
up to two times to get a negative one. If it isn’t negative after the
second resampling step, the sign is simply flipped.

	
class imgaug.parameters.Normal(loc, scale)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a normal/gaussian distribution.

	Parameters

	
	loc (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) –

The mean of the normal distribution.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Laplace.draw_sample() or
Laplace.draw_samples().

	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – The standard deviation of the normal distribution.
If this parameter reaches 0, the output array will be filled with
loc.
Datatype behaviour is the analogous to loc.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Normal(Choice([-1.0, 1.0]), 1.0)

Create a gaussian distribution with a mean that differs by call.
Samples values may sometimes follow N(-1.0, 1.0) and sometimes
N(1.0, 1.0).

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Poisson(lam)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a poisson distribution.

A poisson distribution with lambda=0 has its highest probability at
point 0 and decreases quickly from there.
Poisson distributions are discrete and never negative.

	Parameters

	lam (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) –

Lambda parameter of the poisson distribution.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Poisson.draw_sample() or
Poisson.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Poisson(1)
>>> sample = param.draw_sample()
>>> assert sample >= 0

Create a poisson distribution with lambda=1 and sample a value from
it.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
imgaug.parameters.Positive(other_param, mode='invert', reroll_count_max=2)

	Convert another parameter’s results to positive values.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be
modified.

	mode ({‘invert’, ‘reroll’}, optional) – How to change the signs. Valid values are invert and reroll.
invert means that wrong signs are simply flipped.
reroll means that all samples with wrong signs are sampled again,
optionally many times, until they randomly end up having the correct
sign.

	reroll_count_max (int, optional) – If mode is set to reroll, this determines how often values may
be rerolled before giving up and simply flipping the sign (as in
mode="invert"). This shouldn’t be set too high, as rerolling is
expensive.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Positive(iap.Normal(0, 1), mode="reroll")

Create a gaussian distribution that has only positive values.
If any negative value is sampled in the process, that sample is resampled
up to two times to get a positive one. If it isn’t positive after the
second resampling step, the sign is simply flipped.

	
class imgaug.parameters.Power(other_param, val, elementwise=False)

	Bases: imgaug.parameters.StochasticParameter

Exponentiate the samples of another stochastic parameter.

	Parameters

	
	other_param (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be exponentiated by val.
Let S be the requested shape of samples, then the datatype
behaviour is as follows:

	If a single number, this number will be used as a
constant value to fill an array of shape S.

	If a tuple of two number s (a, b), an array of
shape S will be filled with uniformly sampled values from
the continuous interval [a, b).

	If a list of number, an array of shape S will be
filled with randomly picked values from the list.

	If a StochasticParameter, that parameter will be
queried once per call to generate an array of shape S.

“per call” denotes a call of Power.draw_sample() or
Power.draw_samples().

	val (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Value to use exponentiate the samples of other_param.
Datatype behaviour is analogous to other_param, though if
elementwise=False (the default), only a single sample will be
generated per call instead of S.

	elementwise (bool, optional) – Controls the sampling behaviour of val.
If set to False, a single samples will be requested from val and
used as the constant multiplier.
If set to True, samples of shape S will be requested from
val and used to exponentiate elementwise the samples of other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Power(iap.Uniform(0.0, 1.0), 2)

Converts a uniform range [0.0, 1.0) to a distribution that is peaked
towards 1.0.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.RandomSign(other_param, p_positive=0.5)

	Bases: imgaug.parameters.StochasticParameter

Convert a parameter’s samples randomly to positive or negative values.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sampled values are to be modified.

	p_positive (number) – Fraction of values that are supposed to be turned to positive values.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.RandomSign(iap.Poisson(1))

Create a poisson distribution with alpha=1 that is mirrored/copied (not
flipped) at the y-axis.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Sigmoid(other_param, threshold=(-10, 10), activated=True, mul=1, add=0)

	Bases: imgaug.parameters.StochasticParameter

Apply a sigmoid function to the outputs of another parameter.

This is intended to be used in combination with SimplexNoise or
FrequencyNoise. It pushes the noise values away from ~0.5 and
towards 0.0 or 1.0, making the noise maps more binary.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – The other parameter to which the sigmoid will be applied.

	threshold (number or tuple of number or iterable of number or imgaug.parameters.StochasticParameter, optional) – Sets the value of the sigmoid’s saddle point, i.e. where values
start to quickly shift from 0.0 to 1.0.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Sigmoid.draw_sample() or
Sigmoid.draw_samples().

	activated (bool or number, optional) – Defines whether the sigmoid is activated. If this is False, the
results of other_param will not be altered. This may be set to a
float p in value range``[0.0, 1.0]``, which will result in
activated being True in p percent of all calls.

	mul (number, optional) – The results of other_param will be multiplied with this value before
applying the sigmoid. For noise values (range [0.0, 1.0]) this
should be set to about 20.

	add (number, optional) – This value will be added to the results of other_param before
applying the sigmoid. For noise values (range [0.0, 1.0]) this
should be set to about -10.0, provided mul was set to 20.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Sigmoid(
>>> iap.SimplexNoise(),
>>> activated=0.5,
>>> mul=20,
>>> add=-10)

Applies a sigmoid to simplex noise in 50% of all calls. The noise
results are modified to match the sigmoid’s expected value range. The
sigmoid’s outputs are in the range [0.0, 1.0].

Methods

	copy(self)

	Create a shallow copy of this parameter.

	create_for_noise(other_param[, threshold, …])

	Create a Sigmoid adjusted for noise parameters.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
static create_for_noise(other_param, threshold=(-10, 10), activated=True)

	Create a Sigmoid adjusted for noise parameters.

“noise” here denotes SimplexNoise and FrequencyNoise.

	Parameters

	
	other_param (imgaug.parameters.StochasticParameter) – See __init__().

	threshold (number or tuple of number or iterable of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	activated (bool or number, optional) – See __init__().

	Returns

	A sigmoid adjusted to be used with noise.

	Return type

	Sigmoid

	
class imgaug.parameters.SimplexNoise(size_px_max=(2, 16), upscale_method=['linear', 'nearest'])

	Bases: imgaug.parameters.StochasticParameter

Parameter that generates simplex noise of varying resolutions.

This parameter expects to sample noise for 2d planes, i.e. for
sizes (H, W, [C]) and will return a value in the range [0.0, 1.0]
per spatial location in that plane.

The noise is sampled from low resolution planes and
upscaled to the requested height and width. The size of the low
resolution plane may be defined (large values can be slow) and the
interpolation method for upscaling can be set.

	Parameters

	
	size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Maximum height and width in pixels of the low resolution plane.
Upon any sampling call, the requested shape will be downscaled until
the height or width (whichever is larger) does not exceed this maximum
value anymore. Then the noise will be sampled at that shape and later
upscaled back to the requested shape.

	If a single int, this int will be used as a
constant value.

	If a tuple of two int s (a, b), the value will be
sampled from the discrete interval [a..b] once per call.

	If a list of int, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of SimplexNoise.draw_sample() or
SimplexNoise.draw_samples().

	upscale_method (str or int or list of str or list of int or imgaug.parameters.StochasticParameter, optional) – After generating the noise maps in low resolution environments, they
have to be upscaled to the originally requested shape (i.e. usually
the image size). This parameter controls the interpolation method to
use. See also imresize_many_images() for a
description of possible values.

	If imgaug.ALL, then either nearest or linear or
area or cubic is picked per iteration (all same
probability).

	If str, then that value will always be used as the method
(must be nearest or linear or area or cubic).

	If list of str, then a random value will be picked from
that list per call.

	If StochasticParameter, then a random value will be
sampled from that parameter per call.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.SimplexNoise(upscale_method="linear")

Create a parameter that produces smooth simplex noise of varying sizes.

>>> param = iap.SimplexNoise(
>>> size_px_max=(8, 16),
>>> upscale_method="nearest")

Create a parameter that produces rectangular simplex noise of rather
high detail.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.StochasticParameter

	Bases: object

Abstract parent class for all stochastic parameters.

Stochastic parameters are here all parameters from which values are
supposed to be sampled. Usually the sampled values are to a degree random.
E.g. a stochastic parameter may be the uniform distribution over the
interval [-10, 10]. Samples from that distribution (and therefore the
stochastic parameter) could be 5.2, -3.7, -9.7, 6.4, etc.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
copy(self)

	Create a shallow copy of this parameter.

	Returns

	Shallow copy.

	Return type

	imgaug.parameters.StochasticParameter

	
deepcopy(self)

	Create a deep copy of this parameter.

	Returns

	Deep copy.

	Return type

	imgaug.parameters.StochasticParameter

	
draw_distribution_graph(self, title=None, size=(1000, 1000), bins=100)

	Generate an image visualizing the parameter’s sample distribution.

	Parameters

	
	title (None or False or str, optional) – Title of the plot. None is automatically replaced by a title
derived from str(param). If set to False, no title will be
shown.

	size (tuple of int) – Number of points to sample. This is always expected to have at
least two values. The first defines the number of sampling runs,
the second (and further) dimensions define the size assigned
to each draw_samples()
call. E.g. (10, 20, 15) will lead to 10 calls of
draw_samples(size=(20, 15)). The results will be merged to a
single 1d array.

	bins (int) – Number of bins in the plot histograms.

	Returns

	data – Image of the plot.

	Return type

	(H,W,3) ndarray

	
draw_sample(self, random_state=None)

	Draws a single sample value from this parameter.

	Parameters

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – A seed or random number generator to use during the sampling
process. If None, the global RNG will be used.
See also __init__()
for a similar parameter with more details.

	Returns

	A single sample value.

	Return type

	any

	
draw_samples(self, size, random_state=None)

	Draw one or more samples from the parameter.

	Parameters

	
	size (tuple of int or int) – Number of samples by dimension.

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – A seed or random number generator to use during the sampling
process. If None, the global RNG will be used.
See also __init__()
for a similar parameter with more details.

	Returns

	Sampled values. Usually a numpy ndarray of basically any dtype,
though not strictly limited to numpy arrays. Its shape is expected
to match size.

	Return type

	ndarray

	
class imgaug.parameters.Subtract(other_param, val, elementwise=False)

	Bases: imgaug.parameters.StochasticParameter

Subtract from the samples of another stochastic parameter.

	Parameters

	
	other_param (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Samples of val will be subtracted from samples of this parameter.
Let S be the requested shape of samples, then the datatype
behaviour is as follows:

	If a single number, this number will be used as a
constant value to fill an array of shape S.

	If a tuple of two number s (a, b), an array of
shape S will be filled with uniformly sampled values from
the continuous interval [a, b).

	If a list of number, an array of shape S will be
filled with randomly picked values from the list.

	If a StochasticParameter, that parameter will be
queried once per call to generate an array of shape S.

“per call” denotes a call of Subtract.draw_sample() or
Subtract.draw_samples().

	val (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Value to subtract from the other parameter.
Datatype behaviour is analogous to other_param, though if
elementwise=False (the default), only a single sample will be
generated per call instead of S.

	elementwise (bool, optional) – Controls the sampling behaviour of val.
If set to False, a single samples will be requested from val and
used as the constant multiplier.
If set to True, samples of shape S will be requested from
val and subtracted elementwise from the samples of other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Subtract(iap.Uniform(0.0, 1.0), 1.0)

Convert a uniform distribution from [0.0, 1.0) to [-1.0, 0.0).

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.TruncatedNormal(loc, scale, low=-inf, high=inf)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a truncated normal distribution.

A truncated normal distribution is similar to a normal distribution,
except the domain is smoothly bounded to a min and max value.

This is a wrapper around scipy.stats.truncnorm().

	Parameters

	
	loc (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) –

The mean of the normal distribution.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of TruncatedNormal.draw_sample() or
TruncatedNormal.draw_samples().

	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – The standard deviation of the normal distribution.
If this parameter reaches 0, the output array will be filled with
loc.
Datatype behaviour is the same as for loc.

	low (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – The minimum value of the truncated normal distribution.
Datatype behaviour is the same as for loc.

	high (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – The maximum value of the truncated normal distribution.
Datatype behaviour is the same as for loc.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.TruncatedNormal(0, 5.0, low=-10, high=10)
>>> samples = param.draw_samples(100, random_state=0)
>>> assert np.all(samples >= -10)
>>> assert np.all(samples <= 10)

Create a truncated normal distribution with its minimum at -10.0
and its maximum at 10.0.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Uniform(a, b)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a uniform distribution over [a, b).

	Parameters

	
	a (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Lower bound of the interval.
If a>b, a and b will automatically be flipped.
If a==b, all generated values will be identical to a.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Uniform.draw_sample() or
Uniform.draw_samples().

	b (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Upper bound of the interval. Analogous to a.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Uniform(0, 10.0)
>>> sample = param.draw_sample()
>>> assert 0 <= sample < 10.0

Create and sample from a uniform distribution over [0, 10.0).

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
class imgaug.parameters.Weibull(a)

	Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a (continuous) weibull distribution.

This is a wrapper around numpy’s numpy.random.weibull().

	Parameters

	a (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) –

Shape parameter of the distribution.

	If a single number, this number will be used as a
constant value.

	If a tuple of two number s (a, b), the value will be
sampled from the continuous interval [a, b) once per call.

	If a list of number, a random value will be picked from
the list once per call.

	If a StochasticParameter, that parameter will be
queried once per call.

“per call” denotes a call of Weibull.draw_sample() or
Weibull.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Weibull(a=0.5)

Create a weibull distribution with shape 0.5.

Methods

	copy(self)

	Create a shallow copy of this parameter.

	deepcopy(self)

	Create a deep copy of this parameter.

	draw_distribution_graph(self[, title, size, …])

	Generate an image visualizing the parameter’s sample distribution.

	draw_sample(self[, random_state])

	Draws a single sample value from this parameter.

	draw_samples(self, size[, random_state])

	Draw one or more samples from the parameter.

	
imgaug.parameters.both_np_float_if_one_is_float(a, b)

	

	
imgaug.parameters.draw_distributions_grid(params, rows=None, cols=None, graph_sizes=(350, 350), sample_sizes=None, titles=None)

	

	
imgaug.parameters.force_np_float_dtype(val)

	

	
imgaug.parameters.handle_categorical_string_param(param, name, valid_values=None)

	

	
imgaug.parameters.handle_continuous_param(param, name, value_range=None, tuple_to_uniform=True, list_to_choice=True)

	

	
imgaug.parameters.handle_discrete_kernel_size_param(param, name, value_range=(1, None), allow_floats=True)

	

	
imgaug.parameters.handle_discrete_param(param, name, value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True)

	

	
imgaug.parameters.handle_probability_param(param, name, tuple_to_uniform=False, list_to_choice=False)

	

	
imgaug.parameters.show_distributions_grid(params, rows=None, cols=None, graph_sizes=(350, 350), sample_sizes=None, titles=None)

	

imgaug.multicore

Classes and functions dealing with augmentation on multiple CPU cores.

	
class imgaug.multicore.BackgroundAugmenter(batch_loader, augseq, queue_size=50, nb_workers='auto')

	Bases: object

Deprecated. Augment batches in the background processes.

Deprecated. Use imgaug.multicore.Pool instead.

This is a wrapper around the multiprocessing module.

	Parameters

	
	batch_loader (BatchLoader or multiprocessing.Queue) – BatchLoader object that loads the data fed into the
BackgroundAugmenter, or alternatively a Queue. If a Queue, then it
must be made sure that a final None in the Queue signals that the
loading is finished and no more batches will follow. Otherwise the
BackgroundAugmenter will wait forever for the next batch.

	augseq (Augmenter) – An augmenter to apply to all loaded images.
This may be e.g. a Sequential to apply multiple augmenters.

	queue_size (int) – Size of the queue that is used to temporarily save the augmentation
results. Larger values offer the background processes more room
to save results when the main process doesn’t load much, i.e. they
can lead to smoother and faster training. For large images, high
values can block a lot of RAM though.

	nb_workers (‘auto’ or int) – Number of background workers to spawn.
If auto, it will be set to C-1, where C is the number of
CPU cores.

Methods

	get_batch(self)

	Returns a batch from the queue of augmented batches.

	terminate(self)

	Terminates all background processes immediately.

	all_finished

	

	
all_finished(self)

	

	
get_batch(self)

	Returns a batch from the queue of augmented batches.

If workers are still running and there are no batches in the queue,
it will automatically wait for the next batch.

	Returns

	out – One batch or None if all workers have finished.

	Return type

	None or imgaug.Batch

	
terminate(self)

	Terminates all background processes immediately.

This will also free their RAM.

	
class imgaug.multicore.BatchLoader(load_batch_func, queue_size=50, nb_workers=1, threaded=True)

	Bases: object

Deprecated. Load batches in the background.

Deprecated. Use imgaug.multicore.Pool instead.

Loaded batches can be accesses using imgaug.BatchLoader.queue.

	Parameters

	
	load_batch_func (callable or generator) – Generator or generator function (i.e. function that yields Batch
objects) or a function that returns a list of Batch objects.
Background loading automatically stops when the last batch was yielded
or the last batch in the list was reached.

	queue_size (int, optional) – Maximum number of batches to store in the queue. May be set higher
for small images and/or small batches.

	nb_workers (int, optional) – Number of workers to run in the background.

	threaded (bool, optional) – Whether to run the background processes using threads (True) or full
processes (False).

Methods

	all_finished(self)

	Determine whether the workers have finished the loading process.

	terminate(self)

	Stop all workers.

	count_workers_alive

	

	
all_finished(self)

	Determine whether the workers have finished the loading process.

	Returns

	out – True if all workers have finished. Else False.

	Return type

	bool

	
count_workers_alive(self)

	

	
terminate(self)

	Stop all workers.

	
class imgaug.multicore.Pool(augseq, processes=None, maxtasksperchild=None, seed=None)

	Bases: object

Wrapper around multiprocessing.Pool for multicore augmentation.

	Parameters

	
	augseq (imgaug.augmenters.meta.Augmenter) – The augmentation sequence to apply to batches.

	processes (None or int, optional) – The number of background workers, similar to the same parameter in
multiprocessing.Pool. If None, the number of the machine’s CPU
cores will be used (this counts hyperthreads as CPU cores). If this is
set to a negative value p, then P - abs(p) will be used,
where P is the number of CPU cores. E.g. -1 would use all
cores except one (this is useful to e.g. reserve one core to feed
batches to the GPU).

	maxtasksperchild (None or int, optional) – The number of tasks done per worker process before the process is
killed and restarted, similar to the same parameter in
multiprocessing.Pool. If None, worker processes will not be
automatically restarted.

	seed (None or int, optional) – The seed to use for child processes. If None, a random seed will
be used.

	Attributes

	
	pool

	Return or create the multiprocessing.Pool instance.

Methods

	close(self)

	Close the pool gracefully.

	imap_batches(self, batches[, chunksize, …])

	Augment batches from a generator.

	imap_batches_unordered(self, batches[, …])

	Augment batches from a generator (without preservation of order).

	join(self)

	Wait for the workers to exit.

	map_batches(self, batches[, chunksize])

	Augment a list of batches.

	map_batches_async(self, batches[, …])

	Augment batches asynchonously.

	terminate(self)

	Terminate the pool immediately.

	
close(self)

	Close the pool gracefully.

	
imap_batches(self, batches, chunksize=1, output_buffer_size=None)

	Augment batches from a generator.

Pattern for output buffer constraint is from
https://stackoverflow.com/a/47058399.

	Parameters

	
	batches (generator of imgaug.augmentables.batches.Batch) – The batches to augment, provided as a generator. Each call to the
generator should yield exactly one batch.

	chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to each worker.
Increasing this number can improve performance.

	output_buffer_size (None or int, optional) – Max number of batches to handle at the same time in the whole
pipeline (including already augmented batches that are waiting to
be requested). If the buffer size is reached, no new batches will
be loaded from batches until a produced (i.e. augmented) batch is
consumed (i.e. requested from this method).
The buffer is unlimited if this is set to None. For large
datasets, this should be set to an integer value to avoid filling
the whole RAM if loading+augmentation happens faster than training.

New in version 0.3.0.

	Yields

	imgaug.augmentables.batches.Batch – Augmented batch.

	
imap_batches_unordered(self, batches, chunksize=1, output_buffer_size=None)

	Augment batches from a generator (without preservation of order).

Pattern for output buffer constraint is from
https://stackoverflow.com/a/47058399.

	Parameters

	
	batches (generator of imgaug.augmentables.batches.Batch) – The batches to augment, provided as a generator. Each call to the
generator should yield exactly one batch.

	chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to each worker.
Increasing this number can improve performance.

	output_buffer_size (None or int, optional) – Max number of batches to handle at the same time in the whole
pipeline (including already augmented batches that are waiting to
be requested). If the buffer size is reached, no new batches will
be loaded from batches until a produced (i.e. augmented) batch is
consumed (i.e. requested from this method).
The buffer is unlimited if this is set to None. For large
datasets, this should be set to an integer value to avoid filling
the whole RAM if loading+augmentation happens faster than training.

New in version 0.3.0.

	Yields

	imgaug.augmentables.batches.Batch – Augmented batch.

	
join(self)

	Wait for the workers to exit.

This may only be called after first calling
close() or
terminate().

	
map_batches(self, batches, chunksize=None)

	Augment a list of batches.

	Parameters

	
	batches (list of imgaug.augmentables.batches.Batch) – The batches to augment.

	chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to each worker.
Increasing this number can improve performance.

	Returns

	Augmented batches.

	Return type

	list of imgaug.augmentables.batches.Batch

	
map_batches_async(self, batches, chunksize=None, callback=None, error_callback=None)

	Augment batches asynchonously.

	Parameters

	
	batches (list of imgaug.augmentables.batches.Batch) – The batches to augment.

	chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to each worker.
Increasing this number can improve performance.

	callback (None or callable, optional) – Function to call upon finish. See multiprocessing.Pool.

	error_callback (None or callable, optional) – Function to call upon errors. See multiprocessing.Pool.

	Returns

	Asynchonous result. See multiprocessing.Pool.

	Return type

	multiprocessing.MapResult

	
pool

	Return or create the multiprocessing.Pool instance.

This creates a new instance upon the first call and afterwards
returns that instance (until the property _pool is set to
None again).

	Returns

	The multiprocessing.Pool used internally by this
imgaug.multicore.Pool.

	Return type

	multiprocessing.Pool

	
terminate(self)

	Terminate the pool immediately.

imgaug.dtypes

Functions to interact/analyze with numpy dtypes.

	
imgaug.dtypes.change_dtype_(arr, dtype, clip=True, round=True)

	

	
imgaug.dtypes.change_dtypes_(images, dtypes, clip=True, round=True)

	

	
imgaug.dtypes.clip_(array, min_value, max_value)

	

	
imgaug.dtypes.clip_to_dtype_value_range_(array, dtype, validate=True, validate_values=None)

	

	
imgaug.dtypes.copy_dtypes_for_restore(images, force_list=False)

	

	
imgaug.dtypes.gate_dtypes(dtypes, allowed, disallowed, augmenter=None)

	

	
imgaug.dtypes.get_minimal_dtype(arrays, increase_itemsize_factor=1)

	

	
imgaug.dtypes.get_value_range_of_dtype(dtype)

	

	
imgaug.dtypes.increase_array_resolutions_(arrays, factor)

	

	
imgaug.dtypes.increase_itemsize_of_dtype(dtype, factor)

	

	
imgaug.dtypes.normalize_dtype(dtype)

	

	
imgaug.dtypes.normalize_dtypes(dtypes)

	

	
imgaug.dtypes.promote_array_dtypes_(arrays, dtypes=None, increase_itemsize_factor=1)

	

	
imgaug.dtypes.restore_dtypes_(images, dtypes, clip=True, round=True)

	

imgaug.random

Classes and functions related to pseudo-random number generation.

This module deals with the generation of pseudo-random numbers.
It provides the RNG class, which is the primary
random number generator in imgaug. It also provides various utility
functions related random number generation, such as copying random number
generators or setting their state.

The main benefit of this module is to hide the actually used random number
generation classes and methods behin imgaug-specific classes and methods.
This allows to deal with numpy using two different interfaces (one old
interface in numpy <=1.16 and a new one in numpy 1.17+). It also allows
to potentially switch to a different framework/library in the future.

Definitions

	numpy generator or numpy random number generator: Usually an instance
of numpy.random.Generator. Can often also denote an instance
of numpy.random.RandomState as both have almost the same interface.

	RandomState: An instance of numpy.random.RandomState.
Note that outside of this module, the term “random state” often roughly
translates to “any random number generator with numpy-like interface
in a given state”, i.e. it can then include instances of
numpy.random.Generator or RNG.

	RNG: An instance of RNG.

Examples

>>> import imgaug.random as iarandom
>>> rng = iarandom.RNG(1234)
>>> rng.integers(0, 1000)

Initialize a random number generator with seed 1234, then sample
a single integer from the discrete interval [0, 1000).
This will use a numpy.random.Generator in numpy 1.17+ and
automatically fall back to numpy.random.RandomState in numpy <=1.16.

	
class imgaug.random.RNG(generator)

	Bases: object

Random number generator for imgaug.

This class is a wrapper around numpy.random.Generator and
automatically falls back to numpy.random.RandomState in case of
numpy version 1.16 or lower. It allows to use numpy 1.17’s sampling
functions in 1.16 too and supports a variety of useful functions on
the wrapped sampler, e.g. gettings its state or copying it.

Not supported sampling functions of numpy <=1.16:

	numpy.random.RandomState.rand()

	numpy.random.RandomState.randn()

	numpy.random.RandomState.randint()

	numpy.random.RandomState.random_integers()

	numpy.random.RandomState.random_sample()

	numpy.random.RandomState.ranf()

	numpy.random.RandomState.sample()

	numpy.random.RandomState.seed()

	numpy.random.RandomState.get_state()

	numpy.random.RandomState.set_state()

In choice(), the axis argument is not yet
supported.

	Parameters

	generator (None or int or RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – The numpy random number generator to use. In case of numpy
version 1.17 or later, this shouldn’t be a RandomState as that
class is outdated.
Behaviour for different datatypes:

	If None: The global RNG is wrapped by this RNG (they are then
effectively identical, any sampling on this RNG will affect the
global RNG).

	If int: In numpy 1.17+, the value is used as a seed for a
Generator wrapped by this RNG. I.e. it will be provided as the
entropy to a SeedSequence, which will then be used for an
SFC64 bit generator and wrapped by a Generator.
In numpy <=1.16, the value is used as a seed for a RandomState,
which is then wrapped by this RNG.

	If RNG: That RNG’s generator attribute will be used
as the generator for this RNG, i.e. the same as
RNG(other_rng.generator).

	If numpy.random.Generator: That generator will be wrapped.

	If numpy.random.BitGenerator: A numpy
generator will be created (and wrapped by this RNG) that contains
the bit generator.

	If numpy.random.SeedSequence: A numpy
generator will be created (and wrapped by this RNG) that contains
an SFC64 bit generator initialized with the given
SeedSequence.

	If numpy.random.RandomState: In numpy <=1.16, this
RandomState will be wrapped and used to sample random values.
In numpy 1.17+, a seed will be derived from this RandomState
and a new numpy.generator.Generator based on an SFC64
bit generator will be created and wrapped by this RNG.

	Attributes

	
	state

	Get the state of this RNG.

Methods

	advance_(self)

	Advance the RNG’s internal state in-place by one step.

	beta(self, a, b[, size])

	Call numpy.random.Generator.beta().

	binomial(self, n, p[, size])

	Call numpy.random.Generator.binomial().

	bytes(self, length)

	Call numpy.random.Generator.bytes().

	chisquare(self, df[, size])

	Call numpy.random.Generator.chisquare().

	choice(self, a[, size, replace, p])

	Call numpy.random.Generator.choice().

	copy(self)

	Create a copy of this RNG.

	copy_unless_global_rng(self)

	Create a copy of this RNG unless it is the global RNG.

	create_fully_random()

	Create a new RNG, based on entropy provided from the OS.

	create_pseudo_random_()

	Create a new RNG in pseudo-random fashion.

	derive_rng_(self)

	Create a child RNG.

	derive_rngs_(self, n)

	Create n child RNGs.

	dirichlet(self, alpha[, size])

	Call numpy.random.Generator.dirichlet().

	duplicate(self, n)

	Create a list containing n times this RNG.

	equals(self, other)

	Estimate whether this RNG and other have the same state.

	equals_global_rng(self)

	Estimate whether this RNG has the same state as the global RNG.

	exponential(self[, scale, size])

	Call numpy.random.Generator.exponential().

	f(self, dfnum, dfden[, size])

	Call numpy.random.Generator.f().

	gamma(self, shape[, scale, size])

	Call numpy.random.Generator.gamma().

	generate_seed_(self)

	Sample a random seed.

	generate_seeds_(self, n)

	Generate n random seed values.

	geometric(self, p[, size])

	Call numpy.random.Generator.geometric().

	gumbel(self[, loc, scale, size])

	Call numpy.random.Generator.gumbel().

	hypergeometric(self, ngood, nbad, nsample[, …])

	Call numpy.random.Generator.hypergeometric().

	integers(self, low[, high, size, dtype, …])

	Call numpy’s integers() or randint().

	is_global_rng(self)

	Estimate whether this RNG is identical to the global RNG.

	laplace(self[, loc, scale, size])

	Call numpy.random.Generator.laplace().

	logistic(self[, loc, scale, size])

	Call numpy.random.Generator.logistic().

	lognormal(self[, mean, sigma, size])

	Call numpy.random.Generator.lognormal().

	logseries(self, p[, size])

	Call numpy.random.Generator.logseries().

	multinomial(self, n, pvals[, size])

	Call numpy.random.Generator.multinomial().

	multivariate_normal(self, mean, cov[, size, …])

	Call numpy.random.Generator.multivariate_normal().

	negative_binomial(self, n, p[, size])

	Call numpy.random.Generator.negative_binomial().

	noncentral_chisquare(self, df, nonc[, size])

	Call numpy.random.Generator.noncentral_chisquare().

	noncentral_f(self, dfnum, dfden, nonc[, size])

	Call numpy.random.Generator.noncentral_f().

	normal(self[, loc, scale, size])

	Call numpy.random.Generator.normal().

	pareto(self, a[, size])

	Call numpy.random.Generator.pareto().

	permutation(self, x)

	Call numpy.random.Generator.permutation().

	poisson(self[, lam, size])

	Call numpy.random.Generator.poisson().

	power(self, a[, size])

	Call numpy.random.Generator.power().

	rand(self, *args)

	Call numpy.random.RandomState.rand().

	randint(self, low[, high, size, dtype])

	Call numpy.random.RandomState.randint().

	randn(self, *args)

	Call numpy.random.RandomState.randn().

	random(self, size[, dtype, out])

	Call numpy’s random() or random_sample().

	random_integers(self, low[, high, size])

	Call numpy.random.RandomState.random_integers().

	random_sample(self, size)

	Call numpy.random.RandomState.random_sample().

	rayleigh(self[, scale, size])

	Call numpy.random.Generator.rayleigh().

	reset_cache_(self)

	Reset all cache of this RNG.

	set_state_(self, value)

	Set the state if the RNG in-place.

	shuffle(self, x)

	Call numpy.random.Generator.shuffle().

	standard_cauchy(self[, size])

	Call numpy.random.Generator.standard_cauchy().

	standard_exponential(self[, size, dtype, …])

	Call numpy.random.Generator.standard_exponential().

	standard_gamma(self, shape[, size, dtype, out])

	Call numpy.random.Generator.standard_gamma().

	standard_normal(self[, size, dtype, out])

	Call numpy.random.Generator.standard_normal().

	standard_t(self, df[, size])

	Call numpy.random.Generator.standard_t().

	tomaxint(self[, size])

	Call numpy.random.RandomState.tomaxint().

	triangular(self, left, mode, right[, size])

	Call numpy.random.Generator.triangular().

	uniform(self[, low, high, size])

	Call numpy.random.Generator.uniform().

	use_state_of_(self, other)

	Copy and use (in-place) the state of another RNG.

	vonmises(self, mu, kappa[, size])

	Call numpy.random.Generator.vonmises().

	wald(self, mean, scale[, size])

	Call numpy.random.Generator.wald().

	weibull(self, a[, size])

	Call numpy.random.Generator.weibull().

	zipf(self, a[, size])

	Call numpy.random.Generator.zipf().

	
advance_(self)

	Advance the RNG’s internal state in-place by one step.

This advances the underlying generator’s state.

Note

This simply samples one or more random values. This means that
a call of this method will not completely change the outputs of
the next called sampling method. To achieve more drastic output
changes, call derive_rng_().

	Returns

	The RNG itself.

	Return type

	RNG

	
beta(self, a, b, size=None)

	Call numpy.random.Generator.beta().

	
binomial(self, n, p, size=None)

	Call numpy.random.Generator.binomial().

	
bytes(self, length)

	Call numpy.random.Generator.bytes().

	
chisquare(self, df, size=None)

	Call numpy.random.Generator.chisquare().

	
choice(self, a, size=None, replace=True, p=None)

	Call numpy.random.Generator.choice().

	
copy(self)

	Create a copy of this RNG.

	Returns

	Copy of this RNG. The copy will produce the same random samples.

	Return type

	RNG

	
copy_unless_global_rng(self)

	Create a copy of this RNG unless it is the global RNG.

	Returns

	Copy of this RNG unless it is the global RNG. In the latter case
the RNG instance itself will be returned without any changes.

	Return type

	RNG

	
classmethod create_fully_random()

	Create a new RNG, based on entropy provided from the OS.

	Returns

	A new RNG. It is not derived from any other previously created
RNG, nor does it depend on the seeding of imgaug or numpy.

	Return type

	RNG

	
classmethod create_pseudo_random_()

	Create a new RNG in pseudo-random fashion.

A seed will be sampled from the current global RNG and used to
initialize the new RNG.

This advandes the global RNG’s state.

	Returns

	A new RNG, derived from the current global RNG.

	Return type

	RNG

	
derive_rng_(self)

	Create a child RNG.

This advances the underlying generator’s state.

	Returns

	A child RNG.

	Return type

	RNG

	
derive_rngs_(self, n)

	Create n child RNGs.

This advances the underlying generator’s state.

	Parameters

	n (int) – Number of child RNGs to derive.

	Returns

	Child RNGs.

	Return type

	list of RNG

	
dirichlet(self, alpha, size=None)

	Call numpy.random.Generator.dirichlet().

	
duplicate(self, n)

	Create a list containing n times this RNG.

This method was mainly introduced as a replacement for previous
calls of derive_rngs_(). These calls
turned out to be very slow in numpy 1.17+ and were hence replaced
by simple duplication (except for the cases where child RNGs
absolutely had to be created).
This RNG duplication method doesn’t help very much against code
repetition, but it does mark the points where it would be desirable
to create child RNGs for various reasons. Once deriving child RNGs
is somehow sped up in the future, these calls can again be
easily found and replaced.

	Parameters

	n (int) – Length of the output list.

	Returns

	List containing n times this RNG (same instances, no copies).

	Return type

	list of RNG

	
equals(self, other)

	Estimate whether this RNG and other have the same state.

	Returns

	True if this RNG’s generator and the generator of other
have equal internal states. False otherwise.

	Return type

	bool

	
equals_global_rng(self)

	Estimate whether this RNG has the same state as the global RNG.

	Returns

	True is this RNG has the same state as the global RNG, i.e.
it will lead to the same sampled values given the same sampling
method calls. The RNGs don’t have to be identical object
instances, which protects against e.g. copy effects.
False otherwise.

	Return type

	bool

	
exponential(self, scale=1.0, size=None)

	Call numpy.random.Generator.exponential().

	
f(self, dfnum, dfden, size=None)

	Call numpy.random.Generator.f().

	
gamma(self, shape, scale=1.0, size=None)

	Call numpy.random.Generator.gamma().

	
generate_seed_(self)

	Sample a random seed.

This advances the underlying generator’s state.

See SEED_MIN_VALUE and SEED_MAX_VALUE for the seed’s value
range.

	Returns

	The sampled seed.

	Return type

	int

	
generate_seeds_(self, n)

	Generate n random seed values.

This advances the underlying generator’s state.

See SEED_MIN_VALUE and SEED_MAX_VALUE for the seed’s value
range.

	Parameters

	n (int) – Number of seeds to sample.

	Returns

	1D-array of int32 seeds.

	Return type

	ndarray

	
geometric(self, p, size=None)

	Call numpy.random.Generator.geometric().

	
gumbel(self, loc=0.0, scale=1.0, size=None)

	Call numpy.random.Generator.gumbel().

	
hypergeometric(self, ngood, nbad, nsample, size=None)

	Call numpy.random.Generator.hypergeometric().

	
integers(self, low, high=None, size=None, dtype='int32', endpoint=False)

	Call numpy’s integers() or randint().

Note

Changed dtype argument default value from numpy’s int64 to
int32.

	
is_global_rng(self)

	Estimate whether this RNG is identical to the global RNG.

	Returns

	True is this RNG’s underlying generator is identical to the
global RNG’s underlying generator. The RNGs themselves may
be different, only the wrapped generator matters.
False otherwise.

	Return type

	bool

	
laplace(self, loc=0.0, scale=1.0, size=None)

	Call numpy.random.Generator.laplace().

	
logistic(self, loc=0.0, scale=1.0, size=None)

	Call numpy.random.Generator.logistic().

	
lognormal(self, mean=0.0, sigma=1.0, size=None)

	Call numpy.random.Generator.lognormal().

	
logseries(self, p, size=None)

	Call numpy.random.Generator.logseries().

	
multinomial(self, n, pvals, size=None)

	Call numpy.random.Generator.multinomial().

	
multivariate_normal(self, mean, cov, size=None, check_valid='warn', tol=1e-08)

	Call numpy.random.Generator.multivariate_normal().

	
negative_binomial(self, n, p, size=None)

	Call numpy.random.Generator.negative_binomial().

	
noncentral_chisquare(self, df, nonc, size=None)

	Call numpy.random.Generator.noncentral_chisquare().

	
noncentral_f(self, dfnum, dfden, nonc, size=None)

	Call numpy.random.Generator.noncentral_f().

	
normal(self, loc=0.0, scale=1.0, size=None)

	Call numpy.random.Generator.normal().

	
pareto(self, a, size=None)

	Call numpy.random.Generator.pareto().

	
permutation(self, x)

	Call numpy.random.Generator.permutation().

	
poisson(self, lam=1.0, size=None)

	Call numpy.random.Generator.poisson().

	
power(self, a, size=None)

	Call numpy.random.Generator.power().

	
rand(self, *args)

	Call numpy.random.RandomState.rand().

Warning

This method is outdated in numpy. Use RNG.random() instead.

Added in 0.4.0.

	
randint(self, low, high=None, size=None, dtype='int32')

	Call numpy.random.RandomState.randint().

Note

Changed dtype argument default value from numpy’s I to
int32.

Warning

This method is outdated in numpy. Use RNG.integers()
instead.

Added in 0.4.0.

	
randn(self, *args)

	Call numpy.random.RandomState.randn().

Warning

This method is outdated in numpy. Use RNG.standard_normal()
instead.

Added in 0.4.0.

	
random(self, size, dtype='float32', out=None)

	Call numpy’s random() or random_sample().

Note

Changed dtype argument default value from numpy’s d to
float32.

	
random_integers(self, low, high=None, size=None)

	Call numpy.random.RandomState.random_integers().

Warning

This method is outdated in numpy. Use RNG.integers()
instead.

Added in 0.4.0.

	
random_sample(self, size)

	Call numpy.random.RandomState.random_sample().

Warning

This method is outdated in numpy. Use RNG.uniform()
instead.

Added in 0.4.0.

	
rayleigh(self, scale=1.0, size=None)

	Call numpy.random.Generator.rayleigh().

	
reset_cache_(self)

	Reset all cache of this RNG.

	Returns

	The RNG itself.

	Return type

	RNG

	
set_state_(self, value)

	Set the state if the RNG in-place.

	Parameters

	value (tuple or dict) – The new state of the RNG.
Should correspond to the output of the state property.

	Returns

	The RNG itself.

	Return type

	RNG

	
shuffle(self, x)

	Call numpy.random.Generator.shuffle().

	
standard_cauchy(self, size=None)

	Call numpy.random.Generator.standard_cauchy().

	
standard_exponential(self, size=None, dtype='float32', method='zig', out=None)

	Call numpy.random.Generator.standard_exponential().

Note

Changed dtype argument default value from numpy’s d to
float32.

	
standard_gamma(self, shape, size=None, dtype='float32', out=None)

	Call numpy.random.Generator.standard_gamma().

Note

Changed dtype argument default value from numpy’s d to
float32.

	
standard_normal(self, size=None, dtype='float32', out=None)

	Call numpy.random.Generator.standard_normal().

Note

Changed dtype argument default value from numpy’s d to
float32.

	
standard_t(self, df, size=None)

	Call numpy.random.Generator.standard_t().

	
state

	Get the state of this RNG.

	Returns

	The state of the RNG.
In numpy 1.17+, the bit generator’s state will be returned.
In numpy <=1.16, the RandomState ‘s state is returned.
In both cases the state is a copy. In-place changes will not affect
the RNG.

	Return type

	tuple or dict

	
tomaxint(self, size=None)

	Call numpy.random.RandomState.tomaxint().

Warning

This method is outdated in numpy. Use RNG.integers()
instead.

Added in 0.4.0.

	
triangular(self, left, mode, right, size=None)

	Call numpy.random.Generator.triangular().

	
uniform(self, low=0.0, high=1.0, size=None)

	Call numpy.random.Generator.uniform().

	
use_state_of_(self, other)

	Copy and use (in-place) the state of another RNG.

Note

It is often sensible to first verify that neither this RNG nor
other are identical to the global RNG.

	Parameters

	other (RNG) – The other RNG, which’s state will be copied.

	Returns

	The RNG itself.

	Return type

	RNG

	
vonmises(self, mu, kappa, size=None)

	Call numpy.random.Generator.vonmises().

	
wald(self, mean, scale, size=None)

	Call numpy.random.Generator.wald().

	
weibull(self, a, size=None)

	Call numpy.random.Generator.weibull().

	
zipf(self, a, size=None)

	Call numpy.random.Generator.zipf().

	
imgaug.random.advance_generator_(generator)

	Advance a numpy random generator’s internal state in-place by one step.

This advances the generator’s state.

Note

This simply samples one or more random values. This means that
a call of this method will not completely change the outputs of
the next called sampling method. To achieve more drastic output
changes, call derive_generator_().

	Parameters

	generator (numpy.random.Generator or numpy.random.RandomState) – Generator of which to advance the internal state.

	
imgaug.random.convert_seed_sequence_to_generator(seed_sequence)

	Convert a seed sequence to a numpy (random number) generator.

	Parameters

	seed_sequence (numpy.random.SeedSequence) – The seed value to use.

	Returns

	Generator initialized with the provided seed sequence.

	Return type

	numpy.random.Generator

	
imgaug.random.convert_seed_to_generator(entropy)

	Convert a seed value to a numpy (random number) generator.

	Parameters

	entropy (int) – The seed value to use.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
Both are initialized with the provided seed.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.copy_generator(generator)

	Copy an existing numpy (random number) generator.

	Parameters

	generator (numpy.random.Generator or numpy.random.RandomState) – The generator to copy.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
Both are copies of the input argument.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.copy_generator_unless_global_generator(generator)

	Copy a numpy generator unless it is the current global generator.

“global generator” here denotes the generator contained in the
global RNG’s .generator attribute.

	Parameters

	generator (numpy.random.Generator or numpy.random.RandomState) – The generator to copy.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
Both are copies of the input argument, unless that input is
identical to the global generator. If it is identical, the
instance itself will be returned without copying it.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.create_fully_random_generator()

	Create a new numpy (random) generator, derived from OS’s entropy.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
Both are initialized with entropy requested from the OS. They are
hence independent of entered seeds or the library’s global RNG.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.create_pseudo_random_generator_()

	Create a new numpy (random) generator, derived from the global RNG.

This function advances the global RNG’s state.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
Both are initialized with a seed sampled from the global RNG.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.derive_generator_(generator)

	Create a child numpy (random number) generator from an existing one.

This advances the generator’s state.

	Parameters

	generator (numpy.random.Generator or numpy.random.RandomState) – The generator from which to derive a new child generator.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
In both cases a derived child generator.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.derive_generators_(generator, n)

	Create child numpy (random number) generators from an existing one.

	Parameters

	
	generator (numpy.random.Generator or numpy.random.RandomState) – The generator from which to derive new child generators.

	n (int) – Number of child generators to derive.

	Returns

	In numpy <=1.16 a list of RandomState s,
in 1.17+ a list of Generator s.
In both cases lists of derived child generators.

	Return type

	list of numpy.random.Generator or list of numpy.random.RandomState

	
imgaug.random.generate_seed_(generator)

	Sample a seed from the provided generator.

This function advances the generator’s state.

See SEED_MIN_VALUE and SEED_MAX_VALUE for the seed’s value
range.

	Parameters

	generator (numpy.random.Generator or numpy.random.RandomState) – The generator from which to sample the seed.

	Returns

	The sampled seed.

	Return type

	int

	
imgaug.random.generate_seeds_(generator, n)

	Sample n seeds from the provided generator.

This function advances the generator’s state.

	Parameters

	
	generator (numpy.random.Generator or numpy.random.RandomState) – The generator from which to sample the seed.

	n (int) – Number of seeds to sample.

	Returns

	1D-array of int32 seeds.

	Return type

	ndarray

	
imgaug.random.get_generator_state(generator)

	Get the state of this provided generator.

	Parameters

	generator (numpy.random.Generator or numpy.random.RandomState) – The generator, which’s state is supposed to be extracted.

	Returns

	The state of the generator.
In numpy 1.17+, the bit generator’s state will be returned.
In numpy <=1.16, the RandomState ‘s state is returned.
In both cases the state is a copy. In-place changes will not affect
the RNG.

	Return type

	tuple or dict

	
imgaug.random.get_global_rng()

	Get or create the current global RNG of imgaug.

Note that the first call to this function will create a global RNG.

	Returns

	The global RNG to use.

	Return type

	RNG

	
imgaug.random.is_generator_equal_to(generator, other_generator)

	Estimate whether two generator have the same class and state.

	Parameters

	
	generator (numpy.random.Generator or numpy.random.RandomState) – First generator used in the comparison.

	other_generator (numpy.random.Generator or numpy.random.RandomState) – Second generator used in the comparison.

	Returns

	True if generator ‘s class and state are the same as the
class and state of other_generator. False otherwise.

	Return type

	bool

	
imgaug.random.normalize_generator(generator)

	Normalize various inputs to a numpy (random number) generator.

This function will first copy the provided argument, i.e. it never returns
a provided instance itself.

	Parameters

	generator (None or int or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – The numpy random number generator to normalize. In case of numpy
version 1.17 or later, this shouldn’t be a RandomState as that
class is outdated.
Behaviour for different datatypes:

	If None: The global RNG’s generator is returned.

	If int: In numpy 1.17+, the value is used as a seed for a
Generator, i.e. it will be provided as the entropy to a
SeedSequence, which will then be used for an SFC64 bit
generator and wrapped by a Generator, which is then returned.
In numpy <=1.16, the value is used as a seed for a RandomState,
which will then be returned.

	If numpy.random.Generator: That generator will be
returned.

	If numpy.random.BitGenerator: A numpy
generator will be created and returned that contains the bit
generator.

	If numpy.random.SeedSequence: A numpy
generator will be created and returned that contains an SFC64
bit generator initialized with the given SeedSequence.

	If numpy.random.RandomState: In numpy <=1.16, this
RandomState will be returned. In numpy 1.17+, a seed will be
derived from this RandomState and a new
numpy.generator.Generator based on an SFC64 bit generator
will be created and returned.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator (even if
the input was a RandomState).

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.normalize_generator_(generator)

	Normalize in-place various inputs to a numpy (random number) generator.

This function will try to return the provided instance itself.

	Parameters

	generator (None or int or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – See normalize_generator().

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator (even if
the input was a RandomState).

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.polyfill_integers(generator, low, high=None, size=None, dtype='int32', endpoint=False)

	Sample integers from a generator in different numpy versions.

	Parameters

	
	generator (numpy.random.Generator or numpy.random.RandomState) – The generator to sample from. If it is a RandomState,
numpy.random.RandomState.randint() will be called,
otherwise numpy.random.Generator.integers().

	low (int or array-like of ints) – See numpy.random.Generator.integers().

	high (int or array-like of ints, optional) – See numpy.random.Generator.integers().

	size (int or tuple of ints, optional) – See numpy.random.Generator.integers().

	dtype ({str, dtype}, optional) – See numpy.random.Generator.integers().

	endpoint (bool, optional) – See numpy.random.Generator.integers().

	Returns

	See numpy.random.Generator.integers().

	Return type

	int or ndarray of ints

	
imgaug.random.polyfill_random(generator, size, dtype='float32', out=None)

	Sample random floats from a generator in different numpy versions.

	Parameters

	
	generator (numpy.random.Generator or numpy.random.RandomState) – The generator to sample from. Both RandomState and Generator
support random(), but with different interfaces.

	size (int or tuple of ints, optional) – See numpy.random.Generator.random().

	dtype ({str, dtype}, optional) – See numpy.random.Generator.random().

	out (ndarray, optional) – See numpy.random.Generator.random().

	Returns

	See numpy.random.Generator.random().

	Return type

	float or ndarray of floats

	
imgaug.random.reset_generator_cache_(generator)

	Reset a numpy (random number) generator’s internal cache.

This function modifies the generator’s state in-place.

	Parameters

	generator (numpy.random.Generator or numpy.random.RandomState) – The generator of which to reset the cache.

	Returns

	In numpy <=1.16 a RandomState, in 1.17+ a Generator.
In both cases the input argument itself.

	Return type

	numpy.random.Generator or numpy.random.RandomState

	
imgaug.random.seed(entropy)

	Set the seed of imgaug’s global RNG (in-place).

The global RNG controls most of the “randomness” in imgaug.

The global RNG is the default one used by all augmenters. Under special
circumstances (e.g. when an augmenter is switched to deterministic mode),
the global RNG is replaced with a local one. The state of that replacement
may be dependent on the global RNG’s state at the time of creating the
child RNG.

	Parameters

	entropy (int) – The seed value to use.

	
imgaug.random.set_generator_state_(generator, state)

	Set the state of a numpy (random number) generator in-place.

	Parameters

	
	generator (numpy.random.Generator or numpy.random.RandomState) – The generator, which’s state is supposed to be modified.

	state (tuple or dict) – The new state of the generator.
Should correspond to the output of
get_generator_state().

	
imgaug.random.supports_new_numpy_rng_style()

	Determine whether numpy supports the new random interface (v1.17+).

	Returns

	True if the new random interface is supported by numpy, i.e.
if numpy has version 1.17 or later. Otherwise False, i.e.
numpy has version 1.16 or older and numpy.random.RandomState
should be used instead.

	Return type

	bool

	
class imgaug.random.temporary_numpy_seed(entropy=None)

	Bases: object

Context to temporarily alter the random state of numpy.random.

The random state’s internal state will be set back to the original one
once the context finishes.

Added in 0.4.0.

	Parameters

	entropy (None or int) – The seed value to use.
If None then the seed will not be altered and the internal state
of numpy.random will not be reset back upon context exit (i.e.
this context will do nothing).

imgaug.validation

Helper functions to validate input data and produce error messages.

	
imgaug.validation.assert_is_iterable_of(iterable_var, classes)

	Assert that iterable_var only contains instances of given classes.

	Parameters

	
	iterable_var (iterable) – See is_iterable_of().

	classes (type or iterable of type) – See is_iterable_of().

	
imgaug.validation.convert_iterable_to_string_of_types(iterable_var)

	Convert an iterable of values to a string of their types.

	Parameters

	iterable_var (iterable) – An iterable of variables, e.g. a list of integers.

	Returns

	String representation of the types in iterable_var. One per item
in iterable_var. Separated by commas.

	Return type

	str

	
imgaug.validation.is_iterable_of(iterable_var, classes)

	Check whether iterable_var contains only instances of given classes.

	Parameters

	
	iterable_var (iterable) – An iterable of items that will be matched against classes.

	classes (type or iterable of type) – One or more classes that each item in var must be an instanceof.
If this is an iterable, a single match per item is enough.

	Returns

	Whether var only contains instances of classes.
If var was empty, True will be returned.

	Return type

	bool

imgaug.augmentables.base

Interfaces used by augmentable objects.

Added in 0.4.0.

	
class imgaug.augmentables.base.IAugmentable

	Bases: object

Interface of augmentable objects.

This interface is right now only used to “mark” augmentable objects.
It does not enforce any methods yet (but will probably in the future).

Currently, only *OnImage clases are marked as augmentable.
Non-OnImage objects are normalized to OnImage-objects.
Batches are not yet marked as augmentable, but might be in the future.

Added in 0.4.0.

imgaug.augmentables.batches

Classes representing batches of normalized or unnormalized data.

	
class imgaug.augmentables.batches.Batch(images=None, heatmaps=None, segmentation_maps=None, keypoints=None, bounding_boxes=None, polygons=None, line_strings=None, data=None)

	Bases: object

Class encapsulating a batch before and after augmentation.

	Parameters

	
	images (None or (N,H,W,C) ndarray or list of (H,W,C) ndarray) – The images to augment.

	heatmaps (None or list of imgaug.augmentables.heatmaps.HeatmapsOnImage) – The heatmaps to augment.

	segmentation_maps (None or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – The segmentation maps to augment.

	keypoints (None or list of imgaug.augmentables.kps.KeypointOnImage) – The keypoints to augment.

	bounding_boxes (None or list of imgaug.augmentables.bbs.BoundingBoxesOnImage) – The bounding boxes to augment.

	polygons (None or list of imgaug.augmentables.polys.PolygonsOnImage) – The polygons to augment.

	line_strings (None or list of imgaug.augmentables.lines.LineStringsOnImage) – The line strings to augment.

	data – Additional data that is saved in the batch and may be read out
after augmentation. This could e.g. contain filepaths to each image
in images. As this object is usually used for background
augmentation with multiple processes, the augmented Batch objects might
not be returned in the original order, making this information useful.

	Attributes

	
	bounding_boxes

	Deprecated. Use Batch.bounding_boxes_unaug instead.

	heatmaps

	Deprecated. Use Batch.heatmaps_unaug instead.

	images

	Deprecated. Use Batch.images_unaug instead.

	keypoints

	Deprecated. Use Batch.keypoints_unaug instead.

	segmentation_maps

	Deprecated. Use Batch.segmentation_maps_unaug instead.

Methods

	deepcopy(self[, images_unaug, images_aug, …])

	Copy this batch and all of its column values.

	fill_from_batch_in_augmentation_(self, …)

	Set the columns in this batch to the column values of another batch.

	get_column_names(self)

	Get the names of types of augmentables that contain data.

	to_batch_in_augmentation(self)

	Convert this batch to a _BatchInAugmentation instance.

	to_normalized_batch(self)

	Return this batch.

	
bounding_boxes

	Deprecated. Use Batch.bounding_boxes_unaug instead.

Get unaugmented bounding boxes.

	
deepcopy(self, images_unaug='DEFAULT', images_aug='DEFAULT', heatmaps_unaug='DEFAULT', heatmaps_aug='DEFAULT', segmentation_maps_unaug='DEFAULT', segmentation_maps_aug='DEFAULT', keypoints_unaug='DEFAULT', keypoints_aug='DEFAULT', bounding_boxes_unaug='DEFAULT', bounding_boxes_aug='DEFAULT', polygons_unaug='DEFAULT', polygons_aug='DEFAULT', line_strings_unaug='DEFAULT', line_strings_aug='DEFAULT')

	Copy this batch and all of its column values.

	Parameters

	
	images_unaug (imgaug.augmentables.batches.DEFAULT or None or (N,H,W,C) ndarray or list of (H,W,C) ndarray) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	images_aug (imgaug.augmentables.batches.DEFAULT or None or (N,H,W,C) ndarray or list of (H,W,C) ndarray) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	heatmaps_unaug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.heatmaps.HeatmapsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	heatmaps_aug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.heatmaps.HeatmapsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	segmentation_maps_unaug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	segmentation_maps_aug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	keypoints_unaug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.kps.KeypointOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	keypoints_aug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.kps.KeypointOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	bounding_boxes_unaug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.bbs.BoundingBoxesOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	bounding_boxes_aug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.bbs.BoundingBoxesOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	polygons_unaug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.polys.PolygonsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	polygons_aug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.polys.PolygonsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	line_strings_unaug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.lines.LineStringsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	line_strings_aug (imgaug.augmentables.batches.DEFAULT or None or list of imgaug.augmentables.lines.LineStringsOnImage) – Copies the current attribute value without changes if set to
imgaug.augmentables.batches.DEFAULT.
Otherwise same as in Batch.__init__().

	Returns

	Deep copy of the batch, optionally with new attributes.

	Return type

	Batch

	
fill_from_batch_in_augmentation_(self, batch_in_augmentation)

	Set the columns in this batch to the column values of another batch.

This method works in-place.

Added in 0.4.0.

	Parameters

	batch_in_augmentation (_BatchInAugmentation) – Batch of which to use the column values.
The values are not copied. Only their references are used.

	Returns

	The updated batch. (Modified in-place.)

	Return type

	Batch

	
get_column_names(self)

	Get the names of types of augmentables that contain data.

This method is intended for situations where one wants to know which
data is contained in the batch that has to be augmented, visualized
or something similar.

Added in 0.4.0.

	Returns

	Names of types of augmentables. E.g. ["images", "polygons"].

	Return type

	list of str

	
heatmaps

	Deprecated. Use Batch.heatmaps_unaug instead.

Get unaugmented heatmaps.

	
images

	Deprecated. Use Batch.images_unaug instead.

Get unaugmented images.

	
keypoints

	Deprecated. Use Batch.keypoints_unaug instead.

Get unaugmented keypoints.

	
segmentation_maps

	Deprecated. Use Batch.segmentation_maps_unaug instead.

Get unaugmented segmentation maps.

	
to_batch_in_augmentation(self)

	Convert this batch to a _BatchInAugmentation instance.

Added in 0.4.0.

	Returns

	The converted batch.

	Return type

	imgaug.augmentables.batches._BatchInAugmentation

	
to_normalized_batch(self)

	Return this batch.

This method does nothing and only exists to simplify interfaces
that accept both UnnormalizedBatch and Batch.

Added in 0.4.0.

	Returns

	This batch (not copied).

	Return type

	imgaug.augmentables.batches.Batch

	
class imgaug.augmentables.batches.UnnormalizedBatch(images=None, heatmaps=None, segmentation_maps=None, keypoints=None, bounding_boxes=None, polygons=None, line_strings=None, data=None)

	Bases: object

Class for batches of unnormalized data before and after augmentation.

	Parameters

	
	images (None or (N,H,W,C) ndarray or (N,H,W) ndarray or iterable of (H,W,C) ndarray or iterable of (H,W) ndarray) – The images to augment.

	heatmaps (None or (N,H,W,C) ndarray or imgaug.augmentables.heatmaps.HeatmapsOnImage or iterable of (H,W,C) ndarray or iterable of imgaug.augmentables.heatmaps.HeatmapsOnImage) – The heatmaps to augment.
If anything else than HeatmapsOnImage, then the number of heatmaps
must match the number of images provided via parameter images.
The number is contained either in N or the first iterable’s size.

	segmentation_maps (None or (N,H,W) ndarray or imgaug.augmentables.segmaps.SegmentationMapsOnImage or iterable of (H,W) ndarray or iterable of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – The segmentation maps to augment.
If anything else than SegmentationMapsOnImage, then the number of
segmaps must match the number of images provided via parameter
images. The number is contained either in N or the first
iterable’s size.

	keypoints (None or list of (N,K,2) ndarray or tuple of number or imgaug.augmentables.kps.Keypoint or iterable of (K,2) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.kps.KeypointOnImage or iterable of iterable of tuple of number or iterable of iterable of imgaug.augmentables.kps.Keypoint) – The keypoints to augment.
If a tuple (or iterable(s) of tuple), then iterpreted as (x,y)
coordinates and must hence contain two numbers.
A single tuple represents a single coordinate on one image, an
iterable of tuples the coordinates on one image and an iterable of
iterable of tuples the coordinates on several images. Analogous if
Keypoint objects are used instead of tuples.
If an ndarray, then N denotes the number of images and K the
number of keypoints on each image.
If anything else than KeypointsOnImage is provided, then the
number of keypoint groups must match the number of images provided
via parameter images. The number is contained e.g. in N or
in case of “iterable of iterable of tuples” in the first iterable’s
size.

	bounding_boxes (None or (N,B,4) ndarray or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage or iterable of (B,4) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.bbs.BoundingBox or iterable of imgaug.augmentables.bbs.BoundingBoxesOnImage or iterable of iterable of tuple of number or iterable of iterable imgaug.augmentables.bbs.BoundingBox) – The bounding boxes to augment.
This is analogous to the keypoints parameter. However, each
tuple – and also the last index in case of arrays – has size 4,
denoting the bounding box coordinates x1, y1, x2 and y2.

	polygons (None or (N,#polys,#points,2) ndarray or imgaug.augmentables.polys.Polygon or imgaug.augmentables.polys.PolygonsOnImage or iterable of (#polys,#points,2) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.polys.Polygon or iterable of imgaug.augmentables.polys.PolygonsOnImage or iterable of iterable of (#points,2) ndarray or iterable of iterable of tuple of number or iterable of iterable of imgaug.augmentables.kps.Keypoint or iterable of iterable of imgaug.augmentables.polys.Polygon or iterable of iterable of iterable of tuple of number or iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint) – The polygons to augment.
This is similar to the keypoints parameter. However, each polygon
may be made up of several (x,y) coordinates (three or more are
required for valid polygons).
The following datatypes will be interpreted as a single polygon on a
single image:

	imgaug.augmentables.polys.Polygon

	iterable of tuple of number

	iterable of imgaug.augmentables.kps.Keypoint

The following datatypes will be interpreted as multiple polygons on a
single image:

	imgaug.augmentables.polys.PolygonsOnImage

	iterable of imgaug.augmentables.polys.Polygon

	iterable of iterable of tuple of number

	iterable of iterable of imgaug.augmentables.kps.Keypoint

	iterable of iterable of imgaug.augmentables.polys.Polygon

The following datatypes will be interpreted as multiple polygons on
multiple images:

	(N,#polys,#points,2) ndarray

	iterable of (#polys,#points,2) ndarray

	iterable of iterable of (#points,2) ndarray

	iterable of iterable of iterable of tuple of number

	iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint

	line_strings (None or (N,#lines,#points,2) ndarray or imgaug.augmentables.lines.LineString or imgaug.augmentables.lines.LineStringOnImage or iterable of (#lines,#points,2) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.lines.LineString or iterable of imgaug.augmentables.lines.LineStringOnImage or iterable of iterable of (#points,2) ndarray or iterable of iterable of tuple of number or iterable of iterable of imgaug.augmentables.kps.Keypoint or iterable of iterable of imgaug.augmentables.polys.LineString or iterable of iterable of iterable of tuple of number or iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint) – The line strings to augment.
See polygons for more details as polygons follow a similar
structure to line strings.

	data – Additional data that is saved in the batch and may be read out
after augmentation. This could e.g. contain filepaths to each image
in images. As this object is usually used for background
augmentation with multiple processes, the augmented Batch objects might
not be returned in the original order, making this information useful.

Methods

	fill_from_augmented_normalized_batch(self, …)

	Fill this batch with (normalized) augmentation results.

	fill_from_augmented_normalized_batch_(self, …)

	Fill this batch with (normalized) augmentation results in-place.

	get_column_names(self)

	Get the names of types of augmentables that contain data.

	to_normalized_batch(self)

	Convert this unnormalized batch to an instance of Batch.

	
fill_from_augmented_normalized_batch(self, batch_aug_norm)

	Fill this batch with (normalized) augmentation results.

This method receives a (normalized) Batch instance, takes all
*_aug attributes out if it and assigns them to this
batch in unnormalized form. Hence, the datatypes of all *_aug
attributes will match the datatypes of the *_unaug attributes.

	Parameters

	batch_aug_norm (imgaug.augmentables.batches.Batch) – Batch after normalization and augmentation.

	Returns

	New UnnormalizedBatch instance. All *_unaug attributes are
taken from the old UnnormalizedBatch (without deepcopying them)
and all *_aug attributes are taken from batch_normalized,
converted to unnormalized form.

	Return type

	imgaug.augmentables.batches.UnnormalizedBatch

	
fill_from_augmented_normalized_batch_(self, batch_aug_norm)

	Fill this batch with (normalized) augmentation results in-place.

This method receives a (normalized) Batch instance, takes all
*_aug attributes out if it and assigns them to this
batch in unnormalized form. Hence, the datatypes of all *_aug
attributes will match the datatypes of the *_unaug attributes.

Added in 0.4.0.

	Parameters

	batch_aug_norm (imgaug.augmentables.batches.Batch) – Batch after normalization and augmentation.

	Returns

	This instance itself.
All *_unaug attributes are unchanged.
All *_aug attributes are taken from batch_normalized,
converted to unnormalized form.

	Return type

	imgaug.augmentables.batches.UnnormalizedBatch

	
get_column_names(self)

	Get the names of types of augmentables that contain data.

This method is intended for situations where one wants to know which
data is contained in the batch that has to be augmented, visualized
or something similar.

Added in 0.4.0.

	Returns

	Names of types of augmentables. E.g. ["images", "polygons"].

	Return type

	list of str

	
to_normalized_batch(self)

	Convert this unnormalized batch to an instance of Batch.

As this method is intended to be called before augmentation, it
assumes that none of the *_aug attributes is yet set.
It will produce an AssertionError otherwise.

The newly created Batch’s *_unaug attributes will match the ones
in this batch, just in normalized form.

	Returns

	The batch, with *_unaug attributes being normalized.

	Return type

	imgaug.augmentables.batches.Batch

imgaug.augmentables.bbs

Classes representing bounding boxes.

	
class imgaug.augmentables.bbs.BoundingBox(x1, y1, x2, y2, label=None)

	Bases: object

Class representing bounding boxes.

Each bounding box is parameterized by its top left and bottom right
corners. Both are given as x and y-coordinates. The corners are intended
to lie inside the bounding box area. As a result, a bounding box that lies
completely inside the image but has maximum extensions would have
coordinates (0.0, 0.0) and (W - epsilon, H - epsilon). Note that
coordinates are saved internally as floats.

	Parameters

	
	x1 (number) – X-coordinate of the top left of the bounding box.

	y1 (number) – Y-coordinate of the top left of the bounding box.

	x2 (number) – X-coordinate of the bottom right of the bounding box.

	y2 (number) – Y-coordinate of the bottom right of the bounding box.

	label (None or str, optional) – Label of the bounding box, e.g. a string representing the class.

	Attributes

	
	area

	Estimate the area of the bounding box.

	center_x

	Estimate the x-coordinate of the center point of the bounding box.

	center_y

	Estimate the y-coordinate of the center point of the bounding box.

	coords

	Get the top-left and bottom-right coordinates as one array.

	height

	Estimate the height of the bounding box.

	width

	Estimate the width of the bounding box.

	x1_int

	Get the x-coordinate of the top left corner as an integer.

	x2_int

	Get the x-coordinate of the bottom left corner as an integer.

	y1_int

	Get the y-coordinate of the top left corner as an integer.

	y2_int

	Get the y-coordinate of the bottom left corner as an integer.

Methods

	almost_equals(self, other[, max_distance])

	Compare this and another BB’s label and coordinates.

	clip_out_of_image(self, image)

	Clip off all parts of the BB box that are outside of the image.

	clip_out_of_image_(self, image)

	Clip off parts of the BB box that are outside of the image in-place.

	compute_out_of_image_area(self, image)

	Compute the area of the BB that is outside of the image plane.

	compute_out_of_image_fraction(self, image)

	Compute fraction of BB area outside of the image plane.

	contains(self, other)

	Estimate whether the bounding box contains a given point.

	coords_almost_equals(self, other[, max_distance])

	Estimate if this and another BB have almost identical coordinates.

	copy(self[, x1, y1, x2, y2, label])

	Create a shallow copy of this BoundingBox instance.

	cut_out_of_image(self, *args, **kwargs)

	Deprecated.

	deepcopy(self[, x1, y1, x2, y2, label])

	Create a deep copy of the BoundingBox object.

	draw_box_on_image(self, image[, color, …])

	Draw the rectangle of the bounding box on an image.

	draw_label_on_image(self, image[, color, …])

	Draw a box showing the BB’s label.

	draw_on_image(self, image[, color, alpha, …])

	Draw the bounding box on an image.

	extend(self[, all_sides, top, right, …])

	Extend the size of the bounding box along its sides.

	extend_(self[, all_sides, top, right, …])

	Extend the size of the bounding box along its sides in-place.

	extract_from_image(self, image[, pad, …])

	Extract the image pixels within the bounding box.

	from_point_soup(xy)

	Convert a (2P,) or (P,2) ndarray to a BB instance.

	intersection(self, other[, default])

	Compute the intersection BB between this BB and another BB.

	iou(self, other)

	Compute the IoU between this bounding box and another one.

	is_fully_within_image(self, image)

	Estimate whether the bounding box is fully inside the image area.

	is_out_of_image(self, image[, fully, partly])

	Estimate whether the BB is partially/fully outside of the image area.

	is_partly_within_image(self, image)

	Estimate whether the BB is at least partially inside the image area.

	project(self, from_shape, to_shape)

	Project the bounding box onto a differently shaped image.

	project_(self, from_shape, to_shape)

	Project the bounding box onto a differently shaped image in-place.

	shift(self[, x, y, top, right, bottom, left])

	Move this bounding box along the x/y-axis.

	shift_(self[, x, y])

	Move this bounding box along the x/y-axis in-place.

	to_keypoints(self)

	Convert the BB’s corners to keypoints (clockwise, from top left).

	to_polygon(self)

	Convert this bounding box to a polygon covering the same area.

	union(self, other)

	Compute the union BB between this BB and another BB.

	
almost_equals(self, other, max_distance=0.0001)

	Compare this and another BB’s label and coordinates.

This is the same as
coords_almost_equals() but
additionally compares the labels.

Added in 0.4.0.

	Parameters

	
	other (imgaug.augmentables.bbs.BoundingBox or iterable) – The other object to compare against. Expected to be a
BoundingBox.

	max_distance (number, optional) – See
coords_almost_equals().

	Returns

	True if the coordinates are almost equal and additionally
the labels are equal. Otherwise False.

	Return type

	bool

	
area

	Estimate the area of the bounding box.

	Returns

	Area of the bounding box, i.e. height * width.

	Return type

	number

	
center_x

	Estimate the x-coordinate of the center point of the bounding box.

	Returns

	X-coordinate of the center point of the bounding box.

	Return type

	number

	
center_y

	Estimate the y-coordinate of the center point of the bounding box.

	Returns

	Y-coordinate of the center point of the bounding box.

	Return type

	number

	
clip_out_of_image(self, image)

	Clip off all parts of the BB box that are outside of the image.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use for the clipping of the bounding box.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape and
must contain at least two integers.

	Returns

	Bounding box, clipped to fall within the image dimensions.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
clip_out_of_image_(self, image)

	Clip off parts of the BB box that are outside of the image in-place.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use for the clipping of the bounding box.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape and
must contain at least two integers.

	Returns

	Bounding box, clipped to fall within the image dimensions.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
compute_out_of_image_area(self, image)

	Compute the area of the BB that is outside of the image plane.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	Total area of the bounding box that is outside of the image plane.
Can be 0.0.

	Return type

	float

	
compute_out_of_image_fraction(self, image)

	Compute fraction of BB area outside of the image plane.

This estimates f = A_ooi / A, where A_ooi is the area of the
bounding box that is outside of the image plane, while A is the
total area of the bounding box.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	Fraction of the bounding box area that is outside of the image
plane. Returns 0.0 if the bounding box is fully inside of
the image plane. If the bounding box has an area of zero, the
result is 1.0 if its coordinates are outside of the image
plane, otherwise 0.0.

	Return type

	float

	
contains(self, other)

	Estimate whether the bounding box contains a given point.

	Parameters

	other (tuple of number or imgaug.augmentables.kps.Keypoint) – Point to check for.

	Returns

	True if the point is contained in the bounding box,
False otherwise.

	Return type

	bool

	
coords

	Get the top-left and bottom-right coordinates as one array.

Added in 0.4.0.

	Returns

	A (N, 2) numpy array with N=2 containing the top-left
and bottom-right coordinates.

	Return type

	ndarray

	
coords_almost_equals(self, other, max_distance=0.0001)

	Estimate if this and another BB have almost identical coordinates.

Added in 0.4.0.

	Parameters

	
	other (imgaug.augmentables.bbs.BoundingBox or iterable) – The other bounding box with which to compare this one.
If this is an iterable, it is assumed to represent the top-left
and bottom-right coordinates of that bounding box, given as e.g.
an (2,2) ndarray or an (4,) ndarray or as a similar list.

	max_distance (number, optional) – The maximum euclidean distance between a corner on one bounding
box and the closest corner on the other bounding box. If the
distance is exceeded for any such pair, the two BBs are not
viewed as equal.

	Returns

	Whether the two bounding boxes have almost identical corner
coordinates.

	Return type

	bool

	
copy(self, x1=None, y1=None, x2=None, y2=None, label=None)

	Create a shallow copy of this BoundingBox instance.

	Parameters

	
	x1 (None or number) – If not None, then the x1 coordinate of the copied object
will be set to this value.

	y1 (None or number) – If not None, then the y1 coordinate of the copied object
will be set to this value.

	x2 (None or number) – If not None, then the x2 coordinate of the copied object
will be set to this value.

	y2 (None or number) – If not None, then the y2 coordinate of the copied object
will be set to this value.

	label (None or string) – If not None, then the label of the copied object
will be set to this value.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
cut_out_of_image(self, *args, **kwargs)

	Deprecated. Use BoundingBox.clip_out_of_image() instead. clip_out_of_image() has the exactly same interface.

Clip off all parts of the BB box that are outside of the image.

	
deepcopy(self, x1=None, y1=None, x2=None, y2=None, label=None)

	Create a deep copy of the BoundingBox object.

	Parameters

	
	x1 (None or number) – If not None, then the x1 coordinate of the copied object
will be set to this value.

	y1 (None or number) – If not None, then the y1 coordinate of the copied object
will be set to this value.

	x2 (None or number) – If not None, then the x2 coordinate of the copied object
will be set to this value.

	y2 (None or number) – If not None, then the y2 coordinate of the copied object
will be set to this value.

	label (None or string) – If not None, then the label of the copied object
will be set to this value.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
draw_box_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True, raise_if_out_of_image=False, thickness=None)

	Draw the rectangle of the bounding box on an image.

This method does not draw the label.

Added in 0.4.0.

	Parameters

	
	image ((H,W,C) ndarray) – The image onto which to draw the bounding box rectangle.
Currently expected to be uint8.

	color (iterable of int, optional) – The color to use, corresponding to the channel layout of the
image. Usually RGB.

	alpha (float, optional) – The transparency of the drawn bounding box, where 1.0 denotes
no transparency and 0.0 is invisible.

	size (int, optional) – The thickness of the bounding box in pixels. If the value is
larger than 1, then additional pixels will be added around
the bounding box (i.e. extension towards the outside).

	copy (bool, optional) – Whether to copy the input image or change it in-place.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the bounding box is fully outside of
the image. If set to False, no error will be raised and only
the parts inside the image will be drawn.

	thickness (None or int, optional) – Deprecated.

	Returns

	Image with bounding box drawn on it.

	Return type

	(H,W,C) ndarray(uint8)

	
draw_label_on_image(self, image, color=(0, 255, 0), color_text=None, color_bg=None, alpha=1.0, size=1, size_text=20, height=30, copy=True, raise_if_out_of_image=False)

	Draw a box showing the BB’s label.

The box is placed right above the BB’s rectangle.

Added in 0.4.0.

	Parameters

	
	image ((H,W,C) ndarray) – The image onto which to draw the label.
Currently expected to be uint8.

	color (None or iterable of int, optional) – The color to use, corresponding to the channel layout of the
image. Usually RGB. Text and background colors will be derived
from this.

	color_text (None or iterable of int, optional) – The text color to use.
If None, derived from color_bg.

	color_bg (None or iterable of int, optional) – The background color of the label box.
If None, derived from color.

	alpha (float, optional) – The transparency of the drawn bounding box, where 1.0 denotes
no transparency and 0.0 is invisible.

	size (int, optional) – The thickness of the bounding box in pixels. If the value is
larger than 1, then additional pixels will be added around
the bounding box (i.e. extension towards the outside).

	size_text (int, optional) – Font size to use.

	height (int, optional) – Height of the label box in pixels.

	copy (bool, optional) – Whether to copy the input image or change it in-place.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the bounding box is fully outside of
the image. If set to False, no error will be raised and only
the parts inside the image will be drawn.

	Returns

	Image with bounding box drawn on it.

	Return type

	(H,W,C) ndarray(uint8)

	
draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True, raise_if_out_of_image=False, thickness=None)

	Draw the bounding box on an image.

This will automatically also draw the label, unless it is None.
To only draw the box rectangle use
draw_box_on_image().
To draw the label even if it is None or to configure e.g. its
color, use
draw_label_on_image().

	Parameters

	
	image ((H,W,C) ndarray) – The image onto which to draw the bounding box.
Currently expected to be uint8.

	color (iterable of int, optional) – The color to use, corresponding to the channel layout of the
image. Usually RGB.

	alpha (float, optional) – The transparency of the drawn bounding box, where 1.0 denotes
no transparency and 0.0 is invisible.

	size (int, optional) – The thickness of the bounding box in pixels. If the value is
larger than 1, then additional pixels will be added around
the bounding box (i.e. extension towards the outside).

	copy (bool, optional) – Whether to copy the input image or change it in-place.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the bounding box is fully outside of
the image. If set to False, no error will be raised and only
the parts inside the image will be drawn.

	thickness (None or int, optional) – Deprecated.

	Returns

	Image with bounding box drawn on it.

	Return type

	(H,W,C) ndarray(uint8)

	
extend(self, all_sides=0, top=0, right=0, bottom=0, left=0)

	Extend the size of the bounding box along its sides.

	Parameters

	
	all_sides (number, optional) – Value by which to extend the bounding box size along all
sides.

	top (number, optional) – Value by which to extend the bounding box size along its top
side.

	right (number, optional) – Value by which to extend the bounding box size along its right
side.

	bottom (number, optional) – Value by which to extend the bounding box size along its bottom
side.

	left (number, optional) – Value by which to extend the bounding box size along its left
side.

	Returns

	Extended bounding box.

	Return type

	imgaug.BoundingBox

	
extend_(self, all_sides=0, top=0, right=0, bottom=0, left=0)

	Extend the size of the bounding box along its sides in-place.

Added in 0.4.0.

	Parameters

	
	all_sides (number, optional) – Value by which to extend the bounding box size along all
sides.

	top (number, optional) – Value by which to extend the bounding box size along its top
side.

	right (number, optional) – Value by which to extend the bounding box size along its right
side.

	bottom (number, optional) – Value by which to extend the bounding box size along its bottom
side.

	left (number, optional) – Value by which to extend the bounding box size along its left
side.

	Returns

	Extended bounding box.
The object may have been modified in-place.

	Return type

	imgaug.BoundingBox

	
extract_from_image(self, image, pad=True, pad_max=None, prevent_zero_size=True)

	Extract the image pixels within the bounding box.

This function will zero-pad the image if the bounding box is
partially/fully outside of the image.

	Parameters

	
	image ((H,W) ndarray or (H,W,C) ndarray) – The image from which to extract the pixels within the bounding box.

	pad (bool, optional) – Whether to zero-pad the image if the object is partially/fully
outside of it.

	pad_max (None or int, optional) – The maximum number of pixels that may be zero-paded on any side,
i.e. if this has value N the total maximum of added pixels
is 4*N.
This option exists to prevent extremely large images as a result of
single points being moved very far away during augmentation.

	prevent_zero_size (bool, optional) – Whether to prevent the height or width of the extracted image from
becoming zero.
If this is set to True and the height or width of the bounding
box is below 1, the height/width will be increased to 1.
This can be useful to prevent problems, e.g. with image saving or
plotting.
If it is set to False, images will be returned as (H', W')
or (H', W', 3) with H or W potentially being 0.

	Returns

	Pixels within the bounding box. Zero-padded if the bounding box
is partially/fully outside of the image.
If prevent_zero_size is activated, it is guarantueed that
H'>0 and W'>0, otherwise only H'>=0 and W'>=0.

	Return type

	(H’,W’) ndarray or (H’,W’,C) ndarray

	
classmethod from_point_soup(xy)

	Convert a (2P,) or (P,2) ndarray to a BB instance.

This is the inverse of
to_xyxy_array().

Added in 0.4.0.

	Parameters

	xy ((2P,) ndarray or (P, 2) array or iterable of number or iterable of iterable of number) – Array containing P points in xy-form denoting a soup of
points around which to place a bounding box.
The array should usually be of dtype float32.

	Returns

	Bounding box around the points.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
height

	Estimate the height of the bounding box.

	Returns

	Height of the bounding box.

	Return type

	number

	
intersection(self, other, default=None)

	Compute the intersection BB between this BB and another BB.

Note that in extreme cases, the intersection can be a single point.
In that case the intersection bounding box exists and it will be
returned, but it will have a height and width of zero.

	Parameters

	
	other (imgaug.augmentables.bbs.BoundingBox) – Other bounding box with which to generate the intersection.

	default (any, optional) – Default value to return if there is no intersection.

	Returns

	Intersection bounding box of the two bounding boxes if there is
an intersection.
If there is no intersection, the default value will be returned,
which can by anything.

	Return type

	imgaug.augmentables.bbs.BoundingBox or any

	
iou(self, other)

	Compute the IoU between this bounding box and another one.

IoU is the intersection over union, defined as:

``area(intersection(A, B)) / area(union(A, B))``
``= area(intersection(A, B))
 / (area(A) + area(B) - area(intersection(A, B)))``

	Parameters

	other (imgaug.augmentables.bbs.BoundingBox) – Other bounding box with which to compare.

	Returns

	IoU between the two bounding boxes.

	Return type

	float

	
is_fully_within_image(self, image)

	Estimate whether the bounding box is fully inside the image area.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	True if the bounding box is fully inside the image area.
False otherwise.

	Return type

	bool

	
is_out_of_image(self, image, fully=True, partly=False)

	Estimate whether the BB is partially/fully outside of the image area.

	Parameters

	
	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape and
must contain at least two integers.

	fully (bool, optional) – Whether to return True if the bounding box is fully outside
of the image area.

	partly (bool, optional) – Whether to return True if the bounding box is at least
partially outside fo the image area.

	Returns

	True if the bounding box is partially/fully outside of the
image area, depending on defined parameters.
False otherwise.

	Return type

	bool

	
is_partly_within_image(self, image)

	Estimate whether the BB is at least partially inside the image area.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	True if the bounding box is at least partially inside the
image area.
False otherwise.

	Return type

	bool

	
project(self, from_shape, to_shape)

	Project the bounding box onto a differently shaped image.

E.g. if the bounding box is on its original image at
x1=(10 of 100 pixels) and y1=(20 of 100 pixels) and is
projected onto a new image with size (width=200, height=200),
its new position will be (x1=20, y1=40).
(Analogous for x2/y2.)

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

	Parameters

	
	from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

	to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

	Returns

	BoundingBox instance with new coordinates.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
project_(self, from_shape, to_shape)

	Project the bounding box onto a differently shaped image in-place.

E.g. if the bounding box is on its original image at
x1=(10 of 100 pixels) and y1=(20 of 100 pixels) and is
projected onto a new image with size (width=200, height=200),
its new position will be (x1=20, y1=40).
(Analogous for x2/y2.)

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

Added in 0.4.0.

	Parameters

	
	from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

	to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

	Returns

	BoundingBox instance with new coordinates.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)

	Move this bounding box along the x/y-axis.

The origin (0, 0) is at the top left of the image.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	top (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
top (towards the bottom).

	right (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
right (towards the left).

	bottom (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
bottom (towards the top).

	left (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
left (towards the right).

	Returns

	Shifted bounding box.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
shift_(self, x=0, y=0)

	Move this bounding box along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	Returns

	Shifted bounding box.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
to_keypoints(self)

	Convert the BB’s corners to keypoints (clockwise, from top left).

	Returns

	Corners of the bounding box as keypoints.

	Return type

	list of imgaug.augmentables.kps.Keypoint

	
to_polygon(self)

	Convert this bounding box to a polygon covering the same area.

Added in 0.4.0.

	Returns

	The bounding box converted to a polygon.

	Return type

	imgaug.augmentables.polys.Polygon

	
union(self, other)

	Compute the union BB between this BB and another BB.

This is equivalent to drawing a bounding box around all corner points
of both bounding boxes.

	Parameters

	other (imgaug.augmentables.bbs.BoundingBox) – Other bounding box with which to generate the union.

	Returns

	Union bounding box of the two bounding boxes.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
width

	Estimate the width of the bounding box.

	Returns

	Width of the bounding box.

	Return type

	number

	
x1_int

	Get the x-coordinate of the top left corner as an integer.

	Returns

	X-coordinate of the top left corner, rounded to the closest
integer.

	Return type

	int

	
x2_int

	Get the x-coordinate of the bottom left corner as an integer.

	Returns

	X-coordinate of the bottom left corner, rounded to the closest
integer.

	Return type

	int

	
y1_int

	Get the y-coordinate of the top left corner as an integer.

	Returns

	Y-coordinate of the top left corner, rounded to the closest
integer.

	Return type

	int

	
y2_int

	Get the y-coordinate of the bottom left corner as an integer.

	Returns

	Y-coordinate of the bottom left corner, rounded to the closest
integer.

	Return type

	int

	
class imgaug.augmentables.bbs.BoundingBoxesOnImage(bounding_boxes, shape)

	Bases: imgaug.augmentables.base.IAugmentable

Container for the list of all bounding boxes on a single image.

	Parameters

	
	bounding_boxes (list of imgaug.augmentables.bbs.BoundingBox) – List of bounding boxes on the image.

	shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

Examples

>>> import numpy as np
>>> from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage
>>>
>>> image = np.zeros((100, 100))
>>> bbs = [
>>> BoundingBox(x1=10, y1=20, x2=20, y2=30),
>>> BoundingBox(x1=25, y1=50, x2=30, y2=70)
>>>]
>>> bbs_oi = BoundingBoxesOnImage(bbs, shape=image.shape)

	Attributes

	
	empty

	Determine whether this instance contains zero bounding boxes.

	height

	Get the height of the image on which the bounding boxes fall.

	items

	Get the bounding boxes in this container.

	width

	Get the width of the image on which the bounding boxes fall.

Methods

	clip_out_of_image(self)

	Clip off all parts from all BBs that are outside of the image.

	clip_out_of_image_(self)

	Clip off in-place all parts from all BBs that are outside of the image.

	copy(self[, bounding_boxes, shape])

	Create a shallow copy of the BoundingBoxesOnImage instance.

	cut_out_of_image(self)

	Deprecated.

	deepcopy(self[, bounding_boxes, shape])

	Create a deep copy of the BoundingBoxesOnImage object.

	draw_on_image(self, image[, color, alpha, …])

	Draw all bounding boxes onto a given image.

	fill_from_xy_array_(self, xy)

	Modify the BB coordinates of this instance in-place.

	fill_from_xyxy_array_(self, xyxy)

	Modify the BB coordinates of this instance in-place.

	from_point_soups(xy, shape)

	Convert an (N, 2P) or (N, P, 2) ndarray to a BBsOI instance.

	from_xyxy_array(xyxy, shape)

	Convert an (N, 4) or (N, 2, 2) ndarray to a BBsOI instance.

	invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

	on(self, image)

	Project bounding boxes from one image (shape) to a another one.

	on_(self, image)

	Project BBs from one image (shape) to a another one in-place.

	remove_out_of_image(self[, fully, partly])

	Remove all BBs that are fully/partially outside of the image.

	remove_out_of_image_(self[, fully, partly])

	Remove in-place all BBs that are fully/partially outside of the image.

	remove_out_of_image_fraction(self, fraction)

	Remove all BBs with an out of image fraction of at least fraction.

	remove_out_of_image_fraction_(self, fraction)

	Remove in-place all BBs with an OOI fraction of at least fraction.

	shift(self[, x, y, top, right, bottom, left])

	Move all BBs along the x/y-axis.

	shift_(self[, x, y])

	Move all BBs along the x/y-axis in-place.

	to_keypoints_on_image(self)

	Convert the bounding boxes to one KeypointsOnImage instance.

	to_polygons_on_image(self)

	Convert the bounding boxes to one PolygonsOnImage instance.

	to_xy_array(self)

	Convert the BoundingBoxesOnImage object to an (N,2) ndarray.

	to_xyxy_array(self[, dtype])

	Convert the BoundingBoxesOnImage object to an (N,4) ndarray.

	
clip_out_of_image(self)

	Clip off all parts from all BBs that are outside of the image.

	Returns

	Bounding boxes, clipped to fall within the image dimensions.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
clip_out_of_image_(self)

	Clip off in-place all parts from all BBs that are outside of the image.

Added in 0.4.0.

	Returns

	Bounding boxes, clipped to fall within the image dimensions.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
copy(self, bounding_boxes=None, shape=None)

	Create a shallow copy of the BoundingBoxesOnImage instance.

	Parameters

	
	bounding_boxes (None or list of imgaug.augmntables.bbs.BoundingBox, optional) – List of bounding boxes on the image.
If None, the instance’s bounding boxes will be copied.

	shape (tuple of int, optional) – The shape of the image on which the bounding boxes are placed.
If None, the instance’s shape will be copied.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
cut_out_of_image(self)

	Deprecated. Use BoundingBoxesOnImage.clip_out_of_image() instead. clip_out_of_image() has the exactly same interface.

Clip off all parts from all BBs that are outside of the image.

	
deepcopy(self, bounding_boxes=None, shape=None)

	Create a deep copy of the BoundingBoxesOnImage object.

	Parameters

	
	bounding_boxes (None or list of imgaug.augmntables.bbs.BoundingBox, optional) – List of bounding boxes on the image.
If None, the instance’s bounding boxes will be copied.

	shape (tuple of int, optional) – The shape of the image on which the bounding boxes are placed.
If None, the instance’s shape will be copied.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True, raise_if_out_of_image=False, thickness=None)

	Draw all bounding boxes onto a given image.

	Parameters

	
	image ((H,W,3) ndarray) – The image onto which to draw the bounding boxes.
This image should usually have the same shape as set in
BoundingBoxesOnImage.shape.

	color (int or list of int or tuple of int or (3,) ndarray, optional) – The RGB color of all bounding boxes.
If a single int C, then that is equivalent to (C,C,C).

	alpha (float, optional) – Alpha/transparency of the bounding box.

	size (int, optional) – Thickness in pixels.

	copy (bool, optional) – Whether to copy the image before drawing the bounding boxes.

	raise_if_out_of_image (bool, optional) – Whether to raise an exception if any bounding box is outside of the
image.

	thickness (None or int, optional) – Deprecated.

	Returns

	Image with drawn bounding boxes.

	Return type

	(H,W,3) ndarray

	
empty

	Determine whether this instance contains zero bounding boxes.

	Returns

	True if this object contains zero bounding boxes.

	Return type

	bool

	
fill_from_xy_array_(self, xy)

	Modify the BB coordinates of this instance in-place.

See
fill_from_xyxy_array_().

Added in 0.4.0.

	Parameters

	xy ((2*B, 2) ndarray or iterable of iterable of number) – Coordinates of B bounding boxes on an image, given as
a (2*B,2) array of two corner xy-coordinates per bounding box.
B must match the number of bounding boxes in this instance.

	Returns

	This instance itself, with updated bounding box coordinates.
Note that the instance was modified in-place.

	Return type

	BoundingBoxesOnImage

	
fill_from_xyxy_array_(self, xyxy)

	Modify the BB coordinates of this instance in-place.

Note

This currently expects exactly one entry in xyxy per bounding
in this instance. (I.e. two corner coordinates per instance.)
Otherwise, an AssertionError will be raised.

Note

This method will automatically flip x-coordinates if x1>x2
for a bounding box. (Analogous for y-coordinates.)

Added in 0.4.0.

	Parameters

	xyxy ((N, 4) ndarray or iterable of iterable of number) – Coordinates of N bounding boxes on an image, given as
a (N,4) array of two corner xy-coordinates per bounding box.
N must match the number of bounding boxes in this instance.

	Returns

	This instance itself, with updated bounding box coordinates.
Note that the instance was modified in-place.

	Return type

	BoundingBoxesOnImage

	
classmethod from_point_soups(xy, shape)

	Convert an (N, 2P) or (N, P, 2) ndarray to a BBsOI instance.

Added in 0.4.0.

	Parameters

	
	xy ((N, 2P) ndarray or (N, P, 2) array or iterable of iterable of number or iterable of iterable of iterable of number) – Array containing the corner coordinates of N bounding boxes.
Each bounding box is represented by a soup of P points.
If (N, P) then the second axis is expected to be in
xy-form (e.g. x1, y1, x2, y2, …).
The final bounding box coordinates will be derived using min
and max operations on the xy-values.
The array should usually be of dtype float32.

	shape (tuple of int) – Shape of the image on which the bounding boxes are placed.
Should usually be (H, W, C) or (H, W).

	Returns

	Object containing a list of BoundingBox instances
derived from the provided point soups.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
classmethod from_xyxy_array(xyxy, shape)

	Convert an (N, 4) or (N, 2, 2) ndarray to a BBsOI instance.

This is the inverse of
to_xyxy_array().

	Parameters

	
	xyxy ((N, 4) ndarray or (N, 2, 2) array) – Array containing the corner coordinates of N bounding boxes.
Each bounding box is represented by its top-left and bottom-right
coordinates.
The array should usually be of dtype float32.

	shape (tuple of int) – Shape of the image on which the bounding boxes are placed.
Should usually be (H, W, C) or (H, W).

	Returns

	Object containing a list of BoundingBox instances
derived from the provided corner coordinates.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
height

	Get the height of the image on which the bounding boxes fall.

	Returns

	Image height.

	Return type

	int

	
invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this BoundingBoxesOnImage
instance.

Added in 0.4.0.

	Parameters

	kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back to bounding boxes, i.e. the outputs
of to_keypoints_on_image().

	Returns

	Bounding boxes container with updated coordinates.
Note that the instance is also updated in-place.

	Return type

	BoundingBoxesOnImage

	
items

	Get the bounding boxes in this container.

Added in 0.4.0.

	Returns

	Bounding boxes within this container.

	Return type

	list of BoundingBox

	
on(self, image)

	Project bounding boxes from one image (shape) to a another one.

	Parameters

	image (ndarray or tuple of int) – New image onto which the bounding boxes are to be projected.
May also simply be that new image’s shape tuple.

	Returns

	Object containing the same bounding boxes after projection to
the new image shape.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
on_(self, image)

	Project BBs from one image (shape) to a another one in-place.

Added in 0.4.0.

	Parameters

	image (ndarray or tuple of int) – New image onto which the bounding boxes are to be projected.
May also simply be that new image’s shape tuple.

	Returns

	Object containing the same bounding boxes after projection to
the new image shape.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
remove_out_of_image(self, fully=True, partly=False)

	Remove all BBs that are fully/partially outside of the image.

	Parameters

	
	fully (bool, optional) – Whether to remove bounding boxes that are fully outside of the
image.

	partly (bool, optional) – Whether to remove bounding boxes that are partially outside of
the image.

	Returns

	Reduced set of bounding boxes, with those that were
fully/partially outside of the image being removed.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
remove_out_of_image_(self, fully=True, partly=False)

	Remove in-place all BBs that are fully/partially outside of the image.

Added in 0.4.0.

	Parameters

	
	fully (bool, optional) – Whether to remove bounding boxes that are fully outside of the
image.

	partly (bool, optional) – Whether to remove bounding boxes that are partially outside of
the image.

	Returns

	Reduced set of bounding boxes, with those that were
fully/partially outside of the image being removed.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
remove_out_of_image_fraction(self, fraction)

	Remove all BBs with an out of image fraction of at least fraction.

Added in 0.4.0.

	Parameters

	fraction (number) – Minimum out of image fraction that a bounding box has to have in
order to be removed. A fraction of 1.0 removes only bounding
boxes that are 100% outside of the image. A fraction of 0.0
removes all bounding boxes.

	Returns

	Reduced set of bounding boxes, with those that had an out of image
fraction greater or equal the given one removed.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
remove_out_of_image_fraction_(self, fraction)

	Remove in-place all BBs with an OOI fraction of at least fraction.

‘OOI’ is the abbreviation for ‘out of image’.

Added in 0.4.0.

	Parameters

	fraction (number) – Minimum out of image fraction that a bounding box has to have in
order to be removed. A fraction of 1.0 removes only bounding
boxes that are 100% outside of the image. A fraction of 0.0
removes all bounding boxes.

	Returns

	Reduced set of bounding boxes, with those that had an out of image
fraction greater or equal the given one removed.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)

	Move all BBs along the x/y-axis.

The origin (0, 0) is at the top left of the image.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	top (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
top (towards the bottom).

	right (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
right (towads the left).

	bottom (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
bottom (towards the top).

	left (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
left (towards the right).

	Returns

	Shifted bounding boxes.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
shift_(self, x=0, y=0)

	Move all BBs along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	Returns

	Shifted bounding boxes.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage

	
to_keypoints_on_image(self)

	Convert the bounding boxes to one KeypointsOnImage instance.

Added in 0.4.0.

	Returns

	A keypoints instance containing N*4 coordinates for N
bounding boxes. Order matches the order in bounding_boxes.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
to_polygons_on_image(self)

	Convert the bounding boxes to one PolygonsOnImage instance.

Added in 0.4.0.

	Returns

	A PolygonsOnImage containing polygons. Each polygon covers
the same area as the corresponding bounding box.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
to_xy_array(self)

	Convert the BoundingBoxesOnImage object to an (N,2) ndarray.

Added in 0.4.0.

	Returns

	(2*B,2) ndarray of xy-coordinates, where B denotes the
number of bounding boxes.

	Return type

	ndarray

	
to_xyxy_array(self, dtype=<class 'numpy.float32'>)

	Convert the BoundingBoxesOnImage object to an (N,4) ndarray.

This is the inverse of
from_xyxy_array().

	Parameters

	dtype (numpy.dtype, optional) – Desired output datatype of the ndarray.

	Returns

	(N,4) ndarray, where N denotes the number of bounding
boxes and 4 denotes the top-left and bottom-right bounding
box corner coordinates in form (x1, y1, x2, y2).

	Return type

	ndarray

	
width

	Get the width of the image on which the bounding boxes fall.

	Returns

	Image width.

	Return type

	int

imgaug.augmentables.heatmaps

Classes to represent heatmaps, i.e. float arrays of [0.0, 1.0].

	
class imgaug.augmentables.heatmaps.HeatmapsOnImage(arr, shape, min_value=0.0, max_value=1.0)

	Bases: imgaug.augmentables.base.IAugmentable

Object representing heatmaps on a single image.

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Array representing the heatmap(s) on a single image.
Multiple heatmaps may be provided, in which case C is expected to
denote the heatmap index.
The array must be of dtype float32.

	shape (tuple of int) – Shape of the image on which the heatmap(s) is/are placed.
Not the shape of the heatmap(s) array, unless it is identical
to the image shape (note the likely difference between the arrays
in the number of channels).
This is expected to be (H, W) or (H, W, C) with C usually
being 3.
If there is no corresponding image, use (H_arr, W_arr) instead,
where H_arr is the height of the heatmap(s) array
(analogous W_arr).

	min_value (float, optional) – Minimum value for the heatmaps that arr represents. This will
usually be 0.0.

	max_value (float, optional) – Maximum value for the heatmaps that arr represents. This will
usually be 1.0.

Methods

	avg_pool(self, block_size)

	Average-pool the heatmap(s) array using a given block/kernel size.

	change_normalization(arr, source, target)

	Change the value range of a heatmap array.

	copy(self)

	Create a shallow copy of the heatmaps object.

	deepcopy(self)

	Create a deep copy of the heatmaps object.

	draw(self[, size, cmap])

	Render the heatmaps as RGB images.

	draw_on_image(self, image[, alpha, cmap, resize])

	Draw the heatmaps as overlays over an image.

	from_0to1(arr_0to1, shape[, min_value, …])

	Create a heatmaps object from a [0.0, 1.0] float array.

	from_uint8(arr_uint8, shape[, min_value, …])

	Create a float-based heatmaps object from an uint8 array.

	get_arr(self)

	Get the heatmap’s array in value range provided to __init__().

	invert(self)

	Invert each component in the heatmap.

	max_pool(self, block_size)

	Max-pool the heatmap(s) array using a given block/kernel size.

	pad(self[, top, right, bottom, left, mode, cval])

	Pad the heatmaps at their top/right/bottom/left side.

	pad_to_aspect_ratio(self, aspect_ratio[, …])

	Pad the heatmaps until they match a target aspect ratio.

	resize(self, sizes[, interpolation])

	Resize the heatmap(s) array given a target size and interpolation.

	scale(self, *args, **kwargs)

	Deprecated.

	to_uint8(self)

	Convert this heatmaps object to an uint8 array.

	
avg_pool(self, block_size)

	Average-pool the heatmap(s) array using a given block/kernel size.

	Parameters

	block_size (int or tuple of int) – Size of each block of values to pool, aka kernel size.
See pool() for details.

	Returns

	Heatmaps after average pooling.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
classmethod change_normalization(arr, source, target)

	Change the value range of a heatmap array.

E.g. the value range may be changed from the interval [0.0, 1.0]
to [-1.0, 1.0].

	Parameters

	
	arr (ndarray) – Heatmap array to modify.

	source (tuple of float) – Current value range of the input array, given as a
tuple (min, max), where both are float values.

	target (tuple of float) – Desired output value range of the array, given as a
tuple (min, max), where both are float values.

	Returns

	Input array, with value range projected to the desired target
value range.

	Return type

	ndarray

	
copy(self)

	Create a shallow copy of the heatmaps object.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
deepcopy(self)

	Create a deep copy of the heatmaps object.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
draw(self, size=None, cmap='jet')

	Render the heatmaps as RGB images.

	Parameters

	
	size (None or float or iterable of int or iterable of float, optional) – Size of the rendered RGB image as (height, width).
See imresize_single_image() for details.
If set to None, no resizing is performed and the size of the
heatmaps array is used.

	cmap (str or None, optional) – Name of the matplotlib color map to use when convert the
heatmaps to RGB images.
If set to None, no color map will be used and the heatmaps
will be converted to simple intensity maps.

	Returns

	Rendered heatmaps as uint8 arrays.
Always a list containing one RGB image per heatmap array
channel.

	Return type

	list of (H,W,3) ndarray

	
draw_on_image(self, image, alpha=0.75, cmap='jet', resize='heatmaps')

	Draw the heatmaps as overlays over an image.

	Parameters

	
	image ((H,W,3) ndarray) – Image onto which to draw the heatmaps.
Expected to be of dtype uint8.

	alpha (float, optional) – Alpha/opacity value to use for the mixing of image and heatmaps.
Larger values mean that the heatmaps will be more visible and the
image less visible.

	cmap (str or None, optional) – Name of the matplotlib color map to use.
See HeatmapsOnImage.draw() for details.

	resize ({‘heatmaps’, ‘image’}, optional) – In case of size differences between the image and heatmaps,
either the image or the heatmaps can be resized. This parameter
controls which of the two will be resized to the other’s size.

	Returns

	Rendered overlays as uint8 arrays.
Always a list containing one RGB image per heatmap array
channel.

	Return type

	list of (H,W,3) ndarray

	
static from_0to1(arr_0to1, shape, min_value=0.0, max_value=1.0)

	Create a heatmaps object from a [0.0, 1.0] float array.

	Parameters

	
	arr_0to1 ((H,W) or (H,W,C) ndarray) – Heatmap(s) array, where H is the height, W is the width
and C is the number of heatmap channels.
Expected dtype is float32.

	shape (tuple of ints) – Shape of the image on which the heatmap(s) is/are placed.
Not the shape of the heatmap(s) array, unless it is identical
to the image shape (note the likely difference between the arrays
in the number of channels).
If there is not a corresponding image, use the shape of the
heatmaps array.

	min_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 0.0. In most other cases it will
be close to the interval [0.0, 1.0].
Calling get_arr(), will automatically
convert the interval [0.0, 1.0] float array to this
[min, max] interval.

	max_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 1.0.
See parameter min_value for details.

	Returns

	Heatmaps object.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
static from_uint8(arr_uint8, shape, min_value=0.0, max_value=1.0)

	Create a float-based heatmaps object from an uint8 array.

	Parameters

	
	arr_uint8 ((H,W) ndarray or (H,W,C) ndarray) – Heatmap(s) array, where H is height, W is width
and C is the number of heatmap channels.
Expected dtype is uint8.

	shape (tuple of int) – Shape of the image on which the heatmap(s) is/are placed.
Not the shape of the heatmap(s) array, unless it is identical
to the image shape (note the likely difference between the arrays
in the number of channels).
If there is not a corresponding image, use the shape of the
heatmaps array.

	min_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 0.0. In most other cases it will
be close to the interval [0.0, 1.0].
Calling get_arr(), will automatically
convert the interval [0.0, 1.0] float array to this
[min, max] interval.

	max_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 1.0.
See parameter min_value for details.

	Returns

	Heatmaps object.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
get_arr(self)

	Get the heatmap’s array in value range provided to __init__().

The HeatmapsOnImage object saves heatmaps internally in the
value range [0.0, 1.0]. This function converts the internal
representation to [min, max], where min and max are
provided to HeatmapsOnImage.__init__() upon instantiation of
the object.

	Returns

	Heatmap array of dtype float32.

	Return type

	(H,W) ndarray or (H,W,C) ndarray

	
invert(self)

	Invert each component in the heatmap.

This shifts low values towards high values and vice versa.

This changes each value to:

v' = max - (v - min)

where v is the value at a spatial location, min is the
minimum value in the heatmap and max is the maximum value.
As the heatmap uses internally a 0.0 to 1.0 representation,
this simply becomes v' = 1.0 - v.

This function can be useful e.g. when working with depth maps, where
algorithms might have an easier time representing the furthest away
points with zeros, requiring an inverted depth map.

	Returns

	Inverted heatmap.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
max_pool(self, block_size)

	Max-pool the heatmap(s) array using a given block/kernel size.

	Parameters

	block_size (int or tuple of int) – Size of each block of values to pool, aka kernel size.
See pool() for details.

	Returns

	Heatmaps after max-pooling.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
pad(self, top=0, right=0, bottom=0, left=0, mode='constant', cval=0.0)

	Pad the heatmaps at their top/right/bottom/left side.

	Parameters

	
	top (int, optional) – Amount of pixels to add at the top side of the heatmaps.
Must be 0 or greater.

	right (int, optional) – Amount of pixels to add at the right side of the heatmaps.
Must be 0 or greater.

	bottom (int, optional) – Amount of pixels to add at the bottom side of the heatmaps.
Must be 0 or greater.

	left (int, optional) – Amount of pixels to add at the left side of the heatmaps.
Must be 0 or greater.

	mode (string, optional) – Padding mode to use. See pad() for details.

	cval (number, optional) – Value to use for padding mode is constant.
See pad() for details.

	Returns

	Padded heatmaps of height H'=H+top+bottom and
width W'=W+left+right.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
pad_to_aspect_ratio(self, aspect_ratio, mode='constant', cval=0.0, return_pad_amounts=False)

	Pad the heatmaps until they match a target aspect ratio.

Depending on which dimension is smaller (height or width), only the
corresponding sides (left/right or top/bottom) will be padded. In
each case, both of the sides will be padded equally.

	Parameters

	
	aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes
the image having twice as much width as height.

	mode (str, optional) – Padding mode to use.
See pad() for details.

	cval (number, optional) – Value to use for padding if mode is constant.
See pad() for details.

	return_pad_amounts (bool, optional) – If False, then only the padded instance will be returned.
If True, a tuple with two entries will be returned, where
the first entry is the padded instance and the second entry are
the amounts by which each array side was padded. These amounts are
again a tuple of the form (top, right, bottom, left), with
each value being an integer.

	Returns

	
	imgaug.augmentables.heatmaps.HeatmapsOnImage – Padded heatmaps as HeatmapsOnImage instance.

	tuple of int – Amounts by which the instance’s array was padded on each side,
given as a tuple (top, right, bottom, left).
This tuple is only returned if return_pad_amounts was set to
True.

	
resize(self, sizes, interpolation='cubic')

	Resize the heatmap(s) array given a target size and interpolation.

	Parameters

	
	sizes (float or iterable of int or iterable of float) – New size of the array in (height, width).
See imresize_single_image() for details.

	interpolation (None or str or int, optional) – The interpolation to use during resize.
See imresize_single_image() for details.

	Returns

	Resized heatmaps object.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
scale(self, *args, **kwargs)

	Deprecated. Use HeatmapsOnImage.resize() instead. resize() has the exactly same interface.

Resize the heatmap(s) array given a target size and interpolation.

	
to_uint8(self)

	Convert this heatmaps object to an uint8 array.

	Returns

	Heatmap as an uint8 array, i.e. with the discrete value
range [0, 255].

	Return type

	(H,W,C) ndarray

imgaug.augmentables.kps

Classes to represent keypoints, i.e. points given as xy-coordinates.

	
class imgaug.augmentables.kps.Keypoint(x, y)

	Bases: object

A single keypoint (aka landmark) on an image.

	Parameters

	
	x (number) – Coordinate of the keypoint on the x axis.

	y (number) – Coordinate of the keypoint on the y axis.

	Attributes

	
	coords

	Get the xy-coordinates as an (N,2) ndarray.

	x_int

	Get the keypoint’s x-coordinate, rounded to the closest integer.

	xy

	Get the keypoint’s x- and y-coordinate as a single array.

	xy_int

	Get the keypoint’s xy-coord, rounded to closest integer.

	y_int

	Get the keypoint’s y-coordinate, rounded to the closest integer.

Methods

	almost_equals(self, other[, max_distance])

	Compare this and another KP’s coordinates.

	compute_out_of_image_fraction(self, image)

	Compute fraction of the keypoint that is out of the image plane.

	coords_almost_equals(self, other[, max_distance])

	Estimate if this and another KP have almost identical coordinates.

	copy(self[, x, y])

	Create a shallow copy of the keypoint instance.

	deepcopy(self[, x, y])

	Create a deep copy of the keypoint instance.

	draw_on_image(self, image[, color, alpha, …])

	Draw the keypoint onto a given image.

	generate_similar_points_manhattan(self, …)

	Generate nearby points based on manhattan distance.

	is_out_of_image(self, image)

	Estimate whether this point is outside of the given image plane.

	project(self, from_shape, to_shape)

	Project the keypoint onto a new position on a new image.

	project_(self, from_shape, to_shape)

	Project in-place the keypoint onto a new position on a new image.

	shift(self[, x, y])

	Move the keypoint around on an image.

	shift_(self[, x, y])

	Move the keypoint around on an image in-place.

	
almost_equals(self, other, max_distance=0.0001)

	Compare this and another KP’s coordinates.

Note

This method is currently identical to coords_almost_equals.
It exists for consistency with BoundingBox and Polygons.

Added in 0.4.0.

	Parameters

	
	other (imgaug.augmentables.kps.Keypoint or iterable) – The other object to compare against. Expected to be a
Keypoint.

	max_distance (number, optional) – See
coords_almost_equals().

	Returns

	True if the coordinates are almost equal. Otherwise False.

	Return type

	bool

	
compute_out_of_image_fraction(self, image)

	Compute fraction of the keypoint that is out of the image plane.

The fraction is always either 1.0 (point is outside of the image
plane) or 0.0 (point is inside the image plane). This method
exists for consistency with other augmentables, e.g. bounding boxes.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	Either 1.0 (point is outside of the image plane) or
0.0 (point is inside of it).

	Return type

	float

	
coords

	Get the xy-coordinates as an (N,2) ndarray.

Added in 0.4.0.

	Returns

	An (N, 2) float32 ndarray with N=1 containing the
coordinates of this keypoints.

	Return type

	ndarray

	
coords_almost_equals(self, other, max_distance=0.0001)

	Estimate if this and another KP have almost identical coordinates.

Added in 0.4.0.

	Parameters

	
	other (imgaug.augmentables.kps.Keypoint or iterable) – The other keypoint with which to compare this one.
If this is an iterable, it is assumed to contain the
xy-coordinates of a keypoint.

	max_distance (number, optional) – The maximum euclidean distance between a this keypoint and the
other one. If the distance is exceeded, the two keypoints are not
viewed as equal.

	Returns

	Whether the two keypoints have almost identical coordinates.

	Return type

	bool

	
copy(self, x=None, y=None)

	Create a shallow copy of the keypoint instance.

	Parameters

	
	x (None or number, optional) – Coordinate of the keypoint on the x axis.
If None, the instance’s value will be copied.

	y (None or number, optional) – Coordinate of the keypoint on the y axis.
If None, the instance’s value will be copied.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.kps.Keypoint

	
deepcopy(self, x=None, y=None)

	Create a deep copy of the keypoint instance.

	Parameters

	
	x (None or number, optional) – Coordinate of the keypoint on the x axis.
If None, the instance’s value will be copied.

	y (None or number, optional) – Coordinate of the keypoint on the y axis.
If None, the instance’s value will be copied.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.kps.Keypoint

	
draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=3, copy=True, raise_if_out_of_image=False)

	Draw the keypoint onto a given image.

The keypoint is drawn as a square.

	Parameters

	
	image ((H,W,3) ndarray) – The image onto which to draw the keypoint.

	color (int or list of int or tuple of int or (3,) ndarray, optional) – The RGB color of the keypoint.
If a single int C, then that is equivalent to (C,C,C).

	alpha (float, optional) – The opacity of the drawn keypoint, where 1.0 denotes a fully
visible keypoint and 0.0 an invisible one.

	size (int, optional) – The size of the keypoint. If set to S, each square will have
size S x S.

	copy (bool, optional) – Whether to copy the image before drawing the keypoint.

	raise_if_out_of_image (bool, optional) – Whether to raise an exception if the keypoint is outside of the
image.

	Returns

	image – Image with drawn keypoint.

	Return type

	(H,W,3) ndarray

	
generate_similar_points_manhattan(self, nb_steps, step_size, return_array=False)

	Generate nearby points based on manhattan distance.

To generate the first neighbouring points, a distance of S (step
size) is moved from the center point (this keypoint) to the top,
right, bottom and left, resulting in four new points. From these new
points, the pattern is repeated. Overlapping points are ignored.

The resulting points have a shape similar to a square rotated
by 45 degrees.

	Parameters

	
	nb_steps (int) – The number of steps to move from the center point.
nb_steps=1 results in a total of 5 output points (one
center point + four neighbours).

	step_size (number) – The step size to move from every point to its neighbours.

	return_array (bool, optional) – Whether to return the generated points as a list of
Keypoint or an array of shape (N,2), where N is
the number of generated points and the second axis contains the
x-/y-coordinates.

	Returns

	If return_array was False, then a list of Keypoint.
Otherwise a numpy array of shape (N,2), where N is the
number of generated points and the second axis contains
the x-/y-coordinates. The center keypoint (the one on which this
function was called) is always included.

	Return type

	list of imgaug.augmentables.kps.Keypoint or (N,2) ndarray

	
is_out_of_image(self, image)

	Estimate whether this point is outside of the given image plane.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	True is the point is inside the image plane, False
otherwise.

	Return type

	bool

	
project(self, from_shape, to_shape)

	Project the keypoint onto a new position on a new image.

E.g. if the keypoint is on its original image
at x=(10 of 100 pixels) and y=(20 of 100 pixels) and is
projected onto a new image with size (width=200, height=200), its
new position will be (20, 40).

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

	Parameters

	
	from_shape (tuple of int) – Shape of the original image. (Before resize.)

	to_shape (tuple of int) – Shape of the new image. (After resize.)

	Returns

	Keypoint object with new coordinates.

	Return type

	imgaug.augmentables.kps.Keypoint

	
project_(self, from_shape, to_shape)

	Project in-place the keypoint onto a new position on a new image.

E.g. if the keypoint is on its original image
at x=(10 of 100 pixels) and y=(20 of 100 pixels) and is
projected onto a new image with size (width=200, height=200), its
new position will be (20, 40).

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

Added in 0.4.0.

	Parameters

	
	from_shape (tuple of int) – Shape of the original image. (Before resize.)

	to_shape (tuple of int) – Shape of the new image. (After resize.)

	Returns

	Keypoint object with new coordinates.
The instance of the keypoint may have been modified in-place.

	Return type

	imgaug.augmentables.kps.Keypoint

	
shift(self, x=0, y=0)

	Move the keypoint around on an image.

	Parameters

	
	x (number, optional) – Move by this value on the x axis.

	y (number, optional) – Move by this value on the y axis.

	Returns

	Keypoint object with new coordinates.

	Return type

	imgaug.augmentables.kps.Keypoint

	
shift_(self, x=0, y=0)

	Move the keypoint around on an image in-place.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Move by this value on the x axis.

	y (number, optional) – Move by this value on the y axis.

	Returns

	Keypoint object with new coordinates.
The instance of the keypoint may have been modified in-place.

	Return type

	imgaug.augmentables.kps.Keypoint

	
x_int

	Get the keypoint’s x-coordinate, rounded to the closest integer.

	Returns

	result – Keypoint’s x-coordinate, rounded to the closest integer.

	Return type

	int

	
xy

	Get the keypoint’s x- and y-coordinate as a single array.

Added in 0.4.0.

	Returns

	A (2,) ndarray denoting the xy-coordinate pair.

	Return type

	ndarray

	
xy_int

	Get the keypoint’s xy-coord, rounded to closest integer.

Added in 0.4.0.

	Returns

	A (2,) ndarray denoting the xy-coordinate pair.

	Return type

	ndarray

	
y_int

	Get the keypoint’s y-coordinate, rounded to the closest integer.

	Returns

	result – Keypoint’s y-coordinate, rounded to the closest integer.

	Return type

	int

	
class imgaug.augmentables.kps.KeypointsOnImage(keypoints, shape)

	Bases: imgaug.augmentables.base.IAugmentable

Container for all keypoints on a single image.

	Parameters

	
	keypoints (list of imgaug.augmentables.kps.Keypoint) – List of keypoints on the image.

	shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

Examples

>>> import numpy as np
>>> from imgaug.augmentables.kps import Keypoint, KeypointsOnImage
>>>
>>> image = np.zeros((70, 70))
>>> kps = [Keypoint(x=10, y=20), Keypoint(x=34, y=60)]
>>> kps_oi = KeypointsOnImage(kps, shape=image.shape)

	Attributes

	
	empty

	Determine whether this object contains zero keypoints.

	height

	Get the image height.

	items

	Get the keypoints in this container.

	width

	Get the image width.

Methods

	clip_out_of_image(self)

	Remove all KPs that are outside of the image plane.

	clip_out_of_image_(self)

	Remove all KPs that are outside of the image plane.

	copy(self[, keypoints, shape])

	Create a shallow copy of the KeypointsOnImage object.

	deepcopy(self[, keypoints, shape])

	Create a deep copy of the KeypointsOnImage object.

	draw_on_image(self, image[, color, alpha, …])

	Draw all keypoints onto a given image.

	fill_from_xy_array_(self, xy)

	Modify the keypoint coordinates of this instance in-place.

	from_coords_array(coords, shape)

	Deprecated.

	from_distance_maps(distance_maps[, …])

	Convert outputs of to_distance_maps() to KeypointsOnImage.

	from_keypoint_image(image[, …])

	Convert to_keypoint_image() outputs to KeypointsOnImage.

	from_xy_array(xy, shape)

	Convert an (N,2) array to a KeypointsOnImage object.

	get_coords_array(self)

	Deprecated.

	invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

	on(self, image)

	Project all keypoints from one image shape to a new one.

	on_(self, image)

	Project all keypoints from one image shape to a new one in-place.

	remove_out_of_image_fraction(self, fraction)

	Remove all KPs with an out of image fraction of at least fraction.

	remove_out_of_image_fraction_(self, fraction)

	Remove all KPs with an OOI fraction of at least fraction in-place.

	shift(self[, x, y])

	Move the keypoints on the x/y-axis.

	shift_(self[, x, y])

	Move the keypoints on the x/y-axis in-place.

	to_distance_maps(self[, inverted])

	Generate a (H,W,N) array of distance maps for N keypoints.

	to_keypoint_image(self[, size])

	Create an (H,W,N) image with keypoint coordinates set to 255.

	to_keypoints_on_image(self)

	Convert the keypoints to one KeypointsOnImage instance.

	to_xy_array(self)

	Convert all keypoint coordinates to an array of shape (N,2).

	
clip_out_of_image(self)

	Remove all KPs that are outside of the image plane.

This method exists for consistency with other augmentables, e.g.
bounding boxes.

Added in 0.4.0.

	Returns

	Keypoints that are inside the image plane.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
clip_out_of_image_(self)

	Remove all KPs that are outside of the image plane.

This method exists for consistency with other augmentables, e.g.
bounding boxes.

Added in 0.4.0.

	Returns

	Keypoints that are inside the image plane.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
copy(self, keypoints=None, shape=None)

	Create a shallow copy of the KeypointsOnImage object.

	Parameters

	
	keypoints (None or list of imgaug.Keypoint, optional) – List of keypoints on the image.
If None, the instance’s keypoints will be copied.

	shape (tuple of int, optional) – The shape of the image on which the keypoints are placed.
If None, the instance’s shape will be copied.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
deepcopy(self, keypoints=None, shape=None)

	Create a deep copy of the KeypointsOnImage object.

	Parameters

	
	keypoints (None or list of imgaug.Keypoint, optional) – List of keypoints on the image.
If None, the instance’s keypoints will be copied.

	shape (tuple of int, optional) – The shape of the image on which the keypoints are placed.
If None, the instance’s shape will be copied.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=3, copy=True, raise_if_out_of_image=False)

	Draw all keypoints onto a given image.

Each keypoint is drawn as a square of provided color and size.

	Parameters

	
	image ((H,W,3) ndarray) – The image onto which to draw the keypoints.
This image should usually have the same shape as
set in KeypointsOnImage.shape.

	color (int or list of int or tuple of int or (3,) ndarray, optional) – The RGB color of all keypoints.
If a single int C, then that is equivalent to (C,C,C).

	alpha (float, optional) – The opacity of the drawn keypoint, where 1.0 denotes a fully
visible keypoint and 0.0 an invisible one.

	size (int, optional) – The size of each point. If set to C, each square will have
size C x C.

	copy (bool, optional) – Whether to copy the image before drawing the points.

	raise_if_out_of_image (bool, optional) – Whether to raise an exception if any keypoint is outside of the
image.

	Returns

	Image with drawn keypoints.

	Return type

	(H,W,3) ndarray

	
empty

	Determine whether this object contains zero keypoints.

	Returns

	True if this object contains zero keypoints.

	Return type

	bool

	
fill_from_xy_array_(self, xy)

	Modify the keypoint coordinates of this instance in-place.

Note

This currently expects that xy contains exactly as many
coordinates as there are keypoints in this instance. Otherwise,
an AssertionError will be raised.

Added in 0.4.0.

	Parameters

	xy ((N, 2) ndarray or iterable of iterable of number) – Coordinates of N keypoints on an image, given as a (N,2)
array of xy-coordinates. N must match the number of keypoints
in this instance.

	Returns

	This instance itself, with updated keypoint coordinates.
Note that the instance was modified in-place.

	Return type

	KeypointsOnImage

	
static from_coords_array(coords, shape)

	Deprecated. Use KeypointsOnImage.from_xy_array() instead.

Convert an (N,2) array to a KeypointsOnImage object.

	Parameters

	
	coords(N, 2) ndarray

	
Coordinates of N keypoints on an image, given as a (N,2)
array of xy-coordinates.

	shapetuple

	The shape of the image on which the keypoints are placed.

	Returns

	
	imgaug.augmentables.kps.KeypointsOnImage

	KeypointsOnImage object containing the array’s keypoints.

	
static from_distance_maps(distance_maps, inverted=False, if_not_found_coords={'x': -1, 'y': -1}, threshold=None, nb_channels=None)

	Convert outputs of to_distance_maps() to KeypointsOnImage.

This is the inverse of KeypointsOnImage.to_distance_maps().

	Parameters

	
	distance_maps ((H,W,N) ndarray) – The distance maps. N is the number of keypoints.

	inverted (bool, optional) – Whether the given distance maps were generated in inverted mode
(i.e. KeypointsOnImage.to_distance_maps() was called with
inverted=True) or in non-inverted mode.

	if_not_found_coords (tuple or list or dict or None, optional) – Coordinates to use for keypoints that cannot be found
in distance_maps.

	If this is a list/tuple, it must contain two int
values.

	If it is a dict, it must contain the keys x and
y with each containing one int value.

	If this is None, then the keypoint will not be added to the
final KeypointsOnImage object.

	threshold (float, optional) – The search for keypoints works by searching for the
argmin (non-inverted) or argmax (inverted) in each channel. This
parameters contains the maximum (non-inverted) or
minimum (inverted) value to accept in order to view a hit as a
keypoint. Use None to use no min/max.

	nb_channels (None or int, optional) – Number of channels of the image on which the keypoints are placed.
Some keypoint augmenters require that information.
If set to None, the keypoint’s shape will be set
to (height, width), otherwise (height, width, nb_channels).

	Returns

	The extracted keypoints.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
static from_keypoint_image(image, if_not_found_coords={'x': -1, 'y': -1}, threshold=1, nb_channels=None)

	Convert to_keypoint_image() outputs to KeypointsOnImage.

This is the inverse of KeypointsOnImage.to_keypoint_image().

	Parameters

	
	image ((H,W,N) ndarray) – The keypoints image. N is the number of keypoints.

	if_not_found_coords (tuple or list or dict or None, optional) – Coordinates to use for keypoints that cannot be found in image.

	If this is a list/tuple, it must contain two int
values.

	If it is a dict, it must contain the keys x and
y with each containing one int value.

	If this is None, then the keypoint will not be added to the
final KeypointsOnImage object.

	threshold (int, optional) – The search for keypoints works by searching for the argmax in
each channel. This parameters contains the minimum value that
the max must have in order to be viewed as a keypoint.

	nb_channels (None or int, optional) – Number of channels of the image on which the keypoints are placed.
Some keypoint augmenters require that information.
If set to None, the keypoint’s shape will be set
to (height, width), otherwise (height, width, nb_channels).

	Returns

	The extracted keypoints.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
classmethod from_xy_array(xy, shape)

	Convert an (N,2) array to a KeypointsOnImage object.

	Parameters

	
	xy ((N, 2) ndarray or iterable of iterable of number) – Coordinates of N keypoints on an image, given as a (N,2)
array of xy-coordinates.

	shape (tuple of int or ndarray) – The shape of the image on which the keypoints are placed.

	Returns

	KeypointsOnImage object containing the array’s keypoints.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
get_coords_array(self)

	Deprecated. Use KeypointsOnImage.to_xy_array() instead.

Convert all keypoint coordinates to an array of shape (N,2).

	Returns

	
	(N, 2) ndarray

	Array containing the coordinates of all keypoints.
N denotes the number of keypoints. The second axis denotes
the x/y-coordinates.

	
height

	Get the image height.

	Returns

	Image height.

	Return type

	int

	
invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this KeypointsOnImage
instance.

Added in 0.4.0.

	Parameters

	kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to copy data from, i.e. the outputs of
to_keypoints_on_image().

	Returns

	Keypoints container with updated coordinates.
Note that the instance is also updated in-place.

	Return type

	KeypointsOnImage

	
items

	Get the keypoints in this container.

Added in 0.4.0.

	Returns

	Keypoints within this container.

	Return type

	list of Keypoint

	
on(self, image)

	Project all keypoints from one image shape to a new one.

	Parameters

	image (ndarray or tuple of int) – New image onto which the keypoints are to be projected.
May also simply be that new image’s shape tuple.

	Returns

	Object containing all projected keypoints.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
on_(self, image)

	Project all keypoints from one image shape to a new one in-place.

Added in 0.4.0.

	Parameters

	image (ndarray or tuple of int) – New image onto which the keypoints are to be projected.
May also simply be that new image’s shape tuple.

	Returns

	Object containing all projected keypoints.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
remove_out_of_image_fraction(self, fraction)

	Remove all KPs with an out of image fraction of at least fraction.

This method exists for consistency with other augmentables, e.g.
bounding boxes.

Added in 0.4.0.

	Parameters

	fraction (number) – Minimum out of image fraction that a keypoint has to have in
order to be removed. Note that any keypoint can only have a
fraction of either 1.0 (is outside) or 0.0 (is inside).
Set this to 0.0+eps to remove all points that are outside of
the image. Setting this to 0.0 will remove all points.

	Returns

	Reduced set of keypoints, with those thathad an out of image
fraction greater or equal the given one removed.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
remove_out_of_image_fraction_(self, fraction)

	Remove all KPs with an OOI fraction of at least fraction in-place.

‘OOI’ is the abbreviation for ‘out of image’.

This method exists for consistency with other augmentables, e.g.
bounding boxes.

Added in 0.4.0.

	Parameters

	fraction (number) – Minimum out of image fraction that a keypoint has to have in
order to be removed. Note that any keypoint can only have a
fraction of either 1.0 (is outside) or 0.0 (is inside).
Set this to 0.0+eps to remove all points that are outside of
the image. Setting this to 0.0 will remove all points.

	Returns

	Reduced set of keypoints, with those thathad an out of image
fraction greater or equal the given one removed.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
shift(self, x=0, y=0)

	Move the keypoints on the x/y-axis.

	Parameters

	
	x (number, optional) – Move each keypoint by this value on the x axis.

	y (number, optional) – Move each keypoint by this value on the y axis.

	Returns

	Keypoints after moving them.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
shift_(self, x=0, y=0)

	Move the keypoints on the x/y-axis in-place.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Move each keypoint by this value on the x axis.

	y (number, optional) – Move each keypoint by this value on the y axis.

	Returns

	Keypoints after moving them.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
to_distance_maps(self, inverted=False)

	Generate a (H,W,N) array of distance maps for N keypoints.

The n-th distance map contains at every location (y, x) the
euclidean distance to the n-th keypoint.

This function can be used as a helper when augmenting keypoints with a
method that only supports the augmentation of images.

	Parameters

	inverted (bool, optional) – If True, inverted distance maps are returned where each
distance value d is replaced by d/(d+1), i.e. the distance
maps have values in the range (0.0, 1.0] with 1.0 denoting
exactly the position of the respective keypoint.

	Returns

	A float32 array containing N distance maps for N
keypoints. Each location (y, x, n) in the array denotes the
euclidean distance at (y, x) to the n-th keypoint.
If inverted is True, the distance d is replaced
by d/(d+1). The height and width of the array match the
height and width in KeypointsOnImage.shape.

	Return type

	(H,W,N) ndarray

	
to_keypoint_image(self, size=1)

	Create an (H,W,N) image with keypoint coordinates set to 255.

This method generates a new uint8 array of shape (H,W,N),
where H is the .shape height, W the .shape width and
N is the number of keypoints. The array is filled with zeros.
The coordinate of the n-th keypoint is set to 255 in the
n-th channel.

This function can be used as a helper when augmenting keypoints with
a method that only supports the augmentation of images.

	Parameters

	size (int) – Size of each (squared) point.

	Returns

	Image in which the keypoints are marked. H is the height,
defined in KeypointsOnImage.shape[0] (analogous W).
N is the number of keypoints.

	Return type

	(H,W,N) ndarray

	
to_keypoints_on_image(self)

	Convert the keypoints to one KeypointsOnImage instance.

This method exists for consistency with BoundingBoxesOnImage,
PolygonsOnImage and LineStringsOnImage.

Added in 0.4.0.

	Returns

	Copy of this keypoints instance.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
to_xy_array(self)

	Convert all keypoint coordinates to an array of shape (N,2).

	Returns

	Array containing the coordinates of all keypoints.
N denotes the number of keypoints. The second axis denotes
the x/y-coordinates.

	Return type

	(N, 2) ndarray

	
width

	Get the image width.

	Returns

	Image width.

	Return type

	int

	
imgaug.augmentables.kps.compute_geometric_median(points=None, eps=1e-05, X=None)

	Estimate the geometric median of points in 2D.

Code from https://stackoverflow.com/a/30305181

	Parameters

	
	points ((N,2) ndarray) – Points in 2D. Second axis must be given in xy-form.

	eps (float, optional) – Distance threshold when to return the median.

	X (None or (N,2) ndarray, optional) – Deprecated.

	Returns

	Geometric median as xy-coordinate.

	Return type

	(2,) ndarray

imgaug.augmentables.lines

Classes representing lines.

	
class imgaug.augmentables.lines.LineString(coords, label=None)

	Bases: object

Class representing line strings.

A line string is a collection of connected line segments, each
having a start and end point. Each point is given as its (x, y)
absolute (sub-)pixel coordinates. The end point of each segment is
also the start point of the next segment.

The line string is not closed, i.e. start and end point are expected to
differ and will not be connected in drawings.

	Parameters

	
	coords (iterable of tuple of number or ndarray) – The points of the line string.

	label (None or str, optional) – The label of the line string.

	Attributes

	
	height

	Compute the height of a bounding box encapsulating the line.

	length

	Compute the total euclidean length of the line string.

	width

	Compute the width of a bounding box encapsulating the line.

	xx

	Get an array of x-coordinates of all points of the line string.

	xx_int

	Get an array of discrete x-coordinates of all points.

	yy

	Get an array of y-coordinates of all points of the line string.

	yy_int

	Get an array of discrete y-coordinates of all points.

Methods

	almost_equals(self, other[, max_distance, …])

	Compare this and another line string.

	clip_out_of_image(self, image)

	Clip off all parts of the line string that are outside of the image.

	compute_distance(self, other[, default])

	Compute the minimal distance between the line string and other.

	compute_neighbour_distances(self)

	Compute the euclidean distance between each two consecutive points.

	compute_out_of_image_fraction(self, image)

	Compute fraction of polygon area outside of the image plane.

	compute_pointwise_distances(self, other[, …])

	Compute min distances between points of this and another line string.

	concatenate(self, other)

	Concatenate this line string with another one.

	contains(self, other[, max_distance])

	Estimate whether a point is on this line string.

	coords_almost_equals(self, other[, …])

	Compare this and another LineString’s coordinates.

	copy(self[, coords, label])

	Create a shallow copy of this line string.

	deepcopy(self[, coords, label])

	Create a deep copy of this line string.

	draw_heatmap_array(self, image_shape[, …])

	Draw the line segments and points of the line string as a heatmap array.

	draw_lines_heatmap_array(self, image_shape)

	Draw the line segments of this line string as a heatmap array.

	draw_lines_on_image(self, image[, color, …])

	Draw the line segments of this line string on a given image.

	draw_mask(self, image_shape[, size_lines, …])

	Draw this line segment as a binary image mask.

	draw_on_image(self, image[, color, …])

	Draw this line string onto an image.

	draw_points_heatmap_array(self, image_shape)

	Draw the points of this line string as a heatmap array.

	draw_points_on_image(self, image[, color, …])

	Draw the points of this line string onto a given image.

	extract_from_image(self, image[, size, pad, …])

	Extract all image pixels covered by the line string.

	find_intersections_with(self, other)

	Find all intersection points between this line string and other.

	get_pointwise_inside_image_mask(self, image)

	Determine per point whether it is inside of a given image plane.

	is_fully_within_image(self, image[, default])

	Estimate whether the line string is fully inside an image plane.

	is_out_of_image(self, image[, fully, …])

	Estimate whether the line is partially/fully outside of the image area.

	is_partly_within_image(self, image[, default])

	Estimate whether the line string is at least partially inside the image.

	project(self, from_shape, to_shape)

	Project the line string onto a differently shaped image.

	project_(self, from_shape, to_shape)

	Project the line string onto a differently shaped image in-place.

	shift(self[, x, y, top, right, bottom, left])

	Move this line string along the x/y-axis.

	shift_(self[, x, y])

	Move this line string along the x/y-axis in-place.

	subdivide(self, points_per_edge)

	Derive a new line string with N interpolated points per edge.

	to_bounding_box(self)

	Generate a bounding box encapsulating the line string.

	to_heatmap(self, image_shape[, size_lines, …])

	Generate a heatmap object from the line string.

	to_keypoints(self)

	Convert the line string points to keypoints.

	to_polygon(self)

	Generate a polygon from the line string points.

	to_segmentation_map(self, image_shape[, …])

	Generate a segmentation map object from the line string.

	
almost_equals(self, other, max_distance=0.0001, points_per_edge=8)

	Compare this and another line string.

	Parameters

	
	other (imgaug.augmentables.lines.LineString) – The other object to compare against. Expected to be a
LineString.

	max_distance (float, optional) – See coords_almost_equals().

	points_per_edge (int, optional) – See coords_almost_equals().

	Returns

	True if the coordinates are almost equal and additionally
the labels are equal. Otherwise False.

	Return type

	bool

	
clip_out_of_image(self, image)

	Clip off all parts of the line string that are outside of the image.

	Parameters

	image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

	Returns

	Line strings, clipped to the image shape.
The result may contain any number of line strins, including zero.

	Return type

	list of imgaug.augmentables.lines.LineString

	
compute_distance(self, other, default=None)

	Compute the minimal distance between the line string and other.

	Parameters

	
	other (tuple of number or imgaug.augmentables.kps.Keypoint or imgaug.augmentables.LineString) – Other object to which to compute the distance.

	default (any) – Value to return if this line string or other contain no points.

	Returns

	Minimal distance to other or default if no distance could be
computed.

	Return type

	float or any

	
compute_neighbour_distances(self)

	Compute the euclidean distance between each two consecutive points.

	Returns

	(N-1,) float32 array of euclidean distances between point
pairs. Same order as in coords.

	Return type

	ndarray

	
compute_out_of_image_fraction(self, image)

	Compute fraction of polygon area outside of the image plane.

This estimates f = A_ooi / A, where A_ooi is the area of the
polygon that is outside of the image plane, while A is the
total area of the bounding box.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	Fraction of the polygon area that is outside of the image
plane. Returns 0.0 if the polygon is fully inside of
the image plane. If the polygon has an area of zero, the polygon
is treated similarly to a LineString, i.e. the fraction
of the line that is inside the image plane is returned.

	Return type

	float

	
compute_pointwise_distances(self, other, default=None)

	Compute min distances between points of this and another line string.

	Parameters

	
	other (tuple of number or imgaug.augmentables.kps.Keypoint or imgaug.augmentables.LineString) – Other object to which to compute the distances.

	default (any) – Value to return if other contains no points.

	Returns

	For each coordinate of this line string, the distance to any
closest location on other.
default if no distance could be computed.

	Return type

	list of float or any

	
concatenate(self, other)

	Concatenate this line string with another one.

This will add a line segment between the end point of this line string
and the start point of other.

	Parameters

	other (imgaug.augmentables.lines.LineString or ndarray or iterable of tuple of number) – The points to add to this line string.

	Returns

	New line string with concatenated points.
The label of this line string will be kept.

	Return type

	imgaug.augmentables.lines.LineString

	
contains(self, other, max_distance=0.0001)

	Estimate whether a point is on this line string.

This method uses a maximum distance to estimate whether a point is
on a line string.

	Parameters

	
	other (tuple of number or imgaug.augmentables.kps.Keypoint) – Point to check for.

	max_distance (float) – Maximum allowed euclidean distance between the point and the
closest point on the line. If the threshold is exceeded, the point
is not considered to fall on the line.

	Returns

	True if the point is on the line string, False otherwise.

	Return type

	bool

	
coords_almost_equals(self, other, max_distance=0.0001, points_per_edge=8)

	Compare this and another LineString’s coordinates.

This is an approximate method based on pointwise distances and can
in rare corner cases produce wrong outputs.

	Parameters

	
	other (imgaug.augmentables.lines.LineString or tuple of number or ndarray or list of ndarray or list of tuple of number) – The other line string or its coordinates.

	max_distance (float, optional) – Max distance of any point from the other line string before
the two line strings are evaluated to be unequal.

	points_per_edge (int, optional) – How many points to interpolate on each edge.

	Returns

	Whether the two LineString’s coordinates are almost identical,
i.e. the max distance is below the threshold.
If both have no coordinates, True is returned.
If only one has no coordinates, False is returned.
Beyond that, the number of points is not evaluated.

	Return type

	bool

	
copy(self, coords=None, label=None)

	Create a shallow copy of this line string.

	Parameters

	
	coords (None or iterable of tuple of number or ndarray) – If not None, then the coords of the copied object will be set
to this value.

	label (None or str) – If not None, then the label of the copied object will be set to
this value.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.lines.LineString

	
deepcopy(self, coords=None, label=None)

	Create a deep copy of this line string.

	Parameters

	
	coords (None or iterable of tuple of number or ndarray) – If not None, then the coords of the copied object will be set
to this value.

	label (None or str) – If not None, then the label of the copied object will be set to
this value.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.lines.LineString

	
draw_heatmap_array(self, image_shape, alpha_lines=1.0, alpha_points=1.0, size_lines=1, size_points=0, antialiased=True, raise_if_out_of_image=False)

	Draw the line segments and points of the line string as a heatmap array.

	Parameters

	
	image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

	alpha_lines (float, optional) – Opacity of the line string. Higher values denote a more visible
line string.

	alpha_points (float, optional) – Opacity of the line string points. Higher values denote a more
visible points.

	size_lines (int, optional) – Thickness of the line segments.

	size_points (int, optional) – Size of the points in pixels.

	antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	float32 array of shape image_shape (no channel axis) with
drawn line segments and points. All values are in the
interval [0.0, 1.0].

	Return type

	ndarray

	
draw_lines_heatmap_array(self, image_shape, alpha=1.0, size=1, antialiased=True, raise_if_out_of_image=False)

	Draw the line segments of this line string as a heatmap array.

	Parameters

	
	image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

	alpha (float, optional) – Opacity of the line string. Higher values denote a more visible
line string.

	size (int, optional) – Thickness of the line segments.

	antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	float32 array of shape image_shape (no channel axis) with
drawn line string. All values are in the interval [0.0, 1.0].

	Return type

	ndarray

	
draw_lines_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=3, antialiased=True, raise_if_out_of_image=False)

	Draw the line segments of this line string on a given image.

	Parameters

	
	image (ndarray or tuple of int) – The image onto which to draw.
Expected to be uint8 and of shape (H, W, C) with C
usually being 3 (other values are not tested).
If a tuple, expected to be (H, W, C) and will lead to a new
uint8 array of zeros being created.

	color (int or iterable of int) – Color to use as RGB, i.e. three values.

	alpha (float, optional) – Opacity of the line string. Higher values denote a more visible
line string.

	size (int, optional) – Thickness of the line segments.

	antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	image with line drawn on it.

	Return type

	ndarray

	
draw_mask(self, image_shape, size_lines=1, size_points=0, raise_if_out_of_image=False)

	Draw this line segment as a binary image mask.

	Parameters

	
	image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

	size_lines (int, optional) – Thickness of the line segments.

	size_points (int, optional) – Size of the points in pixels.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	Boolean line mask of shape image_shape (no channel axis).

	Return type

	ndarray

	
draw_on_image(self, image, color=(0, 255, 0), color_lines=None, color_points=None, alpha=1.0, alpha_lines=None, alpha_points=None, size=1, size_lines=None, size_points=None, antialiased=True, raise_if_out_of_image=False)

	Draw this line string onto an image.

	Parameters

	
	image (ndarray) – The (H,W,C) uint8 image onto which to draw the line string.

	color (iterable of int, optional) – Color to use as RGB, i.e. three values.
The color of the line and points are derived from this value,
unless they are set.

	color_lines (None or iterable of int) – Color to use for the line segments as RGB, i.e. three values.
If None, this value is derived from color.

	color_points (None or iterable of int) – Color to use for the points as RGB, i.e. three values.
If None, this value is derived from 0.5 * color.

	alpha (float, optional) – Opacity of the line string. Higher values denote more visible
points.
The alphas of the line and points are derived from this value,
unless they are set.

	alpha_lines (None or float, optional) – Opacity of the line string. Higher values denote more visible
line string.
If None, this value is derived from alpha.

	alpha_points (None or float, optional) – Opacity of the line string points. Higher values denote more
visible points.
If None, this value is derived from alpha.

	size (int, optional) – Size of the line string.
The sizes of the line and points are derived from this value,
unless they are set.

	size_lines (None or int, optional) – Thickness of the line segments.
If None, this value is derived from size.

	size_points (None or int, optional) – Size of the points in pixels.
If None, this value is derived from 3 * size.

	antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.
This does currently not affect the point drawing.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	Image with line string drawn on it.

	Return type

	ndarray

	
draw_points_heatmap_array(self, image_shape, alpha=1.0, size=1, raise_if_out_of_image=False)

	Draw the points of this line string as a heatmap array.

	Parameters

	
	image_shape (tuple of int) – The shape of the image onto which to draw the point mask.

	alpha (float, optional) – Opacity of the line string points. Higher values denote a more
visible points.

	size (int, optional) – Size of the points in pixels.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	float32 array of shape image_shape (no channel axis) with
drawn line string points. All values are in the
interval [0.0, 1.0].

	Return type

	ndarray

	
draw_points_on_image(self, image, color=(0, 128, 0), alpha=1.0, size=3, copy=True, raise_if_out_of_image=False)

	Draw the points of this line string onto a given image.

	Parameters

	
	image (ndarray or tuple of int) – The image onto which to draw.
Expected to be uint8 and of shape (H, W, C) with C
usually being 3 (other values are not tested).
If a tuple, expected to be (H, W, C) and will lead to a new
uint8 array of zeros being created.

	color (iterable of int) – Color to use as RGB, i.e. three values.

	alpha (float, optional) – Opacity of the line string points. Higher values denote a more
visible points.

	size (int, optional) – Size of the points in pixels.

	copy (bool, optional) – Whether it is allowed to draw directly in the input
array (False) or it has to be copied (True).
The routine may still have to copy, even if copy=False was
used. Always use the return value.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	float32 array of shape image_shape (no channel axis) with
drawn line string points. All values are in the
interval [0.0, 1.0].

	Return type

	ndarray

	
extract_from_image(self, image, size=1, pad=True, pad_max=None, antialiased=True, prevent_zero_size=True)

	Extract all image pixels covered by the line string.

This will only extract pixels overlapping with the line string.
As a rectangular image array has to be returned, non-overlapping
pixels will be set to zero.

This function will by default zero-pad the image if the line string is
partially/fully outside of the image. This is for consistency with
the same methods for bounding boxes and polygons.

	Parameters

	
	image (ndarray) – The image of shape (H,W,[C]) from which to extract the pixels
within the line string.

	size (int, optional) – Thickness of the line.

	pad (bool, optional) – Whether to zero-pad the image if the object is partially/fully
outside of it.

	pad_max (None or int, optional) – The maximum number of pixels that may be zero-paded on any side,
i.e. if this has value N the total maximum of added pixels
is 4*N.
This option exists to prevent extremely large images as a result of
single points being moved very far away during augmentation.

	antialiased (bool, optional) – Whether to apply anti-aliasing to the line string.

	prevent_zero_size (bool, optional) – Whether to prevent height or width of the extracted image from
becoming zero. If this is set to True and height or width of
the line string is below 1, the height/width will be increased
to 1. This can be useful to prevent problems, e.g. with image
saving or plotting. If it is set to False, images will be
returned as (H', W') or (H', W', 3) with H or W
potentially being 0.

	Returns

	Pixels overlapping with the line string. Zero-padded if the
line string is partially/fully outside of the image and
pad=True. If prevent_zero_size is activated, it is
guarantueed that H'>0 and W'>0, otherwise only
H'>=0 and W'>=0.

	Return type

	(H’,W’) ndarray or (H’,W’,C) ndarray

	
find_intersections_with(self, other)

	Find all intersection points between this line string and other.

	Parameters

	other (tuple of number or list of tuple of number or list of LineString or LineString) – The other geometry to use during intersection tests.

	Returns

	All intersection points. One list per pair of consecutive start
and end point, i.e. N-1 lists of N points. Each list may
be empty or may contain multiple points.

	Return type

	list of list of tuple of number

	
get_pointwise_inside_image_mask(self, image)

	Determine per point whether it is inside of a given image plane.

	Parameters

	image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

	Returns

	(N,) ``bool array with one value for each of the N points
indicating whether it is inside of the provided image
plane (True) or not (False).

	Return type

	ndarray

	
height

	Compute the height of a bounding box encapsulating the line.

The height is computed based on the two points with lowest and
largest y-coordinates.

	Returns

	The height of the line string.

	Return type

	float

	
is_fully_within_image(self, image, default=False)

	Estimate whether the line string is fully inside an image plane.

	Parameters

	
	image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

	default (any) – Default value to return if the line string contains no points.

	Returns

	True if the line string is fully inside the image area.
False otherwise.
Will return default if this line string contains no points.

	Return type

	bool or any

	
is_out_of_image(self, image, fully=True, partly=False, default=True)

	Estimate whether the line is partially/fully outside of the image area.

	Parameters

	
	image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

	fully (bool, optional) – Whether to return True if the line string is fully outside
of the image area.

	partly (bool, optional) – Whether to return True if the line string is at least partially
outside fo the image area.

	default (any) – Default value to return if the line string contains no points.

	Returns

	True if the line string is partially/fully outside of the image
area, depending on defined parameters.
False otherwise.
Will return default if this line string contains no points.

	Return type

	bool or any

	
is_partly_within_image(self, image, default=False)

	Estimate whether the line string is at least partially inside the image.

	Parameters

	
	image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

	default (any) – Default value to return if the line string contains no points.

	Returns

	True if the line string is at least partially inside the image
area. False otherwise.
Will return default if this line string contains no points.

	Return type

	bool or any

	
length

	Compute the total euclidean length of the line string.

	Returns

	The length based on euclidean distance, i.e. the sum of the
lengths of each line segment.

	Return type

	float

	
project(self, from_shape, to_shape)

	Project the line string onto a differently shaped image.

E.g. if a point of the line string is on its original image at
x=(10 of 100 pixels) and y=(20 of 100 pixels) and is projected
onto a new image with size (width=200, height=200), its new
position will be (x=20, y=40).

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

	Parameters

	
	from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

	to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

	Returns

	Line string with new coordinates.

	Return type

	imgaug.augmentables.lines.LineString

	
project_(self, from_shape, to_shape)

	Project the line string onto a differently shaped image in-place.

E.g. if a point of the line string is on its original image at
x=(10 of 100 pixels) and y=(20 of 100 pixels) and is projected
onto a new image with size (width=200, height=200), its new
position will be (x=20, y=40).

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

Added in 0.4.0.

	Parameters

	
	from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

	to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

	Returns

	Line string with new coordinates.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.lines.LineString

	
shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)

	Move this line string along the x/y-axis.

The origin (0, 0) is at the top left of the image.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	top (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
top (towards the bottom).

	right (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
right (towards the left).

	bottom (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
bottom (towards the top).

	left (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
left (towards the right).

	Returns

	result – Shifted line string.

	Return type

	imgaug.augmentables.lines.LineString

	
shift_(self, x=0, y=0)

	Move this line string along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	Returns

	result – Shifted line string.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.lines.LineString

	
subdivide(self, points_per_edge)

	Derive a new line string with N interpolated points per edge.

The interpolated points have (per edge) regular distances to each
other.

For each edge between points A and B this adds points
at A + (i/(1+N)) * (B - A), where i is the index of the added
point and N is the number of points to add per edge.

Calling this method two times will split each edge at its center
and then again split each newly created edge at their center.
It is equivalent to calling subdivide(3).

	Parameters

	points_per_edge (int) – Number of points to interpolate on each edge.

	Returns

	Line string with subdivided edges.

	Return type

	imgaug.augmentables.lines.LineString

	
to_bounding_box(self)

	Generate a bounding box encapsulating the line string.

	Returns

	Bounding box encapsulating the line string.
None if the line string contained no points.

	Return type

	None or imgaug.augmentables.bbs.BoundingBox

	
to_heatmap(self, image_shape, size_lines=1, size_points=0, antialiased=True, raise_if_out_of_image=False)

	Generate a heatmap object from the line string.

This is similar to
draw_lines_heatmap_array(),
executed with alpha=1.0. The result is wrapped in a
HeatmapsOnImage object instead
of just an array. No points are drawn.

	Parameters

	
	image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

	size_lines (int, optional) – Thickness of the line.

	size_points (int, optional) – Size of the points in pixels.

	antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	Heatmap object containing drawn line string.

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage

	
to_keypoints(self)

	Convert the line string points to keypoints.

	Returns

	Points of the line string as keypoints.

	Return type

	list of imgaug.augmentables.kps.Keypoint

	
to_polygon(self)

	Generate a polygon from the line string points.

	Returns

	Polygon with the same corner points as the line string.
Note that the polygon might be invalid, e.g. contain less
than 3 points or have self-intersections.

	Return type

	imgaug.augmentables.polys.Polygon

	
to_segmentation_map(self, image_shape, size_lines=1, size_points=0, raise_if_out_of_image=False)

	Generate a segmentation map object from the line string.

This is similar to
draw_mask().
The result is wrapped in a SegmentationMapsOnImage object
instead of just an array.

	Parameters

	
	image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

	size_lines (int, optional) – Thickness of the line.

	size_points (int, optional) – Size of the points in pixels.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	Segmentation map object containing drawn line string.

	Return type

	imgaug.augmentables.segmaps.SegmentationMapsOnImage

	
width

	Compute the width of a bounding box encapsulating the line.

The width is computed based on the two points with lowest and
largest x-coordinates.

	Returns

	The width of the line string.

	Return type

	float

	
xx

	Get an array of x-coordinates of all points of the line string.

	Returns

	float32 x-coordinates of the line string points.

	Return type

	ndarray

	
xx_int

	Get an array of discrete x-coordinates of all points.

The conversion from float32 coordinates to int32 is done
by first rounding the coordinates to the closest integer and then
removing everything after the decimal point.

	Returns

	int32 x-coordinates of the line string points.

	Return type

	ndarray

	
yy

	Get an array of y-coordinates of all points of the line string.

	Returns

	float32 y-coordinates of the line string points.

	Return type

	ndarray

	
yy_int

	Get an array of discrete y-coordinates of all points.

The conversion from float32 coordinates to int32 is done
by first rounding the coordinates to the closest integer and then
removing everything after the decimal point.

	Returns

	int32 y-coordinates of the line string points.

	Return type

	ndarray

	
class imgaug.augmentables.lines.LineStringsOnImage(line_strings, shape)

	Bases: imgaug.augmentables.base.IAugmentable

Object that represents all line strings on a single image.

	Parameters

	
	line_strings (list of imgaug.augmentables.lines.LineString) – List of line strings on the image.

	shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

Examples

>>> import numpy as np
>>> from imgaug.augmentables.lines import LineString, LineStringsOnImage
>>>
>>> image = np.zeros((100, 100))
>>> lss = [
>>> LineString([(0, 0), (10, 0)]),
>>> LineString([(10, 20), (30, 30), (50, 70)])
>>>]
>>> lsoi = LineStringsOnImage(lss, shape=image.shape)

	Attributes

	
	empty

	Estimate whether this object contains zero line strings.

	items

	Get the line strings in this container.

Methods

	clip_out_of_image(self)

	Clip off all parts of the line strings that are outside of an image.

	clip_out_of_image_(self)

	Clip off all parts of the LSs that are outside of an image in-place.

	copy(self[, line_strings, shape])

	Create a shallow copy of this object.

	deepcopy(self[, line_strings, shape])

	Create a deep copy of the object.

	draw_on_image(self, image[, color, …])

	Draw all line strings onto a given image.

	fill_from_xy_array_(self, xy)

	Modify the corner coordinates of all line strings in-place.

	from_xy_arrays(xy, shape)

	Convert an (N,M,2) ndarray to a LineStringsOnImage object.

	invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

	on(self, image)

	Project the line strings from one image shape to a new one.

	on_(self, image)

	Project the line strings from one image shape to a new one in-place.

	remove_out_of_image(self[, fully, partly])

	Remove all line strings that are fully/partially outside of an image.

	remove_out_of_image_(self[, fully, partly])

	Remove all LS that are fully/partially outside of an image in-place.

	remove_out_of_image_fraction(self, fraction)

	Remove all LS with an out of image fraction of at least fraction.

	remove_out_of_image_fraction_(self, fraction)

	Remove all LS with an OOI fraction of at least fraction in-place.

	shift(self[, x, y, top, right, bottom, left])

	Move the line strings along the x/y-axis.

	shift_(self[, x, y])

	Move the line strings along the x/y-axis in-place.

	to_keypoints_on_image(self)

	Convert the line strings to one KeypointsOnImage instance.

	to_xy_array(self)

	Convert all line string coordinates to one array of shape (N,2).

	to_xy_arrays(self[, dtype])

	Convert this object to an iterable of (M,2) arrays of points.

	
clip_out_of_image(self)

	Clip off all parts of the line strings that are outside of an image.

Note

The result can contain fewer line strings than the input did. That
happens when a polygon is fully outside of the image plane.

Note

The result can also contain more line strings than the input
did. That happens when distinct parts of a line string are only
connected by line segments that are outside of the image plane and
hence will be clipped off, resulting in two or more unconnected
line string parts that are left in the image plane.

	Returns

	Line strings, clipped to fall within the image dimensions.
The count of output line strings may differ from the input count.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
clip_out_of_image_(self)

	Clip off all parts of the LSs that are outside of an image in-place.

Note

The result can contain fewer line strings than the input did. That
happens when a polygon is fully outside of the image plane.

Note

The result can also contain more line strings than the input
did. That happens when distinct parts of a line string are only
connected by line segments that are outside of the image plane and
hence will be clipped off, resulting in two or more unconnected
line string parts that are left in the image plane.

Added in 0.4.0.

	Returns

	Line strings, clipped to fall within the image dimensions.
The count of output line strings may differ from the input count.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
copy(self, line_strings=None, shape=None)

	Create a shallow copy of this object.

	Parameters

	
	line_strings (None or list of imgaug.augmentables.lines.LineString, optional) – List of line strings on the image.
If not None, then the line_strings attribute of the copied
object will be set to this value.

	shape (None or tuple of int or ndarray, optional) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.
If not None, then the shape attribute of the copied object
will be set to this value.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
deepcopy(self, line_strings=None, shape=None)

	Create a deep copy of the object.

	Parameters

	
	line_strings (None or list of imgaug.augmentables.lines.LineString, optional) – List of line strings on the image.
If not None, then the line_strings attribute of the copied
object will be set to this value.

	shape (None or tuple of int or ndarray, optional) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.
If not None, then the shape attribute of the copied object
will be set to this value.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
draw_on_image(self, image, color=(0, 255, 0), color_lines=None, color_points=None, alpha=1.0, alpha_lines=None, alpha_points=None, size=1, size_lines=None, size_points=None, antialiased=True, raise_if_out_of_image=False)

	Draw all line strings onto a given image.

	Parameters

	
	image (ndarray) – The (H,W,C) uint8 image onto which to draw the line
strings.

	color (iterable of int, optional) – Color to use as RGB, i.e. three values.
The color of the lines and points are derived from this value,
unless they are set.

	color_lines (None or iterable of int) – Color to use for the line segments as RGB, i.e. three values.
If None, this value is derived from color.

	color_points (None or iterable of int) – Color to use for the points as RGB, i.e. three values.
If None, this value is derived from 0.5 * color.

	alpha (float, optional) – Opacity of the line strings. Higher values denote more visible
points.
The alphas of the line and points are derived from this value,
unless they are set.

	alpha_lines (None or float, optional) – Opacity of the line strings. Higher values denote more visible
line string.
If None, this value is derived from alpha.

	alpha_points (None or float, optional) – Opacity of the line string points. Higher values denote more
visible points.
If None, this value is derived from alpha.

	size (int, optional) – Size of the line strings.
The sizes of the line and points are derived from this value,
unless they are set.

	size_lines (None or int, optional) – Thickness of the line segments.
If None, this value is derived from size.

	size_points (None or int, optional) – Size of the points in pixels.
If None, this value is derived from 3 * size.

	antialiased (bool, optional) – Whether to draw the lines with anti-aliasing activated.
This does currently not affect the point drawing.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if a line string is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	Image with line strings drawn on it.

	Return type

	ndarray

	
empty

	Estimate whether this object contains zero line strings.

	Returns

	True if this object contains zero line strings.

	Return type

	bool

	
fill_from_xy_array_(self, xy)

	Modify the corner coordinates of all line strings in-place.

Note

This currently expects that xy contains exactly as many
coordinates as the line strings within this instance have corner
points. Otherwise, an AssertionError will be raised.

Added in 0.4.0.

	Parameters

	xy ((N, 2) ndarray or iterable of iterable of number) – XY-Coordinates of N corner points. N must match the
number of corner points in all line strings within this instance.

	Returns

	This instance itself, with updated coordinates.
Note that the instance was modified in-place.

	Return type

	LineStringsOnImage

	
classmethod from_xy_arrays(xy, shape)

	Convert an (N,M,2) ndarray to a LineStringsOnImage object.

This is the inverse of
to_xy_array().

	Parameters

	
	xy ((N,M,2) ndarray or iterable of (M,2) ndarray) – Array containing the point coordinates N line strings
with each M points given as (x,y) coordinates.
M may differ if an iterable of arrays is used.
Each array should usually be of dtype float32.

	shape (tuple of int) – (H,W,[C]) shape of the image on which the line strings are
placed.

	Returns

	Object containing a list of LineString objects following the
provided point coordinates.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this LineStringsOnImage
instance.

Added in 0.4.0.

	Parameters

	kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back to line strings, i.e. the outputs
of to_keypoints_on_image().

	Returns

	Line strings container with updated coordinates.
Note that the instance is also updated in-place.

	Return type

	LineStringsOnImage

	
items

	Get the line strings in this container.

Added in 0.4.0.

	Returns

	Line strings within this container.

	Return type

	list of LineString

	
on(self, image)

	Project the line strings from one image shape to a new one.

	Parameters

	image (ndarray or tuple of int) – The new image onto which to project.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

	Returns

	Object containing all projected line strings.

	Return type

	imgaug.augmentables.lines.LineStrings

	
on_(self, image)

	Project the line strings from one image shape to a new one in-place.

Added in 0.4.0.

	Parameters

	image (ndarray or tuple of int) – The new image onto which to project.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

	Returns

	Object containing all projected line strings.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.lines.LineStrings

	
remove_out_of_image(self, fully=True, partly=False)

	Remove all line strings that are fully/partially outside of an image.

	Parameters

	
	fully (bool, optional) – Whether to remove line strings that are fully outside of the image.

	partly (bool, optional) – Whether to remove line strings that are partially outside of the
image.

	Returns

	Reduced set of line strings. Those that are fully/partially
outside of the given image plane are removed.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
remove_out_of_image_(self, fully=True, partly=False)

	Remove all LS that are fully/partially outside of an image in-place.

Added in 0.4.0.

	Parameters

	
	fully (bool, optional) – Whether to remove line strings that are fully outside of the image.

	partly (bool, optional) – Whether to remove line strings that are partially outside of the
image.

	Returns

	Reduced set of line strings. Those that are fully/partially
outside of the given image plane are removed.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
remove_out_of_image_fraction(self, fraction)

	Remove all LS with an out of image fraction of at least fraction.

	Parameters

	fraction (number) – Minimum out of image fraction that a line string has to have in
order to be removed. A fraction of 1.0 removes only line
strings that are 100% outside of the image. A fraction of
0.0 removes all line strings.

	Returns

	Reduced set of line strings, with those that had an out of image
fraction greater or equal the given one removed.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
remove_out_of_image_fraction_(self, fraction)

	Remove all LS with an OOI fraction of at least fraction in-place.

‘OOI’ is the abbreviation for ‘out of image’.

Added in 0.4.0.

	Parameters

	fraction (number) – Minimum out of image fraction that a line string has to have in
order to be removed. A fraction of 1.0 removes only line
strings that are 100% outside of the image. A fraction of
0.0 removes all line strings.

	Returns

	Reduced set of line strings, with those that had an out of image
fraction greater or equal the given one removed.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)

	Move the line strings along the x/y-axis.

The origin (0, 0) is at the top left of the image.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	top (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
top (towards the bottom).

	right (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
right (towads the left).

	bottom (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
bottom (towards the top).

	left (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
left (towards the right).

	Returns

	Shifted line strings.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
shift_(self, x=0, y=0)

	Move the line strings along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	Returns

	Shifted line strings.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage

	
to_keypoints_on_image(self)

	Convert the line strings to one KeypointsOnImage instance.

Added in 0.4.0.

	Returns

	A keypoints instance containing N coordinates for a total
of N points in the coords attributes of all line strings.
Order matches the order in line_strings and coords
attributes.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
to_xy_array(self)

	Convert all line string coordinates to one array of shape (N,2).

Added in 0.4.0.

	Returns

	Array containing all xy-coordinates of all line strings within this
instance.

	Return type

	(N, 2) ndarray

	
to_xy_arrays(self, dtype=<class 'numpy.float32'>)

	Convert this object to an iterable of (M,2) arrays of points.

This is the inverse of
from_xy_array().

	Parameters

	dtype (numpy.dtype, optional) – Desired output datatype of the ndarray.

	Returns

	The arrays of point coordinates, each given as (M,2).

	Return type

	list of ndarray

imgaug.augmentables.normalization

Functions dealing with normalization of user input data to imgaug classes.

	
imgaug.augmentables.normalization.estimate_bounding_boxes_norm_type(bounding_boxes)

	

	
imgaug.augmentables.normalization.estimate_heatmaps_norm_type(heatmaps)

	

	
imgaug.augmentables.normalization.estimate_keypoints_norm_type(keypoints)

	

	
imgaug.augmentables.normalization.estimate_line_strings_norm_type(line_strings)

	

	
imgaug.augmentables.normalization.estimate_normalization_type(inputs)

	

	
imgaug.augmentables.normalization.estimate_polygons_norm_type(polygons)

	

	
imgaug.augmentables.normalization.estimate_segmaps_norm_type(segmentation_maps)

	

	
imgaug.augmentables.normalization.find_first_nonempty(attr, parents=None)

	

	
imgaug.augmentables.normalization.invert_normalize_bounding_boxes(bounding_boxes, bounding_boxes_old)

	

	
imgaug.augmentables.normalization.invert_normalize_heatmaps(heatmaps, heatmaps_old)

	

	
imgaug.augmentables.normalization.invert_normalize_images(images, images_old)

	

	
imgaug.augmentables.normalization.invert_normalize_keypoints(keypoints, keypoints_old)

	

	
imgaug.augmentables.normalization.invert_normalize_line_strings(line_strings, line_strings_old)

	

	
imgaug.augmentables.normalization.invert_normalize_polygons(polygons, polygons_old)

	

	
imgaug.augmentables.normalization.invert_normalize_segmentation_maps(segmentation_maps, segmentation_maps_old)

	

	
imgaug.augmentables.normalization.normalize_bounding_boxes(inputs, shapes=None)

	

	
imgaug.augmentables.normalization.normalize_heatmaps(inputs, shapes=None)

	

	
imgaug.augmentables.normalization.normalize_images(images)

	

	
imgaug.augmentables.normalization.normalize_keypoints(inputs, shapes=None)

	

	
imgaug.augmentables.normalization.normalize_line_strings(inputs, shapes=None)

	

	
imgaug.augmentables.normalization.normalize_polygons(inputs, shapes=None)

	

	
imgaug.augmentables.normalization.normalize_segmentation_maps(inputs, shapes=None)

	

	
imgaug.augmentables.normalization.restore_dtype_and_merge(arr, input_dtype)

	

imgaug.augmentables.polys

Classes dealing with polygons.

	
class imgaug.augmentables.polys.MultiPolygon(geoms)

	Bases: object

Class that represents several polygons.

	Parameters

	geoms (list of imgaug.augmentables.polys.Polygon) – List of the polygons.

Methods

	from_shapely(geometry[, label])

	Create a MultiPolygon from a shapely object.

	
static from_shapely(geometry, label=None)

	Create a MultiPolygon from a shapely object.

This also creates all necessary Polygon s contained in this
MultiPolygon.

	Parameters

	
	geometry (shapely.geometry.MultiPolygon or shapely.geometry.Polygon or shapely.geometry.collection.GeometryCollection) – The object to convert to a MultiPolygon.

	label (None or str, optional) – A label assigned to all Polygons within the MultiPolygon.

	Returns

	The derived MultiPolygon.

	Return type

	imgaug.augmentables.polys.MultiPolygon

	
class imgaug.augmentables.polys.Polygon(exterior, label=None)

	Bases: object

Class representing polygons.

Each polygon is parameterized by its corner points, given as absolute
x- and y-coordinates with sub-pixel accuracy.

	Parameters

	
	exterior (list of imgaug.augmentables.kps.Keypoint or list of tuple of float or (N,2) ndarray) – List of points defining the polygon. May be either a list of
Keypoint objects or a list of
tuple s in xy-form or a numpy array of shape (N,2) for N
points in xy-form.
All coordinates are expected to be the absolute subpixel-coordinates
on the image, given as float s, e.g. x=10.7 and y=3.4 for a
point at coordinates (10.7, 3.4). Their order is expected to be
clock-wise. They are expected to not be closed (i.e. first and last
coordinate differ).

	label (None or str, optional) – Label of the polygon, e.g. a string representing the class.

	Attributes

	
	area

	Compute the area of the polygon.

	coords

	Alias for attribute exterior.

	height

	Compute the height of a bounding box encapsulating the polygon.

	is_valid

	Estimate whether the polygon has a valid geometry.

	width

	Compute the width of a bounding box encapsulating the polygon.

	xx

	Get the x-coordinates of all points on the exterior.

	xx_int

	Get the discretized x-coordinates of all points on the exterior.

	yy

	Get the y-coordinates of all points on the exterior.

	yy_int

	Get the discretized y-coordinates of all points on the exterior.

Methods

	almost_equals(self, other[, max_distance, …])

	Estimate if this polygon’s and another’s geometry/labels are similar.

	change_first_point_by_coords(self, x, y[, …])

	Reorder exterior points so that the point closest to given x/y is first.

	change_first_point_by_index(self, point_idx)

	Reorder exterior points so that the point with given index is first.

	clip_out_of_image(self, image)

	Cut off all parts of the polygon that are outside of an image.

	compute_out_of_image_area(self, image)

	Compute the area of the BB that is outside of the image plane.

	compute_out_of_image_fraction(self, image)

	Compute fraction of polygon area outside of the image plane.

	coords_almost_equals(self, other[, …])

	Alias for Polygon.exterior_almost_equals().

	copy(self[, exterior, label])

	Create a shallow copy of this object.

	cut_out_of_image(self, image)

	Deprecated.

	deepcopy(self[, exterior, label])

	Create a deep copy of this object.

	draw_on_image(self, image[, color, …])

	Draw the polygon on an image.

	exterior_almost_equals(self, other[, …])

	Estimate if this and another polygon’s exterior are almost identical.

	extract_from_image(self, image)

	Extract all image pixels within the polygon area.

	find_closest_point_index(self, x, y[, …])

	Find the index of the exterior point closest to given coordinates.

	from_shapely(polygon_shapely[, label])

	Create a polygon from a Shapely Polygon.

	is_fully_within_image(self, image)

	Estimate whether the polygon is fully inside an image plane.

	is_out_of_image(self, image[, fully, partly])

	Estimate whether the polygon is partially/fully outside of an image.

	is_partly_within_image(self, image)

	Estimate whether the polygon is at least partially inside an image.

	project(self, from_shape, to_shape)

	Project the polygon onto an image with different shape.

	project_(self, from_shape, to_shape)

	Project the polygon onto an image with different shape in-place.

	shift(self[, x, y, top, right, bottom, left])

	Move this polygon along the x/y-axis.

	shift_(self[, x, y])

	Move this polygon along the x/y-axis in-place.

	subdivide(self, points_per_edge)

	Derive a new polygon with N interpolated points per edge.

	subdivide_(self, points_per_edge)

	Derive a new poly with N interpolated points per edge in-place.

	to_bounding_box(self)

	Convert this polygon to a bounding box containing the polygon.

	to_keypoints(self)

	Convert this polygon’s exterior to Keypoint instances.

	to_line_string(self[, closed])

	Convert this polygon’s exterior to a LineString instance.

	to_shapely_line_string(self[, closed, …])

	Convert this polygon to a Shapely LineString object.

	to_shapely_polygon(self)

	Convert this polygon to a Shapely Polygon.

	
almost_equals(self, other, max_distance=0.0001, points_per_edge=8)

	Estimate if this polygon’s and another’s geometry/labels are similar.

This is the same as
exterior_almost_equals() but
additionally compares the labels.

	Parameters

	
	other (imgaug.augmentables.polys.Polygon) – The other object to compare against. Expected to be a Polygon.

	max_distance (float, optional) – See
exterior_almost_equals().

	points_per_edge (int, optional) – See
exterior_almost_equals().

	Returns

	True if the coordinates are almost equal and additionally
the labels are equal. Otherwise False.

	Return type

	bool

	
area

	Compute the area of the polygon.

	Returns

	Area of the polygon.

	Return type

	number

	
change_first_point_by_coords(self, x, y, max_distance=0.0001, raise_if_too_far_away=True)

	Reorder exterior points so that the point closest to given x/y is first.

This method takes a given (x,y) coordinate, finds the closest
corner point on the exterior and reorders all exterior corner points
so that the found point becomes the first one in the array.

If no matching points are found, an exception is raised.

	Parameters

	
	x (number) – X-coordinate of the point.

	y (number) – Y-coordinate of the point.

	max_distance (None or number, optional) – Maximum distance past which possible matches are ignored.
If None the distance limit is deactivated.

	raise_if_too_far_away (bool, optional) – Whether to raise an exception if the closest found point is too
far away (True) or simply return an unchanged copy if this
object (False).

	Returns

	Copy of this polygon with the new point order.

	Return type

	imgaug.augmentables.polys.Polygon

	
change_first_point_by_index(self, point_idx)

	Reorder exterior points so that the point with given index is first.

This method takes a given index and reorders all exterior corner points
so that the point with that index becomes the first one in the array.

An AssertionError will be raised if the index does not match
any exterior point’s index or the exterior does not contain any points.

	Parameters

	point_idx (int) – Index of the desired starting point.

	Returns

	Copy of this polygon with the new point order.

	Return type

	imgaug.augmentables.polys.Polygon

	
clip_out_of_image(self, image)

	Cut off all parts of the polygon that are outside of an image.

This operation may lead to new points being created.
As a single polygon may be split into multiple new polygons, the result
is always a list, which may contain more than one output polygon.

This operation will return an empty list if the polygon is completely
outside of the image plane.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use for the clipping of the polygon.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape and must
contain at least two int s.

	Returns

	Polygon, clipped to fall within the image dimensions.
Returned as a list, because the clipping can split the polygon
into multiple parts. The list may also be empty, if the polygon was
fully outside of the image plane.

	Return type

	list of imgaug.augmentables.polys.Polygon

	
compute_out_of_image_area(self, image)

	Compute the area of the BB that is outside of the image plane.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	Total area of the bounding box that is outside of the image plane.
Can be 0.0.

	Return type

	float

	
compute_out_of_image_fraction(self, image)

	Compute fraction of polygon area outside of the image plane.

This estimates f = A_ooi / A, where A_ooi is the area of the
polygon that is outside of the image plane, while A is the
total area of the bounding box.

Added in 0.4.0.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

	Returns

	Fraction of the polygon area that is outside of the image
plane. Returns 0.0 if the polygon is fully inside of
the image plane or has zero points. If the polygon has an area
of zero, the polygon is treated similarly to a LineString,
i.e. the fraction of the line that is outside the image plane is
returned.

	Return type

	float

	
coords

	Alias for attribute exterior.

Added in 0.4.0.

	Returns

	An (N, 2) float32 ndarray containing the coordinates of
this polygon. This identical to the attribute exterior.

	Return type

	ndarray

	
coords_almost_equals(self, other, max_distance=0.0001, points_per_edge=8)

	Alias for Polygon.exterior_almost_equals().

	Parameters

	
	other (imgaug.augmentables.polys.Polygon or (N,2) ndarray or list of tuple) – See
exterior_almost_equals().

	max_distance (number, optional) – See
exterior_almost_equals().

	points_per_edge (int, optional) – See
exterior_almost_equals().

	Returns

	Whether the two polygon’s exteriors can be viewed as equal
(approximate test).

	Return type

	bool

	
copy(self, exterior=None, label=None)

	Create a shallow copy of this object.

	Parameters

	
	exterior (list of imgaug.augmentables.kps.Keypoint or list of tuple or (N,2) ndarray, optional) – List of points defining the polygon. See
__init__() for details.

	label (None or str, optional) – If not None, the label of the copied object will be set
to this value.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.polys.Polygon

	
cut_out_of_image(self, image)

	Deprecated. Use Polygon.clip_out_of_image() instead. clip_out_of_image() has the exactly same interface.

Cut off all parts of the polygon that are outside of an image.

	
deepcopy(self, exterior=None, label=None)

	Create a deep copy of this object.

	Parameters

	
	exterior (list of Keypoint or list of tuple or (N,2) ndarray, optional) – List of points defining the polygon. See
imgaug.augmentables.polys.Polygon.__init__ for details.

	label (None or str) – If not None, the label of the copied object will be set
to this value.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.polys.Polygon

	
draw_on_image(self, image, color=(0, 255, 0), color_face=None, color_lines=None, color_points=None, alpha=1.0, alpha_face=None, alpha_lines=None, alpha_points=None, size=1, size_lines=None, size_points=None, raise_if_out_of_image=False)

	Draw the polygon on an image.

	Parameters

	
	image ((H,W,C) ndarray) – The image onto which to draw the polygon. Usually expected to be
of dtype uint8, though other dtypes are also handled.

	color (iterable of int, optional) – The color to use for the whole polygon.
Must correspond to the channel layout of the image. Usually RGB.
The values for color_face, color_lines and color_points
will be derived from this color if they are set to None.
This argument has no effect if color_face, color_lines
and color_points are all set anything other than None.

	color_face (None or iterable of int, optional) – The color to use for the inner polygon area (excluding perimeter).
Must correspond to the channel layout of the image. Usually RGB.
If this is None, it will be derived from color * 1.0.

	color_lines (None or iterable of int, optional) – The color to use for the line (aka perimeter/border) of the
polygon.
Must correspond to the channel layout of the image. Usually RGB.
If this is None, it will be derived from color * 0.5.

	color_points (None or iterable of int, optional) – The color to use for the corner points of the polygon.
Must correspond to the channel layout of the image. Usually RGB.
If this is None, it will be derived from color * 0.5.

	alpha (float, optional) – The opacity of the whole polygon, where 1.0 denotes a
completely visible polygon and 0.0 an invisible one.
The values for alpha_face, alpha_lines and alpha_points
will be derived from this alpha value if they are set to None.
This argument has no effect if alpha_face, alpha_lines
and alpha_points are all set anything other than None.

	alpha_face (None or number, optional) – The opacity of the polygon’s inner area (excluding the perimeter),
where 1.0 denotes a completely visible inner area and 0.0
an invisible one.
If this is None, it will be derived from alpha * 0.5.

	alpha_lines (None or number, optional) – The opacity of the polygon’s line (aka perimeter/border),
where 1.0 denotes a completely visible line and 0.0 an
invisible one.
If this is None, it will be derived from alpha * 1.0.

	alpha_points (None or number, optional) – The opacity of the polygon’s corner points, where 1.0 denotes
completely visible corners and 0.0 invisible ones.
If this is None, it will be derived from alpha * 1.0.

	size (int, optional) – Size of the polygon.
The sizes of the line and points are derived from this value,
unless they are set.

	size_lines (None or int, optional) – Thickness of the polygon’s line (aka perimeter/border).
If None, this value is derived from size.

	size_points (int, optional) – Size of the points in pixels.
If None, this value is derived from 3 * size.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if the polygon is fully
outside of the image. If set to False, no error will be
raised and only the parts inside the image will be drawn.

	Returns

	Image with the polygon drawn on it. Result dtype is the same as the
input dtype.

	Return type

	(H,W,C) ndarray

	
exterior_almost_equals(self, other, max_distance=0.0001, points_per_edge=8)

	Estimate if this and another polygon’s exterior are almost identical.

The two exteriors can have different numbers of points, but any point
randomly sampled on the exterior of one polygon should be close to the
closest point on the exterior of the other polygon.

Note

This method works in an approximative way. One can come up with
polygons with fairly different shapes that will still be estimated
as equal by this method. In practice however this should be
unlikely to be the case. The probability for something like that
goes down as the interpolation parameter is increased.

	Parameters

	
	other (imgaug.augmentables.polys.Polygon or (N,2) ndarray or list of tuple) – The other polygon with which to compare the exterior.
If this is an ndarray, it is assumed to represent an exterior.
It must then have dtype float32 and shape (N,2) with the
second dimension denoting xy-coordinates.
If this is a list of tuple s, it is assumed to represent
an exterior. Each tuple then must contain exactly two number s,
denoting xy-coordinates.

	max_distance (number, optional) – The maximum euclidean distance between a point on one polygon and
the closest point on the other polygon. If the distance is exceeded
for any such pair, the two exteriors are not viewed as equal. The
points are either the points contained in the polygon’s exterior
ndarray or interpolated points between these.

	points_per_edge (int, optional) – How many points to interpolate on each edge.

	Returns

	Whether the two polygon’s exteriors can be viewed as equal
(approximate test).

	Return type

	bool

	
extract_from_image(self, image)

	Extract all image pixels within the polygon area.

This method returns a rectangular image array. All pixels within
that rectangle that do not belong to the polygon area will be filled
with zeros (i.e. they will be black).
The method will also zero-pad the image if the polygon is
partially/fully outside of the image.

	Parameters

	image ((H,W) ndarray or (H,W,C) ndarray) – The image from which to extract the pixels within the polygon.

	Returns

	Pixels within the polygon. Zero-padded if the polygon is
partially/fully outside of the image.

	Return type

	(H’,W’) ndarray or (H’,W’,C) ndarray

	
find_closest_point_index(self, x, y, return_distance=False)

	Find the index of the exterior point closest to given coordinates.

“Closeness” is here defined based on euclidean distance.
This method will raise an AssertionError if the exterior contains
no points.

	Parameters

	
	x (number) – X-coordinate around which to search for close points.

	y (number) – Y-coordinate around which to search for close points.

	return_distance (bool, optional) – Whether to also return the distance of the closest point.

	Returns

	
	int – Index of the closest point.

	number – Euclidean distance to the closest point.
This value is only returned if return_distance was set
to True.

	
static from_shapely(polygon_shapely, label=None)

	Create a polygon from a Shapely Polygon.

Note

This will remove any holes in the shapely polygon.

	Parameters

	
	polygon_shapely (shapely.geometry.Polygon) – The shapely polygon.

	label (None or str, optional) – The label of the new polygon.

	Returns

	A polygon with the same exterior as the Shapely Polygon.

	Return type

	imgaug.augmentables.polys.Polygon

	
height

	Compute the height of a bounding box encapsulating the polygon.

The height is computed based on the two exterior coordinates with
lowest and largest x-coordinates.

	Returns

	Height of the polygon.

	Return type

	number

	
is_fully_within_image(self, image)

	Estimate whether the polygon is fully inside an image plane.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape and
must contain at least two int s.

	Returns

	True if the polygon is fully inside the image area.
False otherwise.

	Return type

	bool

	
is_out_of_image(self, image, fully=True, partly=False)

	Estimate whether the polygon is partially/fully outside of an image.

	Parameters

	
	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape and
must contain at least two int s.

	fully (bool, optional) – Whether to return True if the polygon is fully outside of the
image area.

	partly (bool, optional) – Whether to return True if the polygon is at least partially
outside fo the image area.

	Returns

	True if the polygon is partially/fully outside of the image
area, depending on defined parameters.
False otherwise.

	Return type

	bool

	
is_partly_within_image(self, image)

	Estimate whether the polygon is at least partially inside an image.

	Parameters

	image ((H,W,…) ndarray or tuple of int) – Image dimensions to use.
If an ndarray, its shape will be used.
If a tuple, it is assumed to represent the image shape and
must contain at least two int s.

	Returns

	True if the polygon is at least partially inside the image area.
False otherwise.

	Return type

	bool

	
is_valid

	Estimate whether the polygon has a valid geometry.

To to be considered valid, the polygon must be made up of at
least 3 points and have a concave shape, i.e. line segments may
not intersect or overlap. Multiple consecutive points are allowed to
have the same coordinates.

	Returns

	True if polygon has at least 3 points and is concave,
otherwise False.

	Return type

	bool

	
project(self, from_shape, to_shape)

	Project the polygon onto an image with different shape.

The relative coordinates of all points remain the same.
E.g. a point at (x=20, y=20) on an image
(width=100, height=200) will be projected on a new
image (width=200, height=100) to (x=40, y=10).

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

	Parameters

	
	from_shape (tuple of int) – Shape of the original image. (Before resize.)

	to_shape (tuple of int) – Shape of the new image. (After resize.)

	Returns

	Polygon object with new coordinates.

	Return type

	imgaug.augmentables.polys.Polygon

	
project_(self, from_shape, to_shape)

	Project the polygon onto an image with different shape in-place.

The relative coordinates of all points remain the same.
E.g. a point at (x=20, y=20) on an image
(width=100, height=200) will be projected on a new
image (width=200, height=100) to (x=40, y=10).

This is intended for cases where the original image is resized.
It cannot be used for more complex changes (e.g. padding, cropping).

Added in 0.4.0.

	Parameters

	
	from_shape (tuple of int) – Shape of the original image. (Before resize.)

	to_shape (tuple of int) – Shape of the new image. (After resize.)

	Returns

	Polygon object with new coordinates.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.polys.Polygon

	
shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)

	Move this polygon along the x/y-axis.

The origin (0, 0) is at the top left of the image.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	top (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
top (towards the bottom).

	right (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
right (towards the left).

	bottom (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
bottom (towards the top).

	left (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift this object from the
left (towards the right).

	Returns

	Shifted polygon.

	Return type

	imgaug.augmentables.polys.Polygon

	
shift_(self, x=0, y=0)

	Move this polygon along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	Returns

	Shifted polygon.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.polys.Polygon

	
subdivide(self, points_per_edge)

	Derive a new polygon with N interpolated points per edge.

See subdivide() for details.

Added in 0.4.0.

	Parameters

	points_per_edge (int) – Number of points to interpolate on each edge.

	Returns

	Polygon with subdivided edges.

	Return type

	imgaug.augmentables.polys.Polygon

	
subdivide_(self, points_per_edge)

	Derive a new poly with N interpolated points per edge in-place.

See subdivide() for details.

Added in 0.4.0.

	Parameters

	points_per_edge (int) – Number of points to interpolate on each edge.

	Returns

	Polygon with subdivided edges.
The object may have been modified in-place.

	Return type

	imgaug.augmentables.polys.Polygon

	
to_bounding_box(self)

	Convert this polygon to a bounding box containing the polygon.

	Returns

	Bounding box that tightly encapsulates the polygon.

	Return type

	imgaug.augmentables.bbs.BoundingBox

	
to_keypoints(self)

	Convert this polygon’s exterior to Keypoint instances.

	Returns

	Exterior vertices as Keypoint
instances.

	Return type

	list of imgaug.augmentables.kps.Keypoint

	
to_line_string(self, closed=True)

	Convert this polygon’s exterior to a LineString instance.

	Parameters

	closed (bool, optional) – Whether to close the line string, i.e. to add the first point of
the exterior also as the last point at the end of the line string.
This has no effect if the polygon has a single point or zero
points.

	Returns

	Exterior of the polygon as a line string.

	Return type

	imgaug.augmentables.lines.LineString

	
to_shapely_line_string(self, closed=False, interpolate=0)

	Convert this polygon to a Shapely LineString object.

	Parameters

	
	closed (bool, optional) – Whether to return the line string with the last point being
identical to the first point.

	interpolate (int, optional) – Number of points to interpolate between any pair of two
consecutive points. These points are added to the final line string.

	Returns

	The Shapely LineString matching the polygon’s exterior.

	Return type

	shapely.geometry.LineString

	
to_shapely_polygon(self)

	Convert this polygon to a Shapely Polygon.

	Returns

	The Shapely Polygon matching this polygon’s exterior.

	Return type

	shapely.geometry.Polygon

	
width

	Compute the width of a bounding box encapsulating the polygon.

The width is computed based on the two exterior coordinates with
lowest and largest x-coordinates.

	Returns

	Width of the polygon.

	Return type

	number

	
xx

	Get the x-coordinates of all points on the exterior.

	Returns

	float32 x-coordinates array of all points on the exterior.

	Return type

	(N,2) ndarray

	
xx_int

	Get the discretized x-coordinates of all points on the exterior.

The conversion from float32 coordinates to int32 is done
by first rounding the coordinates to the closest integer and then
removing everything after the decimal point.

	Returns

	int32 x-coordinates of all points on the exterior.

	Return type

	(N,2) ndarray

	
yy

	Get the y-coordinates of all points on the exterior.

	Returns

	float32 y-coordinates array of all points on the exterior.

	Return type

	(N,2) ndarray

	
yy_int

	Get the discretized y-coordinates of all points on the exterior.

The conversion from float32 coordinates to int32 is done
by first rounding the coordinates to the closest integer and then
removing everything after the decimal point.

	Returns

	int32 y-coordinates of all points on the exterior.

	Return type

	(N,2) ndarray

	
class imgaug.augmentables.polys.PolygonsOnImage(polygons, shape)

	Bases: imgaug.augmentables.base.IAugmentable

Container for all polygons on a single image.

	Parameters

	
	polygons (list of imgaug.augmentables.polys.Polygon) – List of polygons on the image.

	shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.

Examples

>>> import numpy as np
>>> from imgaug.augmentables.polys import Polygon, PolygonsOnImage
>>> image = np.zeros((100, 100))
>>> polys = [
>>> Polygon([(0.5, 0.5), (100.5, 0.5), (100.5, 100.5), (0.5, 100.5)]),
>>> Polygon([(50.5, 0.5), (100.5, 50.5), (50.5, 100.5), (0.5, 50.5)])
>>>]
>>> polys_oi = PolygonsOnImage(polys, shape=image.shape)

	Attributes

	
	empty

	Estimate whether this object contains zero polygons.

	items

	Get the polygons in this container.

Methods

	clip_out_of_image(self)

	Clip off all parts from all polygons that are outside of an image.

	clip_out_of_image_(self)

	Clip off all parts from all polygons that are OOI in-place.

	copy(self[, polygons, shape])

	Create a shallow copy of this object.

	deepcopy(self[, polygons, shape])

	Create a deep copy of this object.

	draw_on_image(self, image[, color, …])

	Draw all polygons onto a given image.

	fill_from_xy_array_(self, xy)

	Modify the corner coordinates of all polygons in-place.

	invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

	on(self, image)

	Project all polygons from one image shape to a new one.

	on_(self, image)

	Project all polygons from one image shape to a new one in-place.

	remove_out_of_image(self[, fully, partly])

	Remove all polygons that are fully/partially outside of an image.

	remove_out_of_image_(self[, fully, partly])

	Remove all polygons that are fully/partially OOI in-place.

	remove_out_of_image_fraction(self, fraction)

	Remove all Polys with an out of image fraction of >=fraction.

	remove_out_of_image_fraction_(self, fraction)

	Remove all Polys with an OOI fraction of >=fraction in-place.

	shift(self[, x, y, top, right, bottom, left])

	Move the polygons along the x/y-axis.

	shift_(self[, x, y])

	Move the polygons along the x/y-axis in-place.

	subdivide(self, points_per_edge)

	Interpolate N points on each polygon.

	subdivide_(self, points_per_edge)

	Interpolate N points on each polygon.

	to_keypoints_on_image(self)

	Convert the polygons to one KeypointsOnImage instance.

	to_xy_array(self)

	Convert all polygon coordinates to one array of shape (N,2).

	
clip_out_of_image(self)

	Clip off all parts from all polygons that are outside of an image.

Note

The result can contain fewer polygons than the input did. That
happens when a polygon is fully outside of the image plane.

Note

The result can also contain more polygons than the input
did. That happens when distinct parts of a polygon are only
connected by areas that are outside of the image plane and hence
will be clipped off, resulting in two or more unconnected polygon
parts that are left in the image plane.

	Returns

	Polygons, clipped to fall within the image dimensions.
The count of output polygons may differ from the input count.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
clip_out_of_image_(self)

	Clip off all parts from all polygons that are OOI in-place.

‘OOI’ is the abbreviation for ‘out of image’.

Note

The result can contain fewer polygons than the input did. That
happens when a polygon is fully outside of the image plane.

Note

The result can also contain more polygons than the input
did. That happens when distinct parts of a polygon are only
connected by areas that are outside of the image plane and hence
will be clipped off, resulting in two or more unconnected polygon
parts that are left in the image plane.

Added in 0.4.0.

	Returns

	Polygons, clipped to fall within the image dimensions.
The count of output polygons may differ from the input count.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
copy(self, polygons=None, shape=None)

	Create a shallow copy of this object.

	Parameters

	
	polygons (None or list of imgaug.augmentables.polys.Polygons, optional) – List of polygons on the image.
If not None, then the polygons attribute of the copied
object will be set to this value.

	shape (None or tuple of int or ndarray, optional) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.
If not None, then the shape attribute of the copied object
will be set to this value.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
deepcopy(self, polygons=None, shape=None)

	Create a deep copy of this object.

	Parameters

	
	polygons (None or list of imgaug.augmentables.polys.Polygons, optional) – List of polygons on the image.
If not None, then the polygons attribute of the copied
object will be set to this value.

	shape (None or tuple of int or ndarray, optional) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting
such an image shape.
If not None, then the shape attribute of the copied object
will be set to this value.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
draw_on_image(self, image, color=(0, 255, 0), color_face=None, color_lines=None, color_points=None, alpha=1.0, alpha_face=None, alpha_lines=None, alpha_points=None, size=1, size_lines=None, size_points=None, raise_if_out_of_image=False)

	Draw all polygons onto a given image.

	Parameters

	
	image ((H,W,C) ndarray) – The image onto which to draw the bounding boxes.
This image should usually have the same shape as set in
PolygonsOnImage.shape.

	color (iterable of int, optional) – The color to use for the whole polygons.
Must correspond to the channel layout of the image. Usually RGB.
The values for color_face, color_lines and color_points
will be derived from this color if they are set to None.
This argument has no effect if color_face, color_lines
and color_points are all set anything other than None.

	color_face (None or iterable of int, optional) – The color to use for the inner polygon areas (excluding perimeters).
Must correspond to the channel layout of the image. Usually RGB.
If this is None, it will be derived from color * 1.0.

	color_lines (None or iterable of int, optional) – The color to use for the lines (aka perimeters/borders) of the
polygons. Must correspond to the channel layout of the image.
Usually RGB. If this is None, it will be derived
from color * 0.5.

	color_points (None or iterable of int, optional) – The color to use for the corner points of the polygons.
Must correspond to the channel layout of the image. Usually RGB.
If this is None, it will be derived from color * 0.5.

	alpha (float, optional) – The opacity of the whole polygons, where 1.0 denotes
completely visible polygons and 0.0 invisible ones.
The values for alpha_face, alpha_lines and alpha_points
will be derived from this alpha value if they are set to None.
This argument has no effect if alpha_face, alpha_lines
and alpha_points are all set anything other than None.

	alpha_face (None or number, optional) – The opacity of the polygon’s inner areas (excluding the perimeters),
where 1.0 denotes completely visible inner areas and 0.0
invisible ones.
If this is None, it will be derived from alpha * 0.5.

	alpha_lines (None or number, optional) – The opacity of the polygon’s lines (aka perimeters/borders),
where 1.0 denotes completely visible perimeters and 0.0
invisible ones.
If this is None, it will be derived from alpha * 1.0.

	alpha_points (None or number, optional) – The opacity of the polygon’s corner points, where 1.0 denotes
completely visible corners and 0.0 invisible ones.
Currently this is an on/off choice, i.e. only 0.0 or 1.0
are allowed.
If this is None, it will be derived from alpha * 1.0.

	size (int, optional) – Size of the polygons.
The sizes of the line and points are derived from this value,
unless they are set.

	size_lines (None or int, optional) – Thickness of the polygon lines (aka perimeter/border).
If None, this value is derived from size.

	size_points (int, optional) – The size of all corner points. If set to C, each corner point
will be drawn as a square of size C x C.

	raise_if_out_of_image (bool, optional) – Whether to raise an error if any polygon is fully
outside of the image. If set to False, no error will be raised and
only the parts inside the image will be drawn.

	Returns

	Image with drawn polygons.

	Return type

	(H,W,C) ndarray

	
empty

	Estimate whether this object contains zero polygons.

	Returns

	True if this object contains zero polygons.

	Return type

	bool

	
fill_from_xy_array_(self, xy)

	Modify the corner coordinates of all polygons in-place.

Note

This currently expects that xy contains exactly as many
coordinates as the polygons within this instance have corner
points. Otherwise, an AssertionError will be raised.

Warning

This does not validate the new coordinates or repair the resulting
polygons. If bad coordinates are provided, the result will be
invalid polygons (e.g. self-intersections).

Added in 0.4.0.

	Parameters

	xy ((N, 2) ndarray or iterable of iterable of number) – XY-Coordinates of N corner points. N must match the
number of corner points in all polygons within this instance.

	Returns

	This instance itself, with updated coordinates.
Note that the instance was modified in-place.

	Return type

	PolygonsOnImage

	
invert_to_keypoints_on_image_(self, kpsoi)

	Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this PolygonsOnImage
instance.

Added in 0.4.0.

	Parameters

	kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back to polygons, i.e. the outputs
of to_keypoints_on_image().

	Returns

	Polygons container with updated coordinates.
Note that the instance is also updated in-place.

	Return type

	PolygonsOnImage

	
items

	Get the polygons in this container.

Added in 0.4.0.

	Returns

	Polygons within this container.

	Return type

	list of Polygon

	
on(self, image)

	Project all polygons from one image shape to a new one.

	Parameters

	image (ndarray or tuple of int) – New image onto which the polygons are to be projected.
May also simply be that new image’s shape tuple.

	Returns

	Object containing all projected polygons.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
on_(self, image)

	Project all polygons from one image shape to a new one in-place.

Added in 0.4.0.

	Parameters

	image (ndarray or tuple of int) – New image onto which the polygons are to be projected.
May also simply be that new image’s shape tuple.

	Returns

	Object containing all projected polygons.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
remove_out_of_image(self, fully=True, partly=False)

	Remove all polygons that are fully/partially outside of an image.

	Parameters

	
	fully (bool, optional) – Whether to remove polygons that are fully outside of the image.

	partly (bool, optional) – Whether to remove polygons that are partially outside of the image.

	Returns

	Reduced set of polygons. Those that are fully/partially
outside of the given image plane are removed.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
remove_out_of_image_(self, fully=True, partly=False)

	Remove all polygons that are fully/partially OOI in-place.

‘OOI’ is the abbreviation for ‘out of image’.

Added in 0.4.0.

	Parameters

	
	fully (bool, optional) – Whether to remove polygons that are fully outside of the image.

	partly (bool, optional) – Whether to remove polygons that are partially outside of the image.

	Returns

	Reduced set of polygons. Those that are fully/partially
outside of the given image plane are removed.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
remove_out_of_image_fraction(self, fraction)

	Remove all Polys with an out of image fraction of >=fraction.

Added in 0.4.0.

	Parameters

	fraction (number) – Minimum out of image fraction that a polygon has to have in
order to be removed. A fraction of 1.0 removes only polygons
that are 100% outside of the image. A fraction of 0.0
removes all polygons.

	Returns

	Reduced set of polygons, with those that had an out of image
fraction greater or equal the given one removed.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
remove_out_of_image_fraction_(self, fraction)

	Remove all Polys with an OOI fraction of >=fraction in-place.

Added in 0.4.0.

	Parameters

	fraction (number) – Minimum out of image fraction that a polygon has to have in
order to be removed. A fraction of 1.0 removes only polygons
that are 100% outside of the image. A fraction of 0.0
removes all polygons.

	Returns

	Reduced set of polygons, with those that had an out of image
fraction greater or equal the given one removed.
The object and its items may have been modified in-place.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)

	Move the polygons along the x/y-axis.

The origin (0, 0) is at the top left of the image.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	top (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
top (towards the bottom).

	right (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
right (towads the left).

	bottom (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
bottom (towards the top).

	left (None or int, optional) – Deprecated since 0.4.0.
Amount of pixels by which to shift all objects from the
left (towards the right).

	Returns

	Shifted polygons.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
shift_(self, x=0, y=0)

	Move the polygons along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

	Parameters

	
	x (number, optional) – Value to be added to all x-coordinates. Positive values shift
towards the right images.

	y (number, optional) – Value to be added to all y-coordinates. Positive values shift
towards the bottom images.

	Returns

	Shifted polygons.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
subdivide(self, points_per_edge)

	Interpolate N points on each polygon.

Added in 0.4.0.

	Parameters

	points_per_edge (int) – Number of points to interpolate on each edge.

	Returns

	Subdivided polygons.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
subdivide_(self, points_per_edge)

	Interpolate N points on each polygon.

Added in 0.4.0.

	Parameters

	points_per_edge (int) – Number of points to interpolate on each edge.

	Returns

	Subdivided polygons.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage

	
to_keypoints_on_image(self)

	Convert the polygons to one KeypointsOnImage instance.

Added in 0.4.0.

	Returns

	A keypoints instance containing N coordinates for a total
of N points in all exteriors of the polygons within this
container. Order matches the order in polygons.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage

	
to_xy_array(self)

	Convert all polygon coordinates to one array of shape (N,2).

Added in 0.4.0.

	Returns

	Array containing all xy-coordinates of all polygons within this
instance.

	Return type

	(N, 2) ndarray

	
imgaug.augmentables.polys.recover_psois_(psois, psois_orig, recoverer, random_state)

	Apply a polygon recoverer to input polygons in-place.

	Parameters

	
	psois (list of imgaug.augmentables.polys.PolygonsOnImage or imgaug.augmentables.polys.PolygonsOnImage) – The possibly broken polygons, e.g. after augmentation.
The recoverer is applied to them.

	psois_orig (list of imgaug.augmentables.polys.PolygonsOnImage or imgaug.augmentables.polys.PolygonsOnImage) – Original polygons that were later changed to psois.
They are an extra input to recoverer.

	recoverer (imgaug.augmentables.polys._ConcavePolygonRecoverer) – The polygon recoverer used to repair broken input polygons.

	random_state (None or int or RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – An RNG to use during the polygon recovery.

	Returns

	List of repaired polygons. Note that this is psois, which was
changed in-place.

	Return type

	list of imgaug.augmentables.polys.PolygonsOnImage or imgaug.augmentables.polys.PolygonsOnImage

imgaug.augmentables.segmaps

Classes dealing with segmentation maps.

E.g. masks, semantic or instance segmentation maps.

	
imgaug.augmentables.segmaps.SegmentationMapOnImage(*args, **kwargs)

	Deprecated. Use SegmentationMapsOnImage instead. (Note the plural ‘Maps’ instead of old ‘Map’.).

Object representing a segmentation map associated with an image.

	
class imgaug.augmentables.segmaps.SegmentationMapsOnImage(arr, shape, nb_classes=None)

	Bases: imgaug.augmentables.base.IAugmentable

Object representing a segmentation map associated with an image.

	Variables

	DEFAULT_SEGMENT_COLORS (list of tuple of int) – Standard RGB colors to use during drawing, ordered by class index.

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Array representing the segmentation map(s). May have dtypes bool,
int or uint.

	shape (tuple of int) – Shape of the image on which the segmentation map(s) is/are placed.
Not the shape of the segmentation map(s) array, unless it is
identical to the image shape (note the likely difference between the
arrays in the number of channels).
This is expected to be (H, W) or (H, W, C) with C usually
being 3.
If there is no corresponding image, use (H_arr, W_arr) instead,
where H_arr is the height of the segmentation map(s) array
(analogous W_arr).

	nb_classes (None or int, optional) – Deprecated.

Methods

	copy(self[, arr, shape])

	Create a shallow copy of the segmentation map object.

	deepcopy(self[, arr, shape])

	Create a deep copy of the segmentation map object.

	draw(self[, size, colors])

	Render the segmentation map as an RGB image.

	draw_on_image(self, image[, alpha, resize, …])

	Draw the segmentation map as an overlay over an image.

	get_arr(self)

	Return the seg.map array, with original dtype and shape ndim.

	get_arr_int(self, *args, **kwargs)

	Deprecated.

	pad(self[, top, right, bottom, left, mode, cval])

	Pad the segmentation maps at their top/right/bottom/left side.

	pad_to_aspect_ratio(self, aspect_ratio[, …])

	Pad the segmentation maps until they match a target aspect ratio.

	resize(self, sizes[, interpolation])

	Resize the seg.map(s) array given a target size and interpolation.

	scale(self, *args, **kwargs)

	Deprecated.

	
DEFAULT_SEGMENT_COLORS = [(0, 0, 0), (230, 25, 75), (60, 180, 75), (255, 225, 25), (0, 130, 200), (245, 130, 48), (145, 30, 180), (70, 240, 240), (240, 50, 230), (210, 245, 60), (250, 190, 190), (0, 128, 128), (230, 190, 255), (170, 110, 40), (255, 250, 200), (128, 0, 0), (170, 255, 195), (128, 128, 0), (255, 215, 180), (0, 0, 128), (128, 128, 128), (255, 255, 255), (115, 12, 37), (30, 90, 37), (127, 112, 12), (0, 65, 100), (122, 65, 24), (72, 15, 90), (35, 120, 120), (120, 25, 115), (105, 122, 30), (125, 95, 95), (0, 64, 64), (115, 95, 127), (85, 55, 20), (127, 125, 100), (64, 0, 0), (85, 127, 97), (64, 64, 0), (127, 107, 90), (0, 0, 64), (64, 64, 64)]

	

	
copy(self, arr=None, shape=None)

	Create a shallow copy of the segmentation map object.

	Parameters

	
	arr (None or (H,W) ndarray or (H,W,C) ndarray, optional) – Optionally the arr attribute to use for the new segmentation map
instance. Will be copied from the old instance if not provided.
See
__init__()
for details.

	shape (None or tuple of int, optional) – Optionally the shape attribute to use for the the new segmentation
map instance. Will be copied from the old instance if not provided.
See
__init__()
for details.

	Returns

	Shallow copy.

	Return type

	imgaug.augmentables.segmaps.SegmentationMapsOnImage

	
deepcopy(self, arr=None, shape=None)

	Create a deep copy of the segmentation map object.

	Parameters

	
	arr (None or (H,W) ndarray or (H,W,C) ndarray, optional) – Optionally the arr attribute to use for the new segmentation map
instance. Will be copied from the old instance if not provided.
See
__init__()
for details.

	shape (None or tuple of int, optional) – Optionally the shape attribute to use for the the new segmentation
map instance. Will be copied from the old instance if not provided.
See
__init__()
for details.

	Returns

	Deep copy.

	Return type

	imgaug.augmentables.segmaps.SegmentationMapsOnImage

	
draw(self, size=None, colors=None)

	Render the segmentation map as an RGB image.

	Parameters

	
	size (None or float or iterable of int or iterable of float, optional) – Size of the rendered RGB image as (height, width).
See imresize_single_image() for details.
If set to None, no resizing is performed and the size of the
segmentation map array is used.

	colors (None or list of tuple of int, optional) – Colors to use. One for each class to draw.
If None, then default colors will be used.

	Returns

	Rendered segmentation map (dtype is uint8).
One per C in the original input array (H,W,C).

	Return type

	list of (H,W,3) ndarray

	
draw_on_image(self, image, alpha=0.75, resize='segmentation_map', colors=None, draw_background=False, background_class_id=0, background_threshold=None)

	Draw the segmentation map as an overlay over an image.

	Parameters

	
	image ((H,W,3) ndarray) – Image onto which to draw the segmentation map. Expected dtype
is uint8.

	alpha (float, optional) – Alpha/opacity value to use for the mixing of image and
segmentation map. Larger values mean that the segmentation map
will be more visible and the image less visible.

	resize ({‘segmentation_map’, ‘image’}, optional) – In case of size differences between the image and segmentation
map, either the image or the segmentation map can be resized.
This parameter controls which of the two will be resized to the
other’s size.

	colors (None or list of tuple of int, optional) – Colors to use. One for each class to draw.
If None, then default colors will be used.

	draw_background (bool, optional) – If True, the background will be drawn like any other class.
If False, the background will not be drawn, i.e. the respective
background pixels will be identical with the image’s RGB color at
the corresponding spatial location and no color overlay will be
applied.

	background_class_id (int, optional) – Class id to interpret as the background class.
See draw_background.

	background_threshold (None, optional) – Deprecated.
This parameter is ignored.

	Returns

	Rendered overlays as uint8 arrays.
Always a list containing one RGB image per segmentation map
array channel.

	Return type

	list of (H,W,3) ndarray

	
get_arr(self)

	Return the seg.map array, with original dtype and shape ndim.

Here, “original” denotes the dtype and number of shape dimensions that
was used when the SegmentationMapsOnImage instance was
created, i.e. upon the call of
SegmentationMapsOnImage.__init__().
Internally, this class may use a different dtype and shape to simplify
computations.

Note

The height and width may have changed compared to the original
input due to e.g. pooling operations.

	Returns

	Segmentation map array.
Same dtype and number of dimensions as was originally used when
the SegmentationMapsOnImage instance was created.

	Return type

	ndarray

	
get_arr_int(self, *args, **kwargs)

	Deprecated. Use SegmentationMapsOnImage.get_arr() instead.

Return the seg.map array, with original dtype and shape ndim.

	
pad(self, top=0, right=0, bottom=0, left=0, mode='constant', cval=0)

	Pad the segmentation maps at their top/right/bottom/left side.

	Parameters

	
	top (int, optional) – Amount of pixels to add at the top side of the segmentation map.
Must be 0 or greater.

	right (int, optional) – Amount of pixels to add at the right side of the segmentation map.
Must be 0 or greater.

	bottom (int, optional) – Amount of pixels to add at the bottom side of the segmentation map.
Must be 0 or greater.

	left (int, optional) – Amount of pixels to add at the left side of the segmentation map.
Must be 0 or greater.

	mode (str, optional) – Padding mode to use. See pad() for details.

	cval (number, optional) – Value to use for padding if mode is constant.
See pad() for details.

	Returns

	Padded segmentation map with height H'=H+top+bottom and
width W'=W+left+right.

	Return type

	imgaug.augmentables.segmaps.SegmentationMapsOnImage

	
pad_to_aspect_ratio(self, aspect_ratio, mode='constant', cval=0, return_pad_amounts=False)

	Pad the segmentation maps until they match a target aspect ratio.

Depending on which dimension is smaller (height or width), only the
corresponding sides (left/right or top/bottom) will be padded. In
each case, both of the sides will be padded equally.

	Parameters

	
	aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes
the image having twice as much width as height.

	mode (str, optional) – Padding mode to use.
See pad() for details.

	cval (number, optional) – Value to use for padding if mode is constant.
See pad() for details.

	return_pad_amounts (bool, optional) – If False, then only the padded instance will be returned.
If True, a tuple with two entries will be returned, where
the first entry is the padded instance and the second entry are
the amounts by which each array side was padded. These amounts are
again a tuple of the form (top, right, bottom, left), with
each value being an integer.

	Returns

	
	imgaug.augmentables.segmaps.SegmentationMapsOnImage – Padded segmentation map as SegmentationMapsOnImage
instance.

	tuple of int – Amounts by which the instance’s array was padded on each side,
given as a tuple (top, right, bottom, left).
This tuple is only returned if return_pad_amounts was set to
True.

	
resize(self, sizes, interpolation='nearest')

	Resize the seg.map(s) array given a target size and interpolation.

	Parameters

	
	sizes (float or iterable of int or iterable of float) – New size of the array in (height, width).
See imresize_single_image() for details.

	interpolation (None or str or int, optional) – The interpolation to use during resize.
Nearest neighbour interpolation ("nearest") is almost always
the best choice.
See imresize_single_image() for details.

	Returns

	Resized segmentation map object.

	Return type

	imgaug.augmentables.segmaps.SegmentationMapsOnImage

	
scale(self, *args, **kwargs)

	Deprecated. Use SegmentationMapsOnImage.resize() instead. resize() has the exactly same interface.

Resize the seg.map(s) array given a target size and interpolation.

imgaug.augmentables.utils

Utility functions used in augmentable modules.

	
imgaug.augmentables.utils.convert_cbaois_to_kpsois(cbaois)

	Convert coordinate-based augmentables to KeypointsOnImage instances.

Added in 0.4.0.

	Parameters

	cbaois (list of imgaug.augmentables.bbs.BoundingBoxesOnImage or list of imgaug.augmentables.bbs.PolygonsOnImage or list of imgaug.augmentables.bbs.LineStringsOnImage or imgaug.augmentables.bbs.BoundingBoxesOnImage or imgaug.augmentables.bbs.PolygonsOnImage or imgaug.augmentables.bbs.LineStringsOnImage) – Coordinate-based augmentables to convert, e.g. bounding boxes.

	Returns

	KeypointsOnImage instances containing the coordinates of input
cbaois.

	Return type

	list of imgaug.augmentables.kps.KeypointsOnImage or imgaug.augmentables.kps.KeypointsOnImage

	
imgaug.augmentables.utils.copy_augmentables(augmentables)

	

	
imgaug.augmentables.utils.deepcopy_fast(obj)

	

	
imgaug.augmentables.utils.interpolate_point_pair(point_a, point_b, nb_steps)

	Interpolate N points on a line segment.

	Parameters

	
	point_a (iterable of number) – Start point of the line segment, given as (x,y) coordinates.

	point_b (iterable of number) – End point of the line segment, given as (x,y) coordinates.

	nb_steps (int) – Number of points to interpolate between point_a and point_b.

	Returns

	The interpolated points.
Does not include point_a.

	Return type

	list of tuple of number

	
imgaug.augmentables.utils.interpolate_points(points, nb_steps, closed=True)

	Interpolate N on each line segment in a line string.

	Parameters

	
	points (iterable of iterable of number) – Points on the line segments, each one given as (x,y) coordinates.
They are assumed to form one connected line string.

	nb_steps (int) – Number of points to interpolate on each individual line string.

	closed (bool, optional) – If True the output contains the last point in points.
Otherwise it does not (but it will contain the interpolated points
leading to the last point).

	Returns

	Coordinates of points, with additional nb_steps new points
interpolated between each point pair. If closed is False,
the last point in points is not returned.

	Return type

	list of tuple of number

	
imgaug.augmentables.utils.interpolate_points_by_max_distance(points, max_distance, closed=True)

	Interpolate points with distance d on a line string.

For a list of points A, B, C, if the distance between A and B
is greater than max_distance, it will place at least one point between
A and B at A + max_distance * (B - A). Multiple points can
be placed between the two points if they are far enough away from each
other. The process is repeated for B and C.

	Parameters

	
	points (iterable of iterable of number) – Points on the line segments, each one given as (x,y) coordinates.
They are assumed to form one connected line string.

	max_distance (number) – Maximum distance between any two points in the result.

	closed (bool, optional) – If True the output contains the last point in points.
Otherwise it does not (but it will contain the interpolated points
leading to the last point).

	Returns

	Coordinates of points, with interpolated points added to the
iterable. If closed is False, the last point in points is not
returned.

	Return type

	list of tuple of number

	
imgaug.augmentables.utils.invert_convert_cbaois_to_kpsois_(cbaois, kpsois)

	Invert the output of convert_to_cbaois_to_kpsois() in-place.

This function writes in-place into cbaois.

Added in 0.4.0.

	Parameters

	
	cbaois (list of imgaug.augmentables.bbs.BoundingBoxesOnImage or list of imgaug.augmentables.bbs.PolygonsOnImage or list of imgaug.augmentables.bbs.LineStringsOnImage or imgaug.augmentables.bbs.BoundingBoxesOnImage or imgaug.augmentables.bbs.PolygonsOnImage or imgaug.augmentables.bbs.LineStringsOnImage) – Original coordinate-based augmentables before they were converted,
i.e. the same inputs as provided to convert_to_kpsois().

	kpsois (list of imgaug.augmentables.kps.KeypointsOnImages or imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back to the types of cbaois, i.e. the outputs
of convert_cbaois_to_kpsois().

	Returns

	Parameter cbaois, with updated coordinates and shapes derived from
kpsois. cbaois is modified in-place.

	Return type

	list of imgaug.augmentables.bbs.BoundingBoxesOnImage or list of imgaug.augmentables.bbs.PolygonsOnImage or list of imgaug.augmentables.bbs.LineStringsOnImage or imgaug.augmentables.bbs.BoundingBoxesOnImage or imgaug.augmentables.bbs.PolygonsOnImage or imgaug.augmentables.bbs.LineStringsOnImage

	
imgaug.augmentables.utils.normalize_shape(shape)

	Normalize a shape tuple or array to a shape tuple.

	Parameters

	shape (tuple of int or ndarray) – The input to normalize. May optionally be an array.

	Returns

	Shape tuple.

	Return type

	tuple of int

	
imgaug.augmentables.utils.project_coords(coords, from_shape, to_shape)

	Project coordinates from one image shape to another.

This performs a relative projection, e.g. a point at 60% of the old
image width will be at 60% of the new image width after projection.

	Parameters

	
	coords (ndarray or list of tuple of number) – Coordinates to project.
Either an (N,2) numpy array or a list containing (x,y)
coordinate tuple s.

	from_shape (tuple of int or ndarray) – Old image shape.

	to_shape (tuple of int or ndarray) – New image shape.

	Returns

	Projected coordinates as (N,2) float32 numpy array.

	Return type

	ndarray

	
imgaug.augmentables.utils.project_coords_(coords, from_shape, to_shape)

	Project coordinates from one image shape to another in-place.

This performs a relative projection, e.g. a point at 60% of the old
image width will be at 60% of the new image width after projection.

Added in 0.4.0.

	Parameters

	
	coords (ndarray or list of tuple of number) – Coordinates to project.
Either an (N,2) numpy array or a list containing (x,y)
coordinate tuple s.

	from_shape (tuple of int or ndarray) – Old image shape.

	to_shape (tuple of int or ndarray) – New image shape.

	Returns

	Projected coordinates as (N,2) float32 numpy array.
This function may change the input data in-place.

	Return type

	ndarray

imgaug.augmenters.arithmetic

Augmenters that perform simple arithmetic changes.

List of augmenters:

	Add

	AddElementwise

	AdditiveGaussianNoise

	AdditiveLaplaceNoise

	AdditivePoissonNoise

	Multiply

	MultiplyElementwise

	Cutout

	Dropout

	CoarseDropout

	Dropout2d

	TotalDropout

	ReplaceElementwise

	ImpulseNoise

	SaltAndPepper

	CoarseSaltAndPepper

	Salt

	CoarseSalt

	Pepper

	CoarsePepper

	Invert

	Solarize

	ContrastNormalization

	JpegCompression

	
class imgaug.augmenters.arithmetic.Add(value=(-20, 20), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Add a value to all pixels in an image.

Supported dtypes:

See add_scalar().

	Parameters

	
	value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

Value to add to all pixels.

	If a number, exactly that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Add(10)

Always adds a value of 10 to all channels of all pixels of all input
images.

>>> aug = iaa.Add((-10, 10))

Adds a value from the discrete interval [-10..10] to all pixels of
input images. The exact value is sampled per image.

>>> aug = iaa.Add((-10, 10), per_channel=True)

Adds a value from the discrete interval [-10..10] to all pixels of
input images. The exact value is sampled per image and channel,
i.e. to a red-channel it might add 5 while subtracting 7 from the
blue channel of the same image.

>>> aug = iaa.Add((-10, 10), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.AddElementwise(value=(-20, 20), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Add to the pixels of images values that are pixelwise randomly sampled.

While the Add Augmenter samples one value to add per image (and
optionally per channel), this augmenter samples different values per image
and per pixel (and optionally per channel), i.e. intensities of
neighbouring pixels may be increased/decreased by different amounts.

Supported dtypes:

See add_elementwise().

	Parameters

	
	value (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Value to add to the pixels.

	If an int, exactly that value will always be used.

	If a tuple (a, b), then values from the discrete interval
[a..b] will be sampled per image and pixel.

	If a list of integers, a random value will be sampled from the
list per image and pixel.

	If a StochasticParameter, then values will be sampled per
image and pixel from that parameter.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddElementwise(10)

Always adds a value of 10 to all channels of all pixels of all input
images.

>>> aug = iaa.AddElementwise((-10, 10))

Samples per image and pixel a value from the discrete interval
[-10..10] and adds that value to the respective pixel.

>>> aug = iaa.AddElementwise((-10, 10), per_channel=True)

Samples per image, pixel and also channel a value from the discrete
interval [-10..10] and adds it to the respective pixel’s channel value.
Therefore, added values may differ between channels of the same pixel.

>>> aug = iaa.AddElementwise((-10, 10), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.AdditiveGaussianNoise(loc=0, scale=(0, 15), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.AddElementwise

Add noise sampled from gaussian distributions elementwise to images.

This augmenter samples and adds noise elementwise, i.e. it can add
different noise values to neighbouring pixels and is comparable
to AddElementwise.

Supported dtypes:

See AddElementwise.

	Parameters

	
	loc (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

Mean of the normal distribution from which the noise is sampled.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Standard deviation of the normal distribution that generates the noise.
Must be >=0. If 0 then loc will simply be added to all
pixels.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AdditiveGaussianNoise(scale=0.1*255)

Adds gaussian noise from the distribution N(0, 0.1*255) to images.
The samples are drawn per image and pixel.

>>> aug = iaa.AdditiveGaussianNoise(scale=(0, 0.1*255))

Adds gaussian noise from the distribution N(0, s) to images,
where s is sampled per image from the interval [0, 0.1*255].

>>> aug = iaa.AdditiveGaussianNoise(scale=0.1*255, per_channel=True)

Adds gaussian noise from the distribution N(0, 0.1*255) to images,
where the noise value is different per image and pixel and channel (e.g.
a different one for red, green and blue channels of the same pixel).
This leads to “colorful” noise.

>>> aug = iaa.AdditiveGaussianNoise(scale=0.1*255, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.AdditiveLaplaceNoise(loc=0, scale=(0, 15), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.AddElementwise

Add noise sampled from laplace distributions elementwise to images.

The laplace distribution is similar to the gaussian distribution, but
puts more weight on the long tail. Hence, this noise will add more
outliers (very high/low values). It is somewhere between gaussian noise and
salt and pepper noise.

Values of around 255 * 0.05 for scale lead to visible noise (for
uint8).
Values of around 255 * 0.10 for scale lead to very visible
noise (for uint8).
It is recommended to usually set per_channel to True.

This augmenter samples and adds noise elementwise, i.e. it can add
different noise values to neighbouring pixels and is comparable
to AddElementwise.

Supported dtypes:

See AddElementwise.

	Parameters

	
	loc (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

Mean of the laplace distribution that generates the noise.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Standard deviation of the laplace distribution that generates the noise.
Must be >=0. If 0 then only loc will be used.
Recommended to be around 255*0.05.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AdditiveLaplaceNoise(scale=0.1*255)

Adds laplace noise from the distribution Laplace(0, 0.1*255) to images.
The samples are drawn per image and pixel.

>>> aug = iaa.AdditiveLaplaceNoise(scale=(0, 0.1*255))

Adds laplace noise from the distribution Laplace(0, s) to images,
where s is sampled per image from the interval [0, 0.1*255].

>>> aug = iaa.AdditiveLaplaceNoise(scale=0.1*255, per_channel=True)

Adds laplace noise from the distribution Laplace(0, 0.1*255) to images,
where the noise value is different per image and pixel and channel (e.g.
a different one for the red, green and blue channels of the same pixel).
This leads to “colorful” noise.

>>> aug = iaa.AdditiveLaplaceNoise(scale=0.1*255, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.AdditivePoissonNoise(lam=(0.0, 15.0), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.AddElementwise

Add noise sampled from poisson distributions elementwise to images.

Poisson noise is comparable to gaussian noise, as e.g. generated via
AdditiveGaussianNoise. As poisson distributions produce only positive
numbers, the sign of the sampled values are here randomly flipped.

Values of around 10.0 for lam lead to visible noise (for uint8).
Values of around 20.0 for lam lead to very visible noise (for
uint8).
It is recommended to usually set per_channel to True.

This augmenter samples and adds noise elementwise, i.e. it can add
different noise values to neighbouring pixels and is comparable
to AddElementwise.

Supported dtypes:

See AddElementwise.

	Parameters

	
	lam (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Lambda parameter of the poisson distribution. Must be >=0.
Recommended values are around 0.0 to 10.0.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AdditivePoissonNoise(lam=5.0)

Adds poisson noise sampled from a poisson distribution with a lambda
parameter of 5.0 to images.
The samples are drawn per image and pixel.

>>> aug = iaa.AdditivePoissonNoise(lam=(0.0, 15.0))

Adds poisson noise sampled from Poisson(x) to images, where x is
randomly sampled per image from the interval [0.0, 15.0].

>>> aug = iaa.AdditivePoissonNoise(lam=5.0, per_channel=True)

Adds poisson noise sampled from Poisson(5.0) to images,
where the values are different per image and pixel and channel (e.g. a
different one for red, green and blue channels for the same pixel).

>>> aug = iaa.AdditivePoissonNoise(lam=(0.0, 15.0), per_channel=True)

Adds poisson noise sampled from Poisson(x) to images,
with x being sampled from uniform(0.0, 15.0) per image and
channel. This is the recommended configuration.

>>> aug = iaa.AdditivePoissonNoise(lam=(0.0, 15.0), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.CoarseDropout(p=(0.02, 0.1), size_px=None, size_percent=None, per_channel=False, min_size=3, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.MultiplyElementwise

Set rectangular areas within images to zero.

In contrast to Dropout, these areas can have larger sizes.
(E.g. you might end up with three large black rectangles in an image.)
Note that the current implementation leads to correlated sizes,
so if e.g. there is any thin and high rectangle that is dropped, there is
a high likelihood that all other dropped areas are also thin and high.

This method is implemented by generating the dropout mask at a
lower resolution (than the image has) and then upsampling the mask
before dropping the pixels.

This augmenter is similar to Cutout. Usually, cutout is defined as an
operation that drops exactly one rectangle from an image, while here
CoarseDropout can drop multiple rectangles (with some correlation
between the sizes of these rectangles).

Supported dtypes:

See MultiplyElementwise.

	Parameters

	
	p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) – The probability of any pixel being dropped (i.e. set to zero) in
the lower-resolution dropout mask.

	If a float, then that value will be used for all pixels. A value
of 1.0 would mean, that all pixels will be dropped. A value
of 0.0 would lead to no pixels being dropped.

	If a tuple (a, b), then a value p will be sampled from
the interval [a, b] per image and be used as the dropout
probability.

	If a list, then a value will be sampled from that list per
batch and used as the probability.

	If a StochasticParameter, then this parameter will be used to
determine per pixel whether it should be kept (sampled value
of >0.5) or shouldn’t be kept (sampled value of <=0.5).
If you instead want to provide the probability as a stochastic
parameter, you can usually do imgaug.parameters.Binomial(1-p)
to convert parameter p to a 0/1 representation.

	size_px (None or int or tuple of int or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the dropout
mask in absolute pixel dimensions.
Note that this means that lower values of this parameter lead to
larger areas being dropped (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_percent must be set.

	If an integer, then that size will always be used for both height
and width. E.g. a value of 3 would lead to a 3x3 mask,
which is then upsampled to HxW, where H is the image size
and W the image width.

	If a tuple (a, b), then two values M, N will be
sampled from the discrete interval [a..b]. The dropout mask
will then be generated at size MxN and upsampled to HxW.

	If a StochasticParameter, then this parameter will be used to
determine the sizes. It is expected to be discrete.

	size_percent (None or float or tuple of float or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the dropout
mask in percent of the input image.
Note that this means that lower values of this parameter lead to
larger areas being dropped (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_px must be set.

	If a float, then that value will always be used as the percentage
of the height and width (relative to the original size). E.g. for
value p, the mask will be sampled from (p*H)x(p*W) and
later upsampled to HxW.

	If a tuple (a, b), then two values m, n will be
sampled from the interval (a, b) and used as the size
fractions, i.e the mask size will be (m*H)x(n*W).

	If a StochasticParameter, then this parameter will be used to
sample the percentage values. It is expected to be continuous.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	min_size (int, optional) – Minimum height and width of the low resolution mask. If
size_percent or size_px leads to a lower value than this,
min_size will be used instead. This should never have a value of
less than 2, otherwise one may end up with a 1x1 low resolution
mask, leading easily to the whole image being dropped.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarseDropout(0.02, size_percent=0.5)

Drops 2 percent of all pixels on a lower-resolution image that has
50 percent of the original image’s size, leading to dropped areas that
have roughly 2x2 pixels size.

>>> aug = iaa.CoarseDropout((0.0, 0.05), size_percent=(0.05, 0.5))

Generates a dropout mask at 5 to 50 percent of each input image’s
size. In that mask, 0 to 5 percent of all pixels are marked as
being dropped. The mask is afterwards projected to the input image’s
size to apply the actual dropout operation.

>>> aug = iaa.CoarseDropout((0.0, 0.05), size_px=(2, 16))

Same as the previous example, but the lower resolution image has 2 to
16 pixels size. On images of e.g. 224x224` pixels in size this would
lead to fairly large areas being dropped (height/width of ``224/2 to
224/16).

>>> aug = iaa.CoarseDropout(0.02, size_percent=0.5, per_channel=True)

Drops 2 percent of all pixels at 50 percent resolution (2x2
sizes) in a channel-wise fashion, i.e. it is unlikely for any pixel to
have all channels set to zero (black pixels).

>>> aug = iaa.CoarseDropout(0.02, size_percent=0.5, per_channel=0.5)

Same as the previous example, but the per_channel feature is only active
for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.CoarsePepper(p=(0.02, 0.1), size_px=None, size_percent=None, per_channel=False, min_size=3, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace rectangular areas in images with black-ish pixel noise.

Supported dtypes:

See ReplaceElementwise.

	Parameters

	
	p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional) –

Probability of changing a pixel to pepper noise.

	If a float, then that value will always be used as the
probability.

	If a tuple (a, b), then a probability will be sampled
uniformly per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a lower-resolution mask will
be sampled from that parameter per image. Any value >0.5 in
that mask will denote a spatial location that is to be replaced
by pepper noise.

	size_px (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the
replacement mask in absolute pixel dimensions.
Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_percent must be set.

	If an integer, then that size will always be used for both height
and width. E.g. a value of 3 would lead to a 3x3 mask,
which is then upsampled to HxW, where H is the image size
and W the image width.

	If a tuple (a, b), then two values M, N will be
sampled from the discrete interval [a..b]. The mask
will then be generated at size MxN and upsampled to HxW.

	If a StochasticParameter, then this parameter will be used to
determine the sizes. It is expected to be discrete.

	size_percent (float or tuple of float or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the
replacement mask in percent of the input image.
Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_px must be set.

	If a float, then that value will always be used as the percentage
of the height and width (relative to the original size). E.g. for
value p, the mask will be sampled from (p*H)x(p*W) and
later upsampled to HxW.

	If a tuple (a, b), then two values m, n will be
sampled from the interval (a, b) and used as the size
fractions, i.e the mask size will be (m*H)x(n*W).

	If a StochasticParameter, then this parameter will be used to
sample the percentage values. It is expected to be continuous.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	min_size (int, optional) – Minimum size of the low resolution mask, both width and height. If
size_percent or size_px leads to a lower value than this, min_size
will be used instead. This should never have a value of less than 2,
otherwise one may end up with a 1x1 low resolution mask, leading
easily to the whole image being replaced.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarsePepper(0.05, size_percent=(0.01, 0.1))

Mark 5% of all pixels in a mask to be replaced by pepper
noise. The mask has 1% to 10% the size of the input image.
The mask is then upscaled to the input image size, leading to large
rectangular areas being marked as to be replaced. These areas are then
replaced in the input image by pepper noise.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.CoarseSalt(p=(0.02, 0.1), size_px=None, size_percent=None, per_channel=False, min_size=3, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace rectangular areas in images with white-ish pixel noise.

See also the similar CoarseSaltAndPepper.

Supported dtypes:

See ReplaceElementwise.

	Parameters

	
	p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional) –

Probability of changing a pixel to salt noise.

	If a float, then that value will always be used as the
probability.

	If a tuple (a, b), then a probability will be sampled
uniformly per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a lower-resolution mask will
be sampled from that parameter per image. Any value >0.5 in
that mask will denote a spatial location that is to be replaced
by salt noise.

	size_px (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the
replacement mask in absolute pixel dimensions.
Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_percent must be set.

	If an integer, then that size will always be used for both height
and width. E.g. a value of 3 would lead to a 3x3 mask,
which is then upsampled to HxW, where H is the image size
and W the image width.

	If a tuple (a, b), then two values M, N will be
sampled from the discrete interval [a..b]. The mask
will then be generated at size MxN and upsampled to HxW.

	If a StochasticParameter, then this parameter will be used to
determine the sizes. It is expected to be discrete.

	size_percent (float or tuple of float or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the
replacement mask in percent of the input image.
Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_px must be set.

	If a float, then that value will always be used as the percentage
of the height and width (relative to the original size). E.g. for
value p, the mask will be sampled from (p*H)x(p*W) and
later upsampled to HxW.

	If a tuple (a, b), then two values m, n will be
sampled from the interval (a, b) and used as the size
fractions, i.e the mask size will be (m*H)x(n*W).

	If a StochasticParameter, then this parameter will be used to
sample the percentage values. It is expected to be continuous.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	min_size (int, optional) – Minimum height and width of the low resolution mask. If
size_percent or size_px leads to a lower value than this,
min_size will be used instead. This should never have a value of
less than 2, otherwise one may end up with a 1x1 low resolution
mask, leading easily to the whole image being replaced.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarseSalt(0.05, size_percent=(0.01, 0.1))

Mark 5% of all pixels in a mask to be replaced by salt
noise. The mask has 1% to 10% the size of the input image.
The mask is then upscaled to the input image size, leading to large
rectangular areas being marked as to be replaced. These areas are then
replaced in the input image by salt noise.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.CoarseSaltAndPepper(p=(0.02, 0.1), size_px=None, size_percent=None, per_channel=False, min_size=3, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace rectangular areas in images with white/black-ish pixel noise.

This adds salt and pepper noise (noisy white-ish and black-ish pixels) to
rectangular areas within the image. Note that this means that within these
rectangular areas the color varies instead of each rectangle having only
one color.

See also the similar CoarseDropout.

	TODO replace dtype support with uint8 only, because replacement is

	geared towards that value range

Supported dtypes:

See ReplaceElementwise.

	Parameters

	
	p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional) –

Probability of changing a pixel to salt/pepper noise.

	If a float, then that value will always be used as the
probability.

	If a tuple (a, b), then a probability will be sampled
uniformly per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a lower-resolution mask will
be sampled from that parameter per image. Any value >0.5 in
that mask will denote a spatial location that is to be replaced
by salt and pepper noise.

	size_px (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the
replacement mask in absolute pixel dimensions.
Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_percent must be set.

	If an integer, then that size will always be used for both height
and width. E.g. a value of 3 would lead to a 3x3 mask,
which is then upsampled to HxW, where H is the image size
and W the image width.

	If a tuple (a, b), then two values M, N will be
sampled from the discrete interval [a..b]. The mask
will then be generated at size MxN and upsampled to HxW.

	If a StochasticParameter, then this parameter will be used to
determine the sizes. It is expected to be discrete.

	size_percent (float or tuple of float or imgaug.parameters.StochasticParameter, optional) – The size of the lower resolution image from which to sample the
replacement mask in percent of the input image.
Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution
image will correspond to a larger area at the original resolution).

	If None then size_px must be set.

	If a float, then that value will always be used as the percentage
of the height and width (relative to the original size). E.g. for
value p, the mask will be sampled from (p*H)x(p*W) and
later upsampled to HxW.

	If a tuple (a, b), then two values m, n will be
sampled from the interval (a, b) and used as the size
fractions, i.e the mask size will be (m*H)x(n*W).

	If a StochasticParameter, then this parameter will be used to
sample the percentage values. It is expected to be continuous.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	min_size (int, optional) – Minimum height and width of the low resolution mask. If
size_percent or size_px leads to a lower value than this,
min_size will be used instead. This should never have a value of
less than 2, otherwise one may end up with a 1x1 low resolution
mask, leading easily to the whole image being replaced.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1))

Marks 5% of all pixels in a mask to be replaced by salt/pepper
noise. The mask has 1% to 10% the size of the input image.
The mask is then upscaled to the input image size, leading to large
rectangular areas being marked as to be replaced. These areas are then
replaced in the input image by salt/pepper noise.

>>> aug = iaa.CoarseSaltAndPepper(0.05, size_px=(4, 16))

Same as in the previous example, but the replacement mask before upscaling
has a size between 4x4 and 16x16 pixels (the axis sizes are sampled
independently, i.e. the mask may be rectangular).

>>> aug = iaa.CoarseSaltAndPepper(
>>> 0.05, size_percent=(0.01, 0.1), per_channel=True)

Same as in the first example, but mask and replacement are each sampled
independently per image channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
imgaug.augmenters.arithmetic.ContrastNormalization(alpha=1.0, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Deprecated. Use imgaug.contrast.LinearContrast instead.

Change the contrast of images.

dtype support:

See imgaug.augmenters.contrast.LinearContrast.

Deprecated since 0.3.0.

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Strength of the contrast normalization. Higher values than 1.0
lead to higher contrast, lower values decrease the contrast.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value will be sampled per image
uniformly from the interval [a, b] and be used as the alpha
value.

	If a list, then a random value will be picked per image from
that list.

	If a StochasticParameter, then this parameter will be used to
sample the alpha value per image.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> iaa.ContrastNormalization((0.5, 1.5))

Decreases oder improves contrast per image by a random factor between
0.5 and 1.5. The factor 0.5 means that any difference from
the center value (i.e. 128) will be halved, leading to less contrast.

>>> iaa.ContrastNormalization((0.5, 1.5), per_channel=0.5)

Same as before, but for 50 percent of all images the normalization is done
independently per channel (i.e. factors can vary per channel for the same
image). In the other 50 percent of all images, the factor is the same for
all channels.

	
class imgaug.augmenters.arithmetic.Cutout(nb_iterations=1, position='uniform', size=0.2, squared=True, fill_mode='constant', cval=128, fill_per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Fill one or more rectangular areas in an image using a fill mode.

See paper “Improved Regularization of Convolutional Neural Networks with
Cutout” by DeVries and Taylor.

In contrast to the paper, this implementation also supports replacing
image sub-areas with gaussian noise, random intensities or random RGB
colors. It also supports non-squared areas. While the paper uses
absolute pixel values for the size and position, this implementation
uses relative values, which seems more appropriate for mixed-size
datasets. The position parameter furthermore allows more flexibility, e.g.
gaussian distributions around the center.

Note

This augmenter affects only image data. Other datatypes (e.g.
segmentation map pixels or keypoints within the filled areas)
are not affected.

Note

Gaussian fill mode will assume that float input images contain values
in the interval [0.0, 1.0] and hence sample values from a
gaussian within that interval, i.e. from N(0.5, std=0.5/3).

Added in 0.4.0.

Supported dtypes:

See cutout_().

	Parameters

	
	nb_iterations (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

How many rectangular areas to fill.

	If int: Exactly that many areas will be filled on all images.

	If tuple (a, b): A value from the interval [a, b]
will be sampled per image.

	If list: A random value will be sampled from that list
per image.

	If StochasticParameter: That parameter will be used to
sample (B,) values per batch of B images.

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – Defines the position of each area to fill.
Analogous to the definition in e.g.
CropToFixedSize.
Usually, uniform (anywhere in the image) or normal (anywhere
in the image with preference around the center) are sane values.

	size (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – The size of the rectangle to fill as a fraction of the corresponding
image size, i.e. with value range [0.0, 1.0]. The size is sampled
independently per image axis.

	If number: Exactly that size is always used.

	If tuple (a, b): A value from the interval [a, b]
will be sampled per area and axis.

	If list: A random value will be sampled from that list
per area and axis.

	If StochasticParameter: That parameter will be used to
sample (N, 2) values per batch, where N is the total
number of areas to fill within the whole batch.

	squared (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to generate only squared areas cutout areas or allow
rectangular ones. If this evaluates to a true-like value, the
first value from size will be converted to absolute pixels and used
for both axes.

If this value is a float p, then for p percent of all areas
to be filled per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	fill_mode (str or list of str or imgaug.parameters.StochasticParameter, optional) – Mode to use in order to fill areas. Corresponds to mode parameter
in some other augmenters. Valid strings for the mode are:

	contant: Fill each area with a single value.

	gaussian: Fill each area with gaussian noise.

Valid datatypes are:

	If str: Exactly that mode will alaways be used.

	If list: A random value will be sampled from that list
per area.

	If StochasticParameter: That parameter will be used to
sample (N,) values per batch, where N is the total number
of areas to fill within the whole batch.

	cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – The value to use (i.e. the color) to fill areas if fill_mode is
`constant.

	If number: Exactly that value is used for all areas
and channels.

	If tuple (a, b): A value from the interval [a, b]
will be sampled per area (and channel if per_channel=True).

	If list: A random value will be sampled from that list
per area (and channel if per_channel=True).

	If StochasticParameter: That parameter will be used to
sample (N, Cmax) values per batch, where N is the total
number of areas to fill within the whole batch and Cmax
is the maximum number of channels in any image (usually 3).
If per_channel=False, only the first value of the second
axis is used.

	fill_per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to fill each area in a channelwise fashion (True) or
not (False).
The behaviour per fill mode is:

	constant: Whether to fill all channels with the same value
(i.e, grayscale) or different values (i.e. usually RGB color).

	gaussian: Whether to sample once from a gaussian and use the
values for all channels (i.e. grayscale) or to sample
channelwise (i.e. RGB colors)

If this value is a float p, then for p percent of all areas
to be filled per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	name (None or str, optional) – See __init__().

	deterministic (bool, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.bit_generator.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Cutout(nb_iterations=2)

Fill per image two random areas, by default with grayish pixels.

>>> aug = iaa.Cutout(nb_iterations=(1, 5), size=0.2, squared=False)

Fill per image between one and five areas, each having 20%
of the corresponding size of the height and width (for non-square
images this results in non-square areas to be filled).

>>> aug = iaa.Cutout(fill_mode="constant", cval=255)

Fill all areas with white pixels.

>>> aug = iaa.Cutout(fill_mode="constant", cval=(0, 255),
>>> fill_per_channel=0.5)

Fill 50% of all areas with a random intensity value between
0 and 256. Fill the other 50% of all areas with
random colors.

>>> aug = iaa.Cutout(fill_mode="gaussian", fill_per_channel=True)

Fill areas with gaussian channelwise noise (i.e. usually RGB).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.Dropout(p=(0.0, 0.05), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.MultiplyElementwise

Set a fraction of pixels in images to zero.

Supported dtypes:

See MultiplyElementwise.

	Parameters

	
	p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) –

The probability of any pixel being dropped (i.e. to set it to zero).

	If a float, then that value will be used for all images. A value
of 1.0 would mean that all pixels will be dropped
and 0.0 that no pixels will be dropped. A value of 0.05
corresponds to 5 percent of all pixels being dropped.

	If a tuple (a, b), then a value p will be sampled from
the interval [a, b] per image and be used as the pixel’s
dropout probability.

	If a list, then a value will be sampled from that list per
batch and used as the probability.

	If a StochasticParameter, then this parameter will be used to
determine per pixel whether it should be kept (sampled value
of >0.5) or shouldn’t be kept (sampled value of <=0.5).
If you instead want to provide the probability as a stochastic
parameter, you can usually do imgaug.parameters.Binomial(1-p)
to convert parameter p to a 0/1 representation.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Dropout(0.02)

Drops 2 percent of all pixels.

>>> aug = iaa.Dropout((0.0, 0.05))

Drops in each image a random fraction of all pixels, where the fraction
is uniformly sampled from the interval [0.0, 0.05].

>>> aug = iaa.Dropout(0.02, per_channel=True)

Drops 2 percent of all pixels in a channelwise fashion, i.e. it is
unlikely for any pixel to have all channels set to zero (black pixels).

>>> aug = iaa.Dropout(0.02, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.Dropout2d(p=0.1, nb_keep_channels=1, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Drop random channels from images.

For image data, dropped channels will be filled with zeros.

Note

This augmenter may also set the arrays of heatmaps and segmentation
maps to zero and remove all coordinate-based data (e.g. it removes
all bounding boxes on images that were filled with zeros).
It does so if and only if all channels of an image are dropped.
If nb_keep_channels >= 1 then that never happens.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) –

The probability of any channel to be dropped (i.e. set to zero).

	If a float, then that value will be used for all channels.
A value of 1.0 would mean, that all channels will be dropped.
A value of 0.0 would lead to no channels being dropped.

	If a tuple (a, b), then a value p will be sampled from
the interval [a, b) per batch and be used as the dropout
probability.

	If a list, then a value will be sampled from that list per
batch and used as the probability.

	If a StochasticParameter, then this parameter will be used to
determine per channel whether it should be kept (sampled value
of >=0.5) or shouldn’t be kept (sampled value of <0.5).
If you instead want to provide the probability as a stochastic
parameter, you can usually do imgaug.parameters.Binomial(1-p)
to convert parameter p to a 0/1 representation.

	nb_keep_channels (int) – Minimum number of channels to keep unaltered in all images.
E.g. a value of 1 means that at least one channel in every image
will not be dropped, even if p=1.0. Set to 0 to allow dropping
all channels.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Dropout2d(p=0.5)

Create a dropout augmenter that drops on average half of all image
channels. Dropped channels will be filled with zeros. At least one
channel is kept unaltered in each image (default setting).

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Dropout2d(p=0.5, nb_keep_channels=0)

Create a dropout augmenter that drops on average half of all image
channels and may drop all channels in an image (i.e. images may
contain nothing but zeros).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.ImpulseNoise(p=(0.0, 0.03), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.SaltAndPepper

Add impulse noise to images.

This is identical to SaltAndPepper, except that per_channel is
always set to True.

Supported dtypes:

See SaltAndPepper.

	Parameters

	
	p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional) –

Probability of replacing a pixel to impulse noise.

	If a float, then that value will always be used as the
probability.

	If a tuple (a, b), then a probability will be sampled
uniformly per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a image-sized mask will be
sampled from that parameter per image. Any value >0.5 in
that mask will be replaced with impulse noise noise.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ImpulseNoise(0.1)

Replace 10% of all pixels with impulse noise.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.Invert(p=1, per_channel=False, min_value=None, max_value=None, threshold=None, invert_above_threshold=0.5, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Invert all values in images, e.g. turn 5 into 255-5=250.

For the standard value range of 0-255 it converts 0 to 255,
255 to 0 and 10 to (255-10)=245.
Let M be the maximum value possible, m the minimum value possible,
v a value. Then the distance of v to m is d=abs(v-m) and
the new value is given by v'=M-d.

Supported dtypes:

See invert_().

	Parameters

	
	p (float or imgaug.parameters.StochasticParameter, optional) –

The probability of an image to be inverted.

	If a float, then that probability will be used for all images,
i.e. p percent of all images will be inverted.

	If a StochasticParameter, then that parameter will be queried
per image and is expected to return values in the interval
[0.0, 1.0], where values >0.5 mean that the image
is supposed to be inverted. Recommended to be some form of
imgaug.parameters.Binomial.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	min_value (None or number, optional) – Minimum of the value range of input images, e.g. 0 for uint8
images. If set to None, the value will be automatically derived
from the image’s dtype.

	max_value (None or number, optional) – Maximum of the value range of input images, e.g. 255 for uint8
images. If set to None, the value will be automatically derived
from the image’s dtype.

	threshold (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – A threshold to use in order to invert only numbers above or below
the threshold. If None no thresholding will be used.

	If None: No thresholding will be used.

	If number: The value will be used for all images.

	If tuple (a, b): A value will be uniformly sampled per
image from the interval [a, b).

	If list: A random value will be picked from the list per
image.

	If StochasticParameter: Per batch of size N, the
parameter will be queried once to return (N,) samples.

	invert_above_threshold (bool or float or imgaug.parameters.StochasticParameter, optional) – If True, only values >=threshold will be inverted.
Otherwise, only values <threshold will be inverted.
If a number, then expected to be in the interval [0.0, 1.0] and
denoting an imagewise probability. If a StochasticParameter then
(N,) values will be sampled from the parameter per batch of size
N and interpreted as True if >0.5.
If threshold is None this parameter has no effect.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Invert(0.1)

Inverts the colors in 10 percent of all images.

>>> aug = iaa.Invert(0.1, per_channel=True)

Inverts the colors in 10 percent of all image channels. This may or
may not lead to multiple channels in an image being inverted.

>>> aug = iaa.Invert(0.1, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
ALLOW_DTYPES_CUSTOM_MINMAX = [dtype('uint8'), dtype('uint16'), dtype('uint32'), dtype('int8'), dtype('int16'), dtype('int32'), dtype('float16'), dtype('float32')]

	

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.JpegCompression(compression=(0, 100), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Degrade the quality of images by JPEG-compressing them.

During JPEG compression, high frequency components (e.g. edges) are removed.
With low compression (strength) only the highest frequency components are
removed, while very high compression (strength) will lead to only the
lowest frequency components “surviving”. This lowers the image quality.
For more details, see https://en.wikipedia.org/wiki/Compression_artifact.

Note that this augmenter still returns images as numpy arrays (i.e. saves
the images with JPEG compression and then reloads them into arrays). It
does not return the raw JPEG file content.

Supported dtypes:

See compress_jpeg().

	Parameters

	
	compression (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Degree of compression used during JPEG compression within value range
[0, 100]. Higher values denote stronger compression and will cause
low-frequency components to disappear. Note that JPEG’s compression
strength is also often set as a quality, which is the inverse of this
parameter. Common choices for the quality setting are around 80 to 95,
depending on the image. This translates here to a compression
parameter of around 20 to 5.

	If a single number, then that value always will be used as the
compression.

	If a tuple (a, b), then the compression will be
a value sampled uniformly from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image and used as the compression.

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images, each representing the
compression for the n-th image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.JpegCompression(compression=(70, 99))

Remove high frequency components in images via JPEG compression with
a compression strength between 70 and 99 (randomly and
uniformly sampled per image). This corresponds to a (very low) quality
setting of 1 to 30.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.Multiply(mul=(0.8, 1.2), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Multiply all pixels in an image with a random value sampled once per image.

This augmenter can be used to make images lighter or darker.

Supported dtypes:

See multiply_scalar().

	Parameters

	
	mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

The value with which to multiply the pixel values in each image.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value from the interval [a, b]
will be sampled per image and used for all pixels.

	If a list, then a random value will be sampled from that list per
image.

	If a StochasticParameter, then that parameter will be used to
sample a new value per image.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Multiply(2.0)

Multiplies all images by a factor of 2, making the images significantly
brighter.

>>> aug = iaa.Multiply((0.5, 1.5))

Multiplies images by a random value sampled uniformly from the interval
[0.5, 1.5], making some images darker and others brighter.

>>> aug = iaa.Multiply((0.5, 1.5), per_channel=True)

Identical to the previous example, but the sampled multipliers differ by
image and channel, instead of only by image.

>>> aug = iaa.Multiply((0.5, 1.5), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.MultiplyElementwise(mul=(0.8, 1.2), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Multiply image pixels with values that are pixelwise randomly sampled.

While the Multiply Augmenter uses a constant multiplier per
image (and optionally channel), this augmenter samples the multipliers
to use per image and per pixel (and optionally per channel).

Supported dtypes:

See multiply_elementwise().

	Parameters

	
	mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

The value with which to multiply pixel values in the image.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value from the interval [a, b]
will be sampled per image and pixel.

	If a list, then a random value will be sampled from that list
per image and pixel.

	If a StochasticParameter, then that parameter will be used to
sample a new value per image and pixel.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyElementwise(2.0)

Multiply all images by a factor of 2.0, making them significantly
bighter.

>>> aug = iaa.MultiplyElementwise((0.5, 1.5))

Samples per image and pixel uniformly a value from the interval
[0.5, 1.5] and multiplies the pixel with that value.

>>> aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=True)

Samples per image and pixel and channel uniformly a value from the
interval [0.5, 1.5] and multiplies the pixel with that value. Therefore,
used multipliers may differ between channels of the same pixel.

>>> aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only
active for 50 percent of all images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.Pepper(p=(0.0, 0.05), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace pixels in images with pepper noise, i.e. black-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no salt noise to
images.

This augmenter is similar to Dropout, but slower and the black pixels
are not uniformly black.

Supported dtypes:

See ReplaceElementwise.

	Parameters

	
	p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional) –

Probability of replacing a pixel with pepper noise.

	If a float, then that value will always be used as the
probability.

	If a tuple (a, b), then a probability will be sampled
uniformly per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a image-sized mask will be
sampled from that parameter per image. Any value >0.5 in
that mask will be replaced with pepper noise.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Pepper(0.05)

Replace 5% of all pixels with pepper noise (black-ish colors).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.ReplaceElementwise(mask, replacement, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Replace pixels in an image with new values.

Supported dtypes:

See replace_elementwise_().

	Parameters

	
	mask (float or tuple of float or list of float or imgaug.parameters.StochasticParameter) – Mask that indicates the pixels that are supposed to be replaced.
The mask will be binarized using a threshold of 0.5. A value
of 1 then indicates a pixel that is supposed to be replaced.

	If this is a float, then that value will be used as the
probability of being a 1 in the mask (sampled per image and
pixel) and hence being replaced.

	If a tuple (a, b), then the probability will be uniformly
sampled per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image and pixel.

	If a StochasticParameter, then this parameter will be used to
sample a mask per image.

	replacement (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – The replacement to use at all locations that are marked as 1 in
the mask.

	If this is a number, then that value will always be used as the
replacement.

	If a tuple (a, b), then the replacement will be sampled
uniformly per image and pixel from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image and pixel.

	If a StochasticParameter, then this parameter will be used
sample replacement values per image and pixel.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = ReplaceElementwise(0.05, [0, 255])

Replaces 5 percent of all pixels in each image by either 0
or 255.

>>> import imgaug.augmenters as iaa
>>> aug = ReplaceElementwise(0.1, [0, 255], per_channel=0.5)

For 50% of all images, replace 10% of all pixels with either the
value 0 or the value 255 (same as in the previous example). For
the other 50% of all images, replace channelwise 10% of all
pixels with either the value 0 or the value 255. So, it will be
very rare for each pixel to have all channels replaced by 255 or
0.

>>> import imgaug.augmenters as iaa
>>> import imgaug.parameters as iap
>>> aug = ReplaceElementwise(0.1, iap.Normal(128, 0.4*128), per_channel=0.5)

Replace 10% of all pixels by gaussian noise centered around 128.
Both the replacement mask and the gaussian noise are sampled channelwise
for 50% of all images.

>>> import imgaug.augmenters as iaa
>>> import imgaug.parameters as iap
>>> aug = ReplaceElementwise(
>>> iap.FromLowerResolution(iap.Binomial(0.1), size_px=8),
>>> iap.Normal(128, 0.4*128),
>>> per_channel=0.5)

Replace 10% of all pixels by gaussian noise centered around 128.
Sample the replacement mask at a lower resolution (8x8 pixels) and
upscale it to the image size, resulting in coarse areas being replaced by
gaussian noise.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.arithmetic.Salt(p=(0.0, 0.03), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace pixels in images with salt noise, i.e. white-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no pepper noise to
images.

Supported dtypes:

See ReplaceElementwise.

	Parameters

	
	p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional) –

Probability of replacing a pixel with salt noise.

	If a float, then that value will always be used as the
probability.

	If a tuple (a, b), then a probability will be sampled
uniformly per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a image-sized mask will be
sampled from that parameter per image. Any value >0.5 in
that mask will be replaced with salt noise.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Salt(0.05)

Replace 5% of all pixels with salt noise (white-ish colors).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.SaltAndPepper(p=(0.0, 0.03), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace pixels in images with salt/pepper noise (white/black-ish colors).

Supported dtypes:

See ReplaceElementwise.

	Parameters

	
	p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional) –

Probability of replacing a pixel to salt/pepper noise.

	If a float, then that value will always be used as the
probability.

	If a tuple (a, b), then a probability will be sampled
uniformly per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a image-sized mask will be
sampled from that parameter per image. Any value >0.5 in
that mask will be replaced with salt and pepper noise.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use (imagewise) the same sample(s) for all
channels (False) or to sample value(s) for each channel (True).
Setting this to True will therefore lead to different
transformations per image and channel, otherwise only per image.
If this value is a float p, then for p percent of all images
per_channel will be treated as True.
If it is a StochasticParameter it is expected to produce samples
with values between 0.0 and 1.0, where values >0.5 will
lead to per-channel behaviour (i.e. same as True).

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.SaltAndPepper(0.05)

Replace 5% of all pixels with salt and pepper noise.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.SaltAndPepper(0.05, per_channel=True)

Replace channelwise 5% of all pixels with salt and pepper
noise.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.Solarize(p=1, per_channel=False, min_value=None, max_value=None, threshold=(64, 192), invert_above_threshold=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.Invert

Invert all pixel values above a threshold.

This is the same as Invert, but sets a default threshold around
128 (+/- 64, decided per image) and default invert_above_threshold
to True (i.e. only values above the threshold will be inverted).

See Invert for more details.

Added in 0.4.0.

Supported dtypes:

See Invert.

	Parameters

	
	p (float or imgaug.parameters.StochasticParameter) – See Invert.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – See Invert.

	min_value (None or number, optional) – See Invert.

	max_value (None or number, optional) – See Invert.

	threshold (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Invert.

	invert_above_threshold (bool or float or imgaug.parameters.StochasticParameter, optional) – See Invert.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Solarize(0.5, threshold=(32, 128))

Invert the colors in 50 percent of all images for pixels with a
value between 32 and 128 or more. The threshold is sampled once
per image. The thresholding operation happens per channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.arithmetic.TotalDropout(p=1, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Drop all channels of a defined fraction of all images.

For image data, all components of dropped images will be filled with zeros.

Note

This augmenter also sets the arrays of heatmaps and segmentation
maps to zero and removes all coordinate-based data (e.g. it removes
all bounding boxes on images that were filled with zeros).

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) –

The probability of an image to be filled with zeros.

	If float: The value will be used for all images.
A value of 1.0 would mean that all images will be set to zero.
A value of 0.0 would lead to no images being set to zero.

	If tuple (a, b): A value p will be sampled from
the interval [a, b) per batch and be used as the dropout
probability.

	If a list, then a value will be sampled from that list per
batch and used as the probability.

	If StochasticParameter: The parameter will be used to
determine per image whether it should be kept (sampled value
of >=0.5) or shouldn’t be kept (sampled value of <0.5).
If you instead want to provide the probability as a stochastic
parameter, you can usually do imgaug.parameters.Binomial(1-p)
to convert parameter p to a 0/1 representation.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.TotalDropout(1.0)

Create an augmenter that sets all components of all images to zero.

>>> aug = iaa.TotalDropout(0.5)

Create an augmenter that sets all components of 50% of all images to
zero.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
imgaug.augmenters.arithmetic.add_elementwise(image, values)

	Add an array of values to an image.

This method ensures that uint8 does not overflow during the addition.

Supported dtypes:

	uint8: yes; fully tested

	uint16: limited; tested (1)

	uint32: no

	uint64: no

	int8: limited; tested (1)

	int16: limited; tested (1)

	int32: no

	int64: no

	float16: limited; tested (1)

	float32: limited; tested (1)

	float64: no

	float128: no

	bool: limited; tested (1)

	
	Non-uint8 dtypes can overflow. For floats, this can result
in +/-inf.

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).

	values (ndarray) – The values to add to the image. Expected to have the same height
and width as image and either no channels or one channel or
the same number of channels as image.

	Returns

	Image with values added to it.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.add_scalar(image, value)

	Add a single scalar value or one scalar value per channel to an image.

This method ensures that uint8 does not overflow during the addition.

Supported dtypes:

	uint8: yes; fully tested

	uint16: limited; tested (1)

	uint32: no

	uint64: no

	int8: limited; tested (1)

	int16: limited; tested (1)

	int32: no

	int64: no

	float16: limited; tested (1)

	float32: limited; tested (1)

	float64: no

	float128: no

	bool: limited; tested (1)

	
	Non-uint8 dtypes can overflow. For floats, this can result
in +/-inf.

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).
If value contains more than one value, the shape of the image is
expected to be (H,W,C).

	value (number or ndarray) – The value to add to the image. Either a single value or an array
containing exactly one component per channel, i.e. C components.

	Returns

	Image with value added to it.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.compress_jpeg(image, compression)

	Compress an image using jpeg compression.

Supported dtypes:

	uint8: yes; fully tested

	uint16: ?

	uint32: ?

	uint64: ?

	int8: ?

	int16: ?

	int32: ?

	int64: ?

	float16: ?

	float32: ?

	float64: ?

	float128: ?

	bool: ?

	Parameters

	
	image (ndarray) – Image of dtype uint8 and shape (H,W,[C]). If C is provided,
it must be 1 or 3.

	compression (int) – Strength of the compression in the interval [0, 100].

	Returns

	Input image after applying jpeg compression to it and reloading
the result into a new array. Same shape and dtype as the input.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.cutout(image, x1, y1, x2, y2, fill_mode='constant', cval=0, fill_per_channel=False, seed=None)

	Fill a single area within an image using a fill mode.

This cutout method uses the top-left and bottom-right corner coordinates
of the cutout region given as absolute pixel values.

Note

Gaussian fill mode will assume that float input images contain values
in the interval [0.0, 1.0] and hence sample values from a
gaussian within that interval, i.e. from N(0.5, std=0.5/3).

Supported dtypes:

See cutout_().

Added in 0.4.0.

	Parameters

	
	image (ndarray) – Image to modify.

	x1 (number) – See cutout_().

	y1 (number) – See cutout_().

	x2 (number) – See cutout_().

	y2 (number) – See cutout_().

	fill_mode ({‘constant’, ‘gaussian’}, optional) – See cutout_().

	cval (number or tuple of number, optional) – See cutout_().

	fill_per_channel (number or bool, optional) – See cutout_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See cutout_().

	Returns

	Image with area filled in.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.cutout_(image, x1, y1, x2, y2, fill_mode='constant', cval=0, fill_per_channel=False, seed=None)

	Fill a single area within an image using a fill mode (in-place).

This cutout method uses the top-left and bottom-right corner coordinates
of the cutout region given as absolute pixel values.

Note

Gaussian fill mode will assume that float input images contain values
in the interval [0.0, 1.0] and hence sample values from a
gaussian within that interval, i.e. from N(0.5, std=0.5/3).

Added in 0.4.0.

Supported dtypes:

	minimum of (

	_fill_rectangle_gaussian_(),
_fill_rectangle_constant_()

)

	Parameters

	
	image (ndarray) – Image to modify. Might be modified in-place.

	x1 (number) – X-coordinate of the top-left corner of the cutout region.

	y1 (number) – Y-coordinate of the top-left corner of the cutout region.

	x2 (number) – X-coordinate of the bottom-right corner of the cutout region.

	y2 (number) – Y-coordinate of the bottom-right corner of the cutout region.

	fill_mode ({‘constant’, ‘gaussian’}, optional) – Fill mode to use.

	cval (number or tuple of number, optional) – The constant value to use when filling with mode constant.
May be an intensity value or color tuple.

	fill_per_channel (number or bool, optional) – Whether to fill in a channelwise fashion.
If number then a value >=0.5 will be interpreted as True.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – A random number generator to sample random values from.
Usually an integer seed value or an RNG instance.
See imgaug.random.RNG for details.

	Returns

	Image with area filled in.
The input image might have been modified in-place.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.invert(image, min_value=None, max_value=None, threshold=None, invert_above_threshold=True)

	Invert an array.

Supported dtypes:

See invert_().

	Parameters

	
	image (ndarray) – See invert_().

	min_value (None or number, optional) – See invert_().

	max_value (None or number, optional) – See invert_().

	threshold (None or number, optional) – See invert_().

	invert_above_threshold (bool, optional) – See invert_().

	Returns

	Inverted image.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.invert_(image, min_value=None, max_value=None, threshold=None, invert_above_threshold=True)

	Invert an array in-place.

Added in 0.4.0.

Supported dtypes:

if (min_value=None and max_value=None):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

if (min_value!=None or max_value!=None):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: no (1)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: no (2)

	float16: yes; tested

	float32: yes; tested

	float64: no (2)

	float128: no (3)

	bool: no (4)

	
	Not allowed due to numpy’s clip converting from uint64 to
float64.

	
	Not allowed as int/float have to be increased in resolution
when using min/max values.

	
	Not tested.

	
	Makes no sense when using min/max values.

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).
The array might be modified in-place.

	min_value (None or number, optional) – Minimum of the value range of input images, e.g. 0 for uint8
images. If set to None, the value will be automatically derived
from the image’s dtype.

	max_value (None or number, optional) – Maximum of the value range of input images, e.g. 255 for uint8
images. If set to None, the value will be automatically derived
from the image’s dtype.

	threshold (None or number, optional) – A threshold to use in order to invert only numbers above or below
the threshold. If None no thresholding will be used.

	invert_above_threshold (bool, optional) – If True, only values >=threshold will be inverted.
Otherwise, only values <threshold will be inverted.
If threshold is None this parameter has no effect.

	Returns

	Inverted image. This can be the same array as input in image,
modified in-place.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.multiply_elementwise(image, multipliers)

	Multiply an image with an array of values.

This method ensures that uint8 does not overflow during the addition.

Supported dtypes:

	uint8: yes; fully tested

	uint16: limited; tested (1)

	uint32: no

	uint64: no

	int8: limited; tested (1)

	int16: limited; tested (1)

	int32: no

	int64: no

	float16: limited; tested (1)

	float32: limited; tested (1)

	float64: no

	float128: no

	bool: limited; tested (1)

	
	Non-uint8 dtypes can overflow. For floats, this can result
in +/-inf.

note:

Tests were only conducted for rather small multipliers, around
``-10.0`` to ``+10.0``.

In general, the multipliers sampled from `multipliers` must be in a
value range that corresponds to the input image's dtype. E.g. if the
input image has dtype ``uint16`` and the samples generated from
`multipliers` are ``float64``, this function will still force all
samples to be within the value range of ``float16``, as it has the
same number of bytes (two) as ``uint16``. This is done to make
overflows less likely to occur.

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).

	multipliers (ndarray) – The multipliers with which to multiply the image. Expected to have
the same height and width as image and either no channels or one
channel or the same number of channels as image.

	Returns

	Image, multiplied by multipliers.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.multiply_scalar(image, multiplier)

	Multiply an image by a single scalar or one scalar per channel.

This method ensures that uint8 does not overflow during the
multiplication.

Supported dtypes:

	uint8: yes; fully tested

	uint16: limited; tested (1)

	uint32: no

	uint64: no

	int8: limited; tested (1)

	int16: limited; tested (1)

	int32: no

	int64: no

	float16: limited; tested (1)

	float32: limited; tested (1)

	float64: no

	float128: no

	bool: limited; tested (1)

	
	Non-uint8 dtypes can overflow. For floats, this can result in
+/-inf.

note:

Tests were only conducted for rather small multipliers, around
``-10.0`` to ``+10.0``.

In general, the multipliers sampled from `multiplier` must be in a
value range that corresponds to the input image's dtype. E.g. if the
input image has dtype ``uint16`` and the samples generated from
`multiplier` are ``float64``, this function will still force all
samples to be within the value range of ``float16``, as it has the
same number of bytes (two) as ``uint16``. This is done to make
overflows less likely to occur.

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).
If value contains more than one value, the shape of the image is
expected to be (H,W,C).

	multiplier (number or ndarray) – The multiplier to use. Either a single value or an array
containing exactly one component per channel, i.e. C components.

	Returns

	Image, multiplied by multiplier.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.replace_elementwise_(image, mask, replacements)

	Replace components in an image array with new values.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: no (1)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: no (2)

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: no

	bool: yes; tested

	
	uint64 is currently not supported, because
clip_to_dtype_value_range_() does not
support it, which again is because numpy.clip() seems to not
support it.

	
	int64 is disallowed due to being converted to float64
by numpy.clip() since 1.17 (possibly also before?).

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).

	mask (ndarray) – Mask of shape (H,W,[C]) denoting which components to replace.
If C is provided, it must be 1 or match the C of image.
May contain floats in the interval [0.0, 1.0].

	replacements (iterable) – Replacements to place in image at the locations defined by mask.
This 1-dimensional iterable must contain exactly as many values
as there are replaced components in image.

	Returns

	Image with replaced components.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.solarize(image, threshold=128)

	Invert pixel values above a threshold.

Added in 0.4.0.

Supported dtypes:

See solarize_().

	Parameters

	
	image (ndarray) – See solarize_().

	threshold (None or number, optional) – See solarize_().

	Returns

	Inverted image.

	Return type

	ndarray

	
imgaug.augmenters.arithmetic.solarize_(image, threshold=128)

	Invert pixel values above a threshold in-place.

This function is a wrapper around invert().

This function performs the same transformation as
PIL.ImageOps.solarize().

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and max_value=None).

	Parameters

	
	image (ndarray) – See invert_().

	threshold (None or number, optional) – See invert_().
Note: The default threshold is optimized for uint8 images.

	Returns

	Inverted image. This can be the same array as input in image,
modified in-place.

	Return type

	ndarray

imgaug.augmenters.artistic

Augmenters that apply artistic image filters.

List of augmenters:

	Cartoon

Added in 0.4.0.

	
class imgaug.augmenters.artistic.Cartoon(blur_ksize=(1, 5), segmentation_size=(0.8, 1.2), saturation=(1.5, 2.5), edge_prevalence=(0.9, 1.1), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Convert the style of images to a more cartoonish one.

This augmenter was primarily designed for images with a size of 200
to 800 pixels. Smaller or larger images may cause issues.

Note that the quality of the results can currently not compete with
learned style transfer, let alone human-made images. A lack of detected
edges or also too many detected edges are probably the most significant
drawbacks.

Added in 0.4.0.

Supported dtypes:

See stylize_cartoon().

	Parameters

	
	blur_ksize (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Median filter kernel size.
See stylize_cartoon() for details.

	If number: That value will be used for all images.

	If tuple (a, b) of number: A random value will be uniformly
sampled per image from the interval [a, b).

	If list: A random value will be picked per image from the
list.

	If StochasticParameter: The parameter will be queried once
per batch for (N,) values, where N is the number of
images.

	segmentation_size (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Mean-Shift segmentation size multiplier.
See stylize_cartoon() for details.

	If number: That value will be used for all images.

	If tuple (a, b) of number: A random value will be uniformly
sampled per image from the interval [a, b).

	If list: A random value will be picked per image from the
list.

	If StochasticParameter: The parameter will be queried once
per batch for (N,) values, where N is the number of
images.

	saturation (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Saturation multiplier.
See stylize_cartoon() for details.

	If number: That value will be used for all images.

	If tuple (a, b) of number: A random value will be uniformly
sampled per image from the interval [a, b).

	If list: A random value will be picked per image from the
list.

	If StochasticParameter: The parameter will be queried once
per batch for (N,) values, where N is the number of
images.

	edge_prevalence (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier for the prevalence of edges.
See stylize_cartoon() for details.

	If number: That value will be used for all images.

	If tuple (a, b) of number: A random value will be uniformly
sampled per image from the interval [a, b).

	If list: A random value will be picked per image from the
list.

	If StochasticParameter: The parameter will be queried once
per batch for (N,) values, where N is the number of
images.

	from_colorspace (str, optional) – The source colorspace. Use one of imgaug.augmenters.color.CSPACE_*.
Defaults to RGB.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Cartoon()

Create an example image, then apply a cartoon filter to it.

>>> aug = iaa.Cartoon(blur_ksize=3, segmentation_size=1.0,
>>> saturation=2.0, edge_prevalence=1.0)

Create a non-stochastic cartoon augmenter that produces decent-looking
images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
imgaug.augmenters.artistic.stylize_cartoon(image, blur_ksize=3, segmentation_size=1.0, saturation=2.0, edge_prevalence=1.0, suppress_edges=True, from_colorspace='RGB')

	Convert the style of an image to a more cartoonish one.

This function was primarily designed for images with a size of 200
to 800 pixels. Smaller or larger images may cause issues.

Note that the quality of the results can currently not compete with
learned style transfer, let alone human-made images. A lack of detected
edges or also too many detected edges are probably the most significant
drawbacks.

This method is loosely based on the one proposed in
https://stackoverflow.com/a/11614479/3760780

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – A (H,W,3) uint8 image array.

	blur_ksize (int, optional) – Kernel size of the median blur filter applied initially to the input
image. Expected to be an odd value and >=0. If an even value,
thn automatically increased to an odd one. If <=1, no blur will
be applied.

	segmentation_size (float, optional) – Size multiplier to decrease/increase the base size of the initial
mean-shift segmentation of the image. Expected to be >=0.
Note that the base size is increased by roughly a factor of two for
images with height and/or width >=400.

	edge_prevalence (float, optional) – Multiplier for the prevalance of edges. Higher values lead to more
edges. Note that the default value of 1.0 is already fairly
conservative, so there is limit effect from lowerin it further.

	saturation (float, optional) – Multiplier for the saturation. Set to 1.0 to not change the
image’s saturation.

	suppress_edges (bool, optional) – Whether to run edge suppression to remove blobs containing too many
or too few edge pixels.

	from_colorspace (str, optional) – The source colorspace. Use one of imgaug.augmenters.color.CSPACE_*.
Defaults to RGB.

	Returns

	Image in cartoonish style.

	Return type

	ndarray

imgaug.augmenters.base

Base classes and functions used by all/most augmenters.

This module is planned to contain imgaug.augmenters.meta.Augmenter
in the future.

Added in 0.4.0.

	
exception imgaug.augmenters.base.SuspiciousMultiImageShapeWarning

	Bases: UserWarning

Warning multi-image inputs that look like a single image.

	
exception imgaug.augmenters.base.SuspiciousSingleImageShapeWarning

	Bases: UserWarning

Warning for single-image inputs that look like multiple images.

imgaug.augmenters.blend

Augmenters that blend two images with each other.

List of augmenters:

	BlendAlpha

	BlendAlphaMask

	BlendAlphaElementwise

	BlendAlphaSimplexNoise

	BlendAlphaFrequencyNoise

	BlendAlphaSomeColors

	BlendAlphaHorizontalLinearGradient

	BlendAlphaVerticalLinearGradient

	BlendAlphaSegMapClassIds

	BlendAlphaBoundingBoxes

	BlendAlphaRegularGrid

	BlendAlphaCheckerboard

	
imgaug.augmenters.blend.Alpha(factor=0, first=None, second=None, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Deprecated. Use Alpha instead. Alpha is deprecated. Use BlendAlpha instead. The order of parameters is the same. Parameter ‘first’ was renamed to ‘foreground’. Parameter ‘second’ was renamed to ‘background’.

See BlendAlpha.

Deprecated since 0.4.0.

	
imgaug.augmenters.blend.AlphaElementwise(factor=0, first=None, second=None, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Deprecated. Use AlphaElementwise instead. AlphaElementwise is deprecated. Use BlendAlphaElementwise instead. The order of parameters is the same. Parameter ‘first’ was renamed to ‘foreground’. Parameter ‘second’ was renamed to ‘background’.

See BlendAlphaElementwise.

Deprecated since 0.4.0.

	
class imgaug.augmenters.blend.BlendAlpha(factor=(0.0, 1.0), foreground=None, background=None, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Alpha-blend two image sources using an alpha/opacity value.

The two image sources can be imagined as branches.
If a source is not given, it is automatically the same as the input.
Let FG be the foreground branch and BG be the background branch.
Then the result images are defined as factor * FG + (1-factor) * BG,
where factor is an overlay factor.

Note

It is not recommended to use BlendAlpha with augmenters
that change the geometry of images (e.g. horizontal flips, affine
transformations) if you also want to augment coordinates (e.g.
keypoints, polygons, …), as it is unclear which of the two
coordinate results (foreground or background branch) should be used
as the coordinates after augmentation.

Currently, if factor >= 0.5 (per image), the results of the
foreground branch are used as the new coordinates, otherwise the
results of the background branch.

Added in 0.4.0. (Before that named Alpha.)

Supported dtypes:

See blend_alpha().

	Parameters

	
	factor (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Opacity of the results of the foreground branch. Values close to
0.0 mean that the results from the background branch (see
parameter background) make up most of the final image.

	If float, then that value will be used for all images.

	If tuple (a, b), then a random value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be picked from that list per
image.

	If StochasticParameter, then that parameter will be used to
sample a value per image.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use the same factor for all channels (False)
or to sample a new value for each channel (True).
If this value is a float p, then for p percent of all images
per_channel will be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlpha(0.5, iaa.Grayscale(1.0))

Convert each image to pure grayscale and alpha-blend the result with the
original image using an alpha of 50%, thereby removing about 50% of
all color. This is equivalent to iaa.Grayscale(0.5).

>>> aug = iaa.BlendAlpha((0.0, 1.0), iaa.Grayscale(1.0))

Same as in the previous example, but the alpha factor is sampled uniformly
from the interval [0.0, 1.0] once per image, thereby removing a random
fraction of all colors. This is equivalent to
iaa.Grayscale((0.0, 1.0)).

>>> aug = iaa.BlendAlpha(
>>> (0.0, 1.0),
>>> iaa.Affine(rotate=(-20, 20)),
>>> per_channel=0.5)

First, rotate each image by a random degree sampled uniformly from the
interval [-20, 20]. Then, alpha-blend that new image with the original
one using a random factor sampled uniformly from the interval
[0.0, 1.0]. For 50% of all images, the blending happens
channel-wise and the factor is sampled independently per channel
(per_channel=0.5). As a result, e.g. the red channel may look visibly
rotated (factor near 1.0), while the green and blue channels may not
look rotated (factors near 0.0).

>>> aug = iaa.BlendAlpha(
>>> (0.0, 1.0),
>>> foreground=iaa.Add(100),
>>> background=iaa.Multiply(0.2))

Apply two branches of augmenters – A and B – independently
to input images and alpha-blend the results of these branches using a
factor f. Branch A increases image pixel intensities by 100
and B multiplies the pixel intensities by 0.2. f is sampled
uniformly from the interval [0.0, 1.0] per image. The resulting images
contain a bit of A and a bit of B.

>>> aug = iaa.BlendAlpha([0.25, 0.75], iaa.MedianBlur(13))

Apply median blur to each image and alpha-blend the result with the
original image using an alpha factor of either exactly 0.25 or
exactly 0.75 (sampled once per image).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.blend.BlendAlphaBoundingBoxes(labels, foreground=None, background=None, nb_sample_labels=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches based on areas enclosed in bounding boxes.

This class generates masks that are 1.0 within bounding boxes of given
labels. A mask pixel will be set to 1.0 if at least one bounding box
covers the area and has one of the requested labels.

This class is a thin wrapper around
BlendAlphaMask together with
BoundingBoxesMaskGen.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Note

This class will produce an AssertionError if there are no
bounding boxes in a batch.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

	Parameters

	
	labels (None or str or list of str or imgaug.parameters.StochasticParameter) – See BoundingBoxesMaskGen.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	nb_sample_labels (None or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – See BoundingBoxesMaskGen.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaBoundingBoxes("person",
>>> foreground=iaa.Grayscale(1.0))

Create an augmenter that removes color within bounding boxes having the
label person.

>>> aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
>>> foreground=iaa.AddToHue((-255, 255)))

Create an augmenter that randomizes the hue within bounding boxes that
have the label person or car.

>>> aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
>>> foreground=iaa.AddToHue((-255, 255)),
>>> nb_sample_labels=1)

Create an augmenter that randomizes the hue within bounding boxes that
have either the label person or car. Only one label is picked per
image. Note that the sampling happens with replacement, so if
nb_sample_classes would be >1, it could still lead to only one
unique label being sampled.

>>> aug = iaa.BlendAlphaBoundingBoxes(None,
>>> background=iaa.Multiply(0.0))

Create an augmenter that zeros all pixels (Multiply(0.0))
that are not (background branch) within bounding boxes of
any (None) label. In other words, all pixels outside of bounding
boxes become black.
Note that we don’t use TotalDropout here, because by default it will
also remove all coordinate-based augmentables, which will break the
blending of such inputs.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaCheckerboard(nb_rows, nb_cols, foreground=None, background=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches according to a checkerboard pattern.

This class generates for each image a mask following a checkboard layout of
H rows and W columns. Each cell is then filled with either
1.0 or 0.0. The cell at the top-left is always 1.0. Its right
and bottom neighbour cells are 0.0. The 4-neighbours of any cell always
have a value opposite to the cell’s value (0.0 vs. 1.0).

This class is a thin wrapper around
BlendAlphaMask together with
CheckerboardMaskGen.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

	Parameters

	
	nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Number of rows of the checkerboard.
See CheckerboardMaskGen for details.

	nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Number of columns of the checkerboard. Analogous to nb_rows.
See CheckerboardMaskGen for details.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaCheckerboard(nb_rows=2, nb_cols=(1, 4),
>>> foreground=iaa.AddToHue((-100, 100)))

Create an augmenter that places a HxW grid on each image, where
H (rows) is always 2 and W is randomly and uniformly sampled
from the interval [1, 4]. For half of the cells in the grid the hue
is randomly modified, the other half of the cells is unaltered.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaElementwise(factor=(0.0, 1.0), foreground=None, background=None, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Alpha-blend two image sources using alpha/opacity values sampled per pixel.

This is the same as BlendAlpha, except that the opacity factor is
sampled once per pixel instead of once per image (or a few times per
image, if BlendAlpha.per_channel is set to True).

See BlendAlpha for more details.

This class is a wrapper around
BlendAlphaMask.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0. (Before that named AlphaElementwise.)

Supported dtypes:

See BlendAlphaMask.

	Parameters

	
	factor (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Opacity of the results of the foreground branch. Values close to
0.0 mean that the results from the background branch (see
parameter background) make up most of the final image.

	If float, then that value will be used for all images.

	If tuple (a, b), then a random value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be picked from that list per
image.

	If StochasticParameter, then that parameter will be used to
sample a value per image.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	per_channel (bool or float, optional) – Whether to use the same factor for all channels (False)
or to sample a new value for each channel (True).
If this value is a float p, then for p percent of all images
per_channel will be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaElementwise(0.5, iaa.Grayscale(1.0))

Convert each image to pure grayscale and alpha-blend the result with the
original image using an alpha of 50% for all pixels, thereby removing
about 50% of all color. This is equivalent to iaa.Grayscale(0.5).
This is also equivalent to iaa.BlendAlpha(0.5, iaa.Grayscale(1.0)), as
the opacity has a fixed value of 0.5 and is hence identical for all
pixels.

>>> aug = iaa.BlendAlphaElementwise((0, 1.0), iaa.AddToHue(100))

Same as in the previous example, but here with hue-shift instead
of grayscaling and additionally the alpha factor is sampled uniformly
from the interval [0.0, 1.0] once per pixel, thereby shifting the
hue by a random fraction for each pixel.

>>> aug = iaa.BlendAlphaElementwise(
>>> (0.0, 1.0),
>>> iaa.Affine(rotate=(-20, 20)),
>>> per_channel=0.5)

First, rotate each image by a random degree sampled uniformly from the
interval [-20, 20]. Then, alpha-blend that new image with the original
one using a random factor sampled uniformly from the interval
[0.0, 1.0] per pixel. For 50% of all images, the blending happens
channel-wise and the factor is sampled independently per pixel and
channel (per_channel=0.5). As a result, e.g. the red channel may look
visibly rotated (factor near 1.0), while the green and blue channels
may not look rotated (factors near 0.0).

>>> aug = iaa.BlendAlphaElementwise(
>>> (0.0, 1.0),
>>> foreground=iaa.Add(100),
>>> background=iaa.Multiply(0.2))

Apply two branches of augmenters – A and B – independently
to input images and alpha-blend the results of these branches using a
factor f. Branch A increases image pixel intensities by 100
and B multiplies the pixel intensities by 0.2. f is sampled
uniformly from the interval [0.0, 1.0] per pixel. The resulting images
contain a bit of A and a bit of B.

>>> aug = iaa.BlendAlphaElementwise([0.25, 0.75], iaa.MedianBlur(13))

Apply median blur to each image and alpha-blend the result with the
original image using an alpha factor of either exactly 0.25 or
exactly 0.75 (sampled once per pixel).

	Attributes

	
	factor

	

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
factor

	

	
class imgaug.augmenters.blend.BlendAlphaFrequencyNoise(exponent=(-4, 4), foreground=None, background=None, per_channel=False, size_px_max=(4, 16), upscale_method=None, iterations=(1, 3), aggregation_method=['avg', 'max'], sigmoid=0.5, sigmoid_thresh=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaElementwise

Alpha-blend two image sources using frequency noise masks.

The alpha masks are sampled using frequency noise of varying scales,
which can sometimes create large connected blobs of 1 s surrounded
by 0 s and other times results in smaller patterns. If nearest
neighbour upsampling is used, these blobs can be rectangular with sharp
edges.

Added in 0.4.0. (Before that named FrequencyNoiseAlpha.)

Supported dtypes:

See BlendAlphaElementwise.

	Parameters

	
	exponent (number or tuple of number of list of number or imgaug.parameters.StochasticParameter, optional) – Exponent to use when scaling in the frequency domain.
Sane values are in the range -4 (large blobs) to 4 (small
patterns). To generate cloud-like structures, use roughly -2.

	If number, then that number will be used as the exponent for all
iterations.

	If tuple of two numbers (a, b), then a value will be sampled
per iteration from the interval [a, b].

	If a list of numbers, then a value will be picked per iteration
at random from that list.

	If a StochasticParameter, then a value will be sampled from
that parameter per iteration.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	per_channel (bool or float, optional) – Whether to use the same factor for all channels (False)
or to sample a new value for each channel (True).
If this value is a float p, then for p percent of all images
per_channel will be treated as True, otherwise as False.

	size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – The noise is generated in a low resolution environment.
This parameter defines the maximum size of that environment (in
pixels). The environment is initialized at the same size as the input
image and then downscaled, so that no side exceeds size_px_max
(aspect ratio is kept).

	If int, then that number will be used as the size for all
iterations.

	If tuple of two int s (a, b), then a value will be
sampled per iteration from the discrete interval [a..b].

	If a list of int s, then a value will be picked per
iteration at random from that list.

	If a StochasticParameter, then a value will be sampled from
that parameter per iteration.

	upscale_method (None or imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – After generating the noise maps in low resolution environments, they
have to be upscaled to the input image size. This parameter controls
the upscaling method.

	If None, then either nearest or linear or cubic
is picked. Most weight is put on linear, followed by
cubic.

	If imgaug.ALL, then either nearest or linear or
area or cubic is picked per iteration (all same
probability).

	If string, then that value will be used as the method (must be
nearest or linear or area or cubic).

	If list of string, then a random value will be picked from that
list per iteration.

	If StochasticParameter, then a random value will be sampled
from that parameter per iteration.

	iterations (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – How often to repeat the simplex noise generation process per
image.

	If int, then that number will be used as the iterations for
all images.

	If tuple of two int s (a, b), then a value will be
sampled per image from the discrete interval [a..b].

	If a list of int s, then a value will be picked per image at
random from that list.

	If a StochasticParameter, then a value will be sampled from
that parameter per image.

	aggregation_method (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – The noise maps (from each iteration) are combined to one noise map
using an aggregation process. This parameter defines the method used
for that process. Valid methods are min, max or avg,
where ‘min’ combines the noise maps by taking the (elementwise) minimum
over all iteration’s results, max the (elementwise) maximum and
avg the (elementwise) average.

	If imgaug.ALL, then a random value will be picked per image
from the valid ones.

	If a string, then that value will always be used as the method.

	If a list of string, then a random value will be picked from
that list per image.

	If a StochasticParameter, then a random value will be sampled
from that parameter per image.

	sigmoid (bool or number, optional) – Whether to apply a sigmoid function to the final noise maps, resulting
in maps that have more extreme values (close to 0.0 or 1.0).

	If bool, then a sigmoid will always (True) or never
(False) be applied.

	If a number p with 0<=p<=1, then a sigmoid will be applied to
p percent of all final noise maps.

	sigmoid_thresh (None or number or tuple of number or imgaug.parameters.StochasticParameter, optional) – Threshold of the sigmoid, when applied. Thresholds above zero
(e.g. 5.0) will move the saddle point towards the right, leading to
more values close to 0.0.

	If None, then Normal(0, 5.0) will be used.

	If number, then that threshold will be used for all images.

	If tuple of two numbers (a, b), then a random value will
be sampled per image from the range [a, b].

	If StochasticParameter, then a random value will be sampled
from that parameter per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaFrequencyNoise(foreground=iaa.EdgeDetect(1.0))

Detect per image all edges, mark them in a black and white image and
then alpha-blend the result with the original image using frequency noise
masks.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> upscale_method="nearest")

Same as the first example, but using only linear upscaling to
scale the frequency noise masks to the final image sizes, i.e. no nearest
neighbour upsampling is used. This results in smooth edges.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> upscale_method="linear")

Same as the first example, but using only linear upscaling to
scale the frequency noise masks to the final image sizes, i.e. no nearest
neighbour upsampling is used. This results in smooth edges.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> upscale_method="linear",
>>> exponent=-2,
>>> sigmoid=False)

Same as in the previous example, but with the exponent set to a constant
-2 and the sigmoid deactivated, resulting in cloud-like patterns
without sharp edges.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> sigmoid_thresh=iap.Normal(10.0, 5.0))

Same as the first example, but using a threshold for the sigmoid function
that is further to the right. This is more conservative, i.e. the generated
noise masks will be mostly black (values around 0.0), which means that
most of the original images (parameter/branch background) will be kept,
rather than using the results of the augmentation (parameter/branch
foreground).

	Attributes

	
	factor

	

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaHorizontalLinearGradient(foreground=None, background=None, min_value=(0.0, 0.2), max_value=(0.8, 1.0), start_at=(0.0, 0.2), end_at=(0.8, 1.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches along a horizontal linear gradient.

This class generates a horizontal linear gradient mask (i.e. usually a
mask with low values on the left and high values on the right) and
alphas-blends between foreground and background branch using that
mask.

This class is a thin wrapper around
BlendAlphaMask together with
HorizontalLinearGradientMaskGen.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

	Parameters

	
	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	min_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See HorizontalLinearGradientMaskGen.

	max_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See HorizontalLinearGradientMaskGen.

	start_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See HorizontalLinearGradientMaskGen.

	end_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See HorizontalLinearGradientMaskGen.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaHorizontalLinearGradient(iaa.AddToHue((-100, 100)))

Create an augmenter that randomizes the hue towards the right of the
image.

>>> aug = iaa.BlendAlphaHorizontalLinearGradient(
>>> iaa.TotalDropout(1.0),
>>> min_value=0.2, max_value=0.8)

Create an augmenter that replaces pixels towards the right with darker
and darker values. However it always keeps at least
20% (1.0 - max_value) of the original pixel value on the far right
and always replaces at least 20% on the far left (min_value=0.2).

>>> aug = iaa.BlendAlphaHorizontalLinearGradient(
>>> iaa.AveragePooling(11),
>>> start_at=(0.0, 1.0), end_at=(0.0, 1.0))

Create an augmenter that blends with an average-pooled image according
to a horizontal gradient that starts at a random x-coordinate and reaches
its maximum at another random x-coordinate. Due to that randomness,
the gradient may increase towards the left or right.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaMask(mask_generator, foreground=None, background=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Alpha-blend two image sources using non-binary masks generated per image.

This augmenter queries for each image a mask generator to generate
a (H,W) or (H,W,C) channelwise mask [0.0, 1.0], where
H is the image height and W the width.
The mask will then be used to alpha-blend pixel- and possibly channel-wise
between a foreground branch of augmenters and a background branch.
(Both branches default to the identity operation if not provided.)

See also BlendAlpha.

Note

It is not recommended to use BlendAlphaMask with augmenters
that change the geometry of images (e.g. horizontal flips, affine
transformations) if you also want to augment coordinates (e.g.
keypoints, polygons, …), as it is unclear which of the two
coordinate results (foreground or background branch) should be used
as the final output coordinates after augmentation.

Currently, for keypoints the results of the
foreground and background branch will be mixed. That means that for
each coordinate the augmented result will be picked from the
foreground or background branch based on the average alpha mask value
at the corresponding spatial location.

For bounding boxes, line strings and polygons, either all objects
(on an image) of the foreground or all of the background branch will
be used, based on the average over the whole alpha mask.

Added in 0.4.0.

Supported dtypes:

See blend_alpha().

	Parameters

	
	mask_generator (IBatchwiseMaskGenerator) – A generator that will be queried per image to generate a mask.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch (i.e. identity function).

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch (i.e. identity function).

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaMask(
>>> iaa.InvertMaskGen(0.5, iaa.VerticalLinearGradientMaskGen()),
>>> iaa.Sequential([
>>> iaa.Clouds(),
>>> iaa.WithChannels([1, 2], iaa.Multiply(0.5))
>>>])
>>>)

Create an augmenter that sometimes adds clouds at the bottom and sometimes
at the top of the image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.blend.BlendAlphaRegularGrid(nb_rows, nb_cols, foreground=None, background=None, alpha=[0.0, 1.0], seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches according to a regular grid.

This class generates for each image a mask that splits the image into a
grid-like pattern of H rows and W columns. Each cell is then
filled with an alpha value, sampled randomly per cell.

The difference to AlphaBlendCheckerboard is that this class
samples random alpha values per grid cell, while in the checkerboard the
alpha values follow a fixed pattern.

This class is a thin wrapper around
BlendAlphaMask together with
RegularGridMaskGen.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

	Parameters

	
	nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Number of rows of the checkerboard.
See CheckerboardMaskGen for details.

	nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Number of columns of the checkerboard. Analogous to nb_rows.
See CheckerboardMaskGen for details.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Alpha value of each cell.

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the interval [a, b].

	If list: A random value will be picked per image from that list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaRegularGrid(nb_rows=(4, 6), nb_cols=(1, 4),
>>> foreground=iaa.Multiply(0.0))

Create an augmenter that places a HxW grid on each image, where
H (rows) is randomly and uniformly sampled from the interval [4, 6]
and W is analogously sampled from the interval [1, 4]. Roughly
half of the cells in the grid are filled with 0.0, the remaining ones
are unaltered. Which cells exactly are “dropped” is randomly decided
per image. The resulting effect is similar to
CoarseDropout.

>>> aug = iaa.BlendAlphaRegularGrid(nb_rows=2, nb_cols=2,
>>> foreground=iaa.Multiply(0.0),
>>> background=iaa.AveragePooling(8),
>>> alpha=[0.0, 0.0, 1.0])

Create an augmenter that always placed 2x2 cells on each image
and sets about 1/3 of them to zero (foreground branch) and
the remaining 2/3 to a pixelated version (background branch).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaSegMapClassIds(class_ids, foreground=None, background=None, nb_sample_classes=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches based on segmentation map ids.

This class generates masks that are 1.0 at pixel locations covered
by specific classes in segmentation maps.

This class is a thin wrapper around
BlendAlphaMask together with
SegMapClassIdsMaskGen.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Note

Segmentation maps can have multiple channels. If that is the case
then for each position (x, y) it is sufficient that any class id
in any channel matches one of the desired class ids.

Note

This class will produce an AssertionError if there are no
segmentation maps in a batch.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

	Parameters

	
	class_ids (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – See SegMapClassIdsMaskGen.

	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	nb_sample_classes (None or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – See SegMapClassIdsMaskGen.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaSegMapClassIds(
>>> [1, 3],
>>> foreground=iaa.AddToHue((-100, 100)))

Create an augmenter that randomizes the hue wherever the segmentation maps
contain the classes 1 or 3.

>>> aug = iaa.BlendAlphaSegMapClassIds(
>>> [1, 2, 3, 4],
>>> nb_sample_classes=2,
>>> foreground=iaa.GaussianBlur(3.0))

Create an augmenter that randomly picks 2 classes from the
list [1, 2, 3, 4] and blurs the image content wherever these classes
appear in the segmentation map. Note that as the sampling of class ids
happens with replacement, it is not guaranteed to sample two unique
class ids.

>>> aug = iaa.Sometimes(0.2,
>>> iaa.BlendAlphaSegMapClassIds(
>>> 2,
>>> background=iaa.TotalDropout(1.0)))

Create an augmenter that zeros for roughly every fifth image all
image pixels that do not belong to class id 2 (note that the
background branch was used, not the foreground branch).
Example use case: Human body landmark detection where both the
landmarks/keypoints and the body segmentation map are known. Train the
model to detect landmarks and sometimes remove all non-body information
to force the model to become more independent of the background.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaSimplexNoise(foreground=None, background=None, per_channel=False, size_px_max=(2, 16), upscale_method=None, iterations=(1, 3), aggregation_method='max', sigmoid=True, sigmoid_thresh=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaElementwise

Alpha-blend two image sources using simplex noise alpha masks.

The alpha masks are sampled using a simplex noise method, roughly creating
connected blobs of 1s surrounded by 0s. If nearest neighbour
upsampling is used, these blobs can be rectangular with sharp edges.

Added in 0.4.0. (Before that named SimplexNoiseAlpha.)

Supported dtypes:

See BlendAlphaElementwise.

	Parameters

	
	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	per_channel (bool or float, optional) – Whether to use the same factor for all channels (False)
or to sample a new value for each channel (True).
If this value is a float p, then for p percent of all images
per_channel will be treated as True, otherwise as False.

	size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – The simplex noise is always generated in a low resolution environment.
This parameter defines the maximum size of that environment (in
pixels). The environment is initialized at the same size as the input
image and then downscaled, so that no side exceeds size_px_max
(aspect ratio is kept).

	If int, then that number will be used as the size for all
iterations.

	If tuple of two int s (a, b), then a value will be
sampled per iteration from the discrete interval [a..b].

	If a list of int s, then a value will be picked per iteration
at random from that list.

	If a StochasticParameter, then a value will be sampled from
that parameter per iteration.

	upscale_method (None or imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – After generating the noise maps in low resolution environments, they
have to be upscaled to the input image size. This parameter controls
the upscaling method.

	If None, then either nearest or linear or cubic
is picked. Most weight is put on linear, followed by
cubic.

	If imgaug.ALL, then either nearest or linear or
area or cubic is picked per iteration (all same
probability).

	If a string, then that value will be used as the method (must be
nearest or linear or area or cubic).

	If list of string, then a random value will be picked from that
list per iteration.

	If StochasticParameter, then a random value will be sampled
from that parameter per iteration.

	iterations (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

How often to repeat the simplex noise generation process per image.

	If int, then that number will be used as the iterations for
all images.

	If tuple of two int s (a, b), then a value will be
sampled per image from the discrete interval [a..b].

	If a list of int s, then a value will be picked per image at
random from that list.

	If a StochasticParameter, then a value will be sampled from
that parameter per image.

	aggregation_method (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – The noise maps (from each iteration) are combined to one noise map
using an aggregation process. This parameter defines the method used
for that process. Valid methods are min, max or avg,
where min combines the noise maps by taking the (elementwise)
minimum over all iteration’s results, max the (elementwise)
maximum and avg the (elementwise) average.

	If imgaug.ALL, then a random value will be picked per image
from the valid ones.

	If a string, then that value will always be used as the method.

	If a list of string, then a random value will be picked from
that list per image.

	If a StochasticParameter, then a random value will be
sampled from that paramter per image.

	sigmoid (bool or number, optional) – Whether to apply a sigmoid function to the final noise maps, resulting
in maps that have more extreme values (close to 0.0 or 1.0).

	If bool, then a sigmoid will always (True) or never
(False) be applied.

	If a number p with 0<=p<=1, then a sigmoid will be
applied to p percent of all final noise maps.

	sigmoid_thresh (None or number or tuple of number or imgaug.parameters.StochasticParameter, optional) – Threshold of the sigmoid, when applied. Thresholds above zero
(e.g. 5.0) will move the saddle point towards the right, leading
to more values close to 0.0.

	If None, then Normal(0, 5.0) will be used.

	If number, then that threshold will be used for all images.

	If tuple of two numbers (a, b), then a random value will
be sampled per image from the interval [a, b].

	If StochasticParameter, then a random value will be sampled
from that parameter per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaSimplexNoise(iaa.EdgeDetect(1.0))

Detect per image all edges, mark them in a black and white image and
then alpha-blend the result with the original image using simplex noise
masks.

>>> aug = iaa.BlendAlphaSimplexNoise(
>>> iaa.EdgeDetect(1.0),
>>> upscale_method="nearest")

Same as in the previous example, but using only nearest neighbour
upscaling to scale the simplex noise masks to the final image sizes, i.e.
no nearest linear upsampling is used. This leads to rectangles with sharp
edges.

>>> aug = iaa.BlendAlphaSimplexNoise(
>>> iaa.EdgeDetect(1.0),
>>> upscale_method="linear")

Same as in the previous example, but using only linear upscaling to
scale the simplex noise masks to the final image sizes, i.e. no nearest
neighbour upsampling is used. This leads to rectangles with smooth edges.

>>> aug = iaa.BlendAlphaSimplexNoise(
>>> iaa.EdgeDetect(1.0),
>>> sigmoid_thresh=iap.Normal(10.0, 5.0))

Same as in the first example, but using a threshold for the sigmoid
function that is further to the right. This is more conservative, i.e.
the generated noise masks will be mostly black (values around 0.0),
which means that most of the original images (parameter/branch
background) will be kept, rather than using the results of the
augmentation (parameter/branch foreground).

	Attributes

	
	factor

	

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaSomeColors(foreground=None, background=None, nb_bins=(5, 15), smoothness=(0.1, 0.3), alpha=[0.0, 1.0], rotation_deg=(0, 360), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches using colorwise masks.

This class generates masks that “mark” a few colors and replace the
pixels within these colors with the results of the foreground branch.
The remaining pixels are replaced with the results of the background
branch (usually the identity function). That allows to e.g. selectively
grayscale a few colors, while keeping other colors unchanged.

This class is a thin wrapper around
BlendAlphaMask together with
SomeColorsMaskGen.

Note

The underlying mask generator will produce an AssertionError for
batches that contain no images.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See change_colorspaces_().

	Parameters

	
	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	nb_bins (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – See SomeColorsMaskGen.

	smoothness (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See SomeColorsMaskGen.

	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See SomeColorsMaskGen.

	rotation_deg (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See SomeColorsMaskGen.

	from_colorspace (str, optional) – See SomeColorsMaskGen.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaSomeColors(iaa.Grayscale(1.0))

Create an augmenter that turns randomly removes some colors in images by
grayscaling them.

>>> aug = iaa.BlendAlphaSomeColors(iaa.TotalDropout(1.0))

Create an augmenter that removes some colors in images by replacing them
with black pixels.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.MultiplySaturation(0.5), iaa.MultiplySaturation(1.5))

Create an augmenter that desaturates some colors and increases the
saturation of the remaining ones.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.AveragePooling(7), alpha=[0.0, 1.0], smoothness=0.0)

Create an augmenter that applies average pooling to some colors.
Each color tune is either selected (alpha of 1.0) or not
selected (0.0). There is no gradual change between similar colors.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.AveragePooling(7), nb_bins=2, smoothness=0.0)

Create an augmenter that applies average pooling to some colors.
Choose on average half of all colors in images for the blending operation.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.AveragePooling(7), from_colorspace="BGR")

Create an augmenter that applies average pooling to some colors with
input images being in BGR colorspace.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BlendAlphaVerticalLinearGradient(foreground=None, background=None, min_value=(0.0, 0.2), max_value=(0.8, 1.0), start_at=(0.0, 0.2), end_at=(0.8, 1.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches along a vertical linear gradient.

This class generates a vertical linear gradient mask (i.e. usually a
mask with low values on the left and high values on the right) and
alphas-blends between foreground and background branch using that
mask.

This class is a thin wrapper around
BlendAlphaMask together with
VerticalLinearGradientMaskGen.

Note

Avoid using augmenters as children that affect pixel locations (e.g.
horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

	Parameters

	
	foreground (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground branch.
High alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the foreground branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	background (None or imgaug.augmenters.meta.Augmenter or iterable of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background branch.
Low alpha values will show this branch’s results.

	If None, then the input images will be reused as the output
of the background branch.

	If Augmenter, then that augmenter will be used as the branch.

	If iterable of Augmenter, then that iterable will be
converted into a Sequential and used as the augmenter.

	min_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See VerticalLinearGradientMaskGen.

	max_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See VerticalLinearGradientMaskGen.

	start_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See VerticalLinearGradientMaskGen.

	end_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See VerticalLinearGradientMaskGen.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaVerticalLinearGradient(iaa.AddToHue((-100, 100)))

Create an augmenter that randomizes the hue towards the bottom of the
image.

>>> aug = iaa.BlendAlphaVerticalLinearGradient(
>>> iaa.TotalDropout(1.0),
>>> min_value=0.2, max_value=0.8)

Create an augmenter that replaces pixels towards the bottom with darker
and darker values. However it always keeps at least
20% (1.0 - max_value) of the original pixel value on the far bottom
and always replaces at least 20% on the far top (min_value=0.2).

>>> aug = iaa.BlendAlphaVerticalLinearGradient(
>>> iaa.AveragePooling(11),
>>> start_at=(0.0, 1.0), end_at=(0.0, 1.0))

Create an augmenter that blends with an average-pooled image according
to a vertical gradient that starts at a random y-coordinate and reaches
its maximum at another random y-coordinate. Due to that randomness,
the gradient may increase towards the bottom or top.

>>> aug = iaa.BlendAlphaVerticalLinearGradient(
>>> iaa.Clouds(),
>>> start_at=(0.15, 0.35), end_at=0.0)

Create an augmenter that draws clouds in roughly the top quarter of the
image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.blend.BoundingBoxesMaskGen(labels=None, nb_sample_labels=None)

	Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that produces masks highlighting bounding boxes.

This class produces for each row (i.e. image + bounding boxes) in a batch
a mask in which the inner areas of bounding box rectangles with given
labels are marked (i.e. set to 1.0). The labels may be provided as a
fixed list of strings or a stochastic parameter from which labels will be
sampled. If no labels are provided, all bounding boxes will be marked.

A pixel will be set to 1.0 if at least one bounding box at that
location has one of the requested labels, even if there is also one
bounding box at that location with a not requested label.

Note

This class will produce an AssertionError if there are no
bounding boxes in a batch.

Added in 0.4.0.

	Parameters

	
	labels (None or str or list of str or imgaug.parameters.StochasticParameter) – Labels of bounding boxes to select for.

If nb_sample_labels is None then this is expected to be either
also None (select all BBs) or a single str (select BBs with
this one label) or a list of str s (always select BBs with
these labels).

If nb_sample_labels is set, then this parameter will be treated
as a stochastic parameter with the following valid types:

	If None: Ignore the sampling count and always use all
bounding boxes.

	If str: Exactly that label will be used for all
images.

	If list of str: N random values will be picked per
image from that list and used as the labels.

	If StochasticParameter: That parameter will be queried once
per batch for (sum(N),) values.

N denotes the number of labels to sample per segmentation
map (derived from nb_sample_labels) and sum(N) denotes the
sum of N s over all images.

	nb_sample_labels (None or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of labels to sample (with replacement) per image.
As sampling happens with replacement, fewer unique labels may be
sampled.

	If None: labels is expected to also be None or a fixed
value of labels to be used for all images.

	If int: Exactly that many labels will be sampled for all
images.

	If tuple (a, b): A random value will be uniformly
sampled per image from the discrete interval [a..b].

	If list: A random value will be picked per image from
that list.

	If StochasticParameter: That parameter will be queried once
per batch for (B,) values, where B is the number of
images.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	generate_mask(bbsoi, labels)

	Generate a mask of the areas of bounding boxes with given labels.

	
draw_masks(self, batch, random_state=None)

	See draw_masks().

Added in 0.4.0.

	
classmethod generate_mask(bbsoi, labels)

	Generate a mask of the areas of bounding boxes with given labels.

Added in 0.4.0.

	Parameters

	
	bbsoi (imgaug.augmentables.bbs.BoundingBoxesOnImage) – The bounding boxes for which to generate the mask.

	labels (None or iterable of str) – Labels of the bounding boxes to set to 1.0.
For an (x, y) position, it is enough that any bounding box
at the given location has one of the labels.
If this is None, all bounding boxes will be marked.

	Returns

	float32 mask array with same height and width as
segmap.shape. Values are in [0.0, 1.0].

	Return type

	ndarray

	
class imgaug.augmenters.blend.CheckerboardMaskGen(nb_rows, nb_cols)

	Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generate masks following a checkerboard-like pattern.

This mask generator splits each image into a regular grid of
H rows and W columns. Each cell is then filled with either
1.0 or 0.0. The cell at the top-left is always 1.0. Its right
and bottom neighbour cells are 0.0. The 4-neighbours of any cell always
have a value opposite to the cell’s value (0.0 vs. 1.0).

Added in 0.4.0.

	Parameters

	
	nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Number of rows of the checkerboard.

	If int: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the discrete interval [a..b].

	If list: A random value will be picked per image from that
list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of columns of the checkerboard. Analogous to nb_rows.

	Attributes

	
	nb_cols

	Get the number of columns of the checkerboard grid.

	nb_rows

	Get the number of rows of the checkerboard grid.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	generate_mask(shape, nb_rows, nb_cols)

	Generate a mask following a checkerboard pattern.

	
draw_masks(self, batch, random_state=None)

	See draw_masks().

Added in 0.4.0.

	
classmethod generate_mask(shape, nb_rows, nb_cols)

	Generate a mask following a checkerboard pattern.

Added in 0.4.0.

	Parameters

	
	shape (tuple of int) – Height and width of the output mask.

	nb_rows (int) – Number of rows of the checkerboard pattern.

	nb_cols (int) – Number of columns of the checkerboard pattern.

	Returns

	float32 mask array with same height and width as
segmap.shape. Values are in [0.0, 1.0].

	Return type

	ndarray

	
nb_cols

	Get the number of columns of the checkerboard grid.

Added in 0.4.0.

	Returns

	The number of columns.

	Return type

	int

	
nb_rows

	Get the number of rows of the checkerboard grid.

Added in 0.4.0.

	Returns

	The number of rows.

	Return type

	int

	
imgaug.augmenters.blend.FrequencyNoiseAlpha(exponent=(-4, 4), first=None, second=None, per_channel=False, size_px_max=(4, 16), upscale_method=None, iterations=(1, 3), aggregation_method=['avg', 'max'], sigmoid=0.5, sigmoid_thresh=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Deprecated. Use BlendAlphaFrequencyNoise instead. FrequencyNoiseAlpha is deprecated. Use BlendAlphaFrequencyNoise instead. The order of parameters is the same. Parameter ‘first’ was renamed to ‘foreground’. Parameter ‘second’ was renamed to ‘background’.

See BlendAlphaFrequencyNoise.

Deprecated since 0.4.0.

	
class imgaug.augmenters.blend.HorizontalLinearGradientMaskGen(min_value=(0.0, 0.2), max_value=(0.8, 1.0), start_at=(0.0, 0.2), end_at=(0.8, 1.0))

	Bases: imgaug.augmenters.blend._LinearGradientMaskGen

Generator that produces horizontal linear gradient masks.

This class receives batches and produces for each row (i.e. image)
a horizontal linear gradient that matches the row’s shape (i.e. image
shape). The gradient increases linearly from a minimum value to a
maximum value along the x-axis. The start and end points (i.e. where the
minimum value starts to increase and where it reaches the maximum)
may be defines as fractions of the width. E.g. for width 100 and
start=0.25, end=0.75, the gradient would have its minimum
in interval [0px, 25px] and its maximum in interval [75px, 100px].

Note that this has nothing to do with a derivative along the x-axis.

Added in 0.4.0.

	Parameters

	
	min_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Minimum value that the mask will have up to the start point of the
linear gradient.
Note that min_value is allowed to be larger than max_value,
in which case the gradient will start at the (higher) min_value
and decrease towards the (lower) max_value.

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the interval [a, b].

	If list: A random value will be picked per image from that list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	max_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Maximum value that the mask will have at the end of the
linear gradient.

Datatypes are analogous to min_value.

	start_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Position on the x-axis where the linear gradient starts, given as a
fraction of the axis size. Interval is [0.0, 1.0], where 0.0
is at the left of the image.
If end_at < start_at the gradient will be inverted.

Datatypes are analogous to min_value.

	end_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Position on the x-axis where the linear gradient ends, given as a
fraction of the axis size. Interval is [0.0, 1.0], where 0.0
is at the right of the image.

Datatypes are analogous to min_value.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	generate_mask(shape, min_value, max_value, …)

	Generate a linear horizontal gradient mask.

	
classmethod generate_mask(shape, min_value, max_value, start_at, end_at)

	Generate a linear horizontal gradient mask.

Added in 0.4.0.

	Parameters

	
	shape (tuple of int) – Shape of the image. The mask will have the same height and
width.

	min_value (number) – Minimum value of the gradient in interval [0.0, 1.0].

	max_value (number) – Maximum value of the gradient in interval [0.0, 1.0].

	start_at (number) – Position on the x-axis where the linear gradient starts, given as
a fraction of the axis size. Interval is [0.0, 1.0].

	end_at (number) – Position on the x-axis where the linear gradient ends, given as
a fraction of the axis size. Interval is [0.0, 1.0].

	Returns

	float32 mask array with same height and width as the image.
Values are in [0.0, 1.0].

	Return type

	ndarray

	
class imgaug.augmenters.blend.IBatchwiseMaskGenerator

	Bases: object

Interface for classes generating masks for batches.

Child classes are supposed to receive a batch and generate an iterable
of masks, one per row (i.e. image), matching the row shape (i.e. image
shape). This is used in BlendAlphaMask.

Added in 0.4.0.

Methods

	draw_masks(self, batch[, random_state])

	Generate a mask with given shape.

	
draw_masks(self, batch, random_state=None)

	Generate a mask with given shape.

	Parameters

	
	batch (imgaug.augmentables.batches._BatchInAugmentation) – Shape of the mask to sample.

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – A seed or random number generator to use during the sampling
process. If None, the global RNG will be used.
See also __init__()
for a similar parameter with more details.

	Returns

	Masks, one per row in the batch.
Each mask must be a float32 array in interval [0.0, 1.0].
It must either have the same shape as the row (i.e. the image)
or shape (H, W) if all channels are supposed to have the
same mask.

	Return type

	iterable of ndarray

	
class imgaug.augmenters.blend.InvertMaskGen(p, child)

	Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that inverts the outputs of other mask generators.

This class receives batches and calls for each row (i.e. image)
a child mask generator to produce a mask. That mask is then inverted
for p% of all rows, i.e. converted to 1.0 - mask.

Added in 0.4.0.

	Parameters

	
	p (bool or float or imgaug.parameters.StochasticParameter, optional) – Probability of inverting each mask produced by the other mask
generator.

	child (IBatchwiseMaskGenerator) – The other mask generator to invert.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	
draw_masks(self, batch, random_state=None)

	See draw_masks().

Added in 0.4.0.

	
class imgaug.augmenters.blend.RegularGridMaskGen(nb_rows, nb_cols, alpha=[0.0, 1.0])

	Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generate masks following a regular grid pattern.

This mask generator splits each image into a grid-like pattern of
H rows and W columns. Each cell is then filled with an alpha
value, sampled randomly per cell.

The difference to CheckerboardMaskGen is that this mask generator
samples random alpha values per cell, while in the checkerboard the
alpha values follow a fixed pattern.

Added in 0.4.0.

	Parameters

	
	nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) –

Number of rows of the regular grid.

	If int: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the discrete interval [a..b].

	If list: A random value will be picked per image from that
list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Number of columns of the checkerboard. Analogous to nb_rows.

	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Alpha value of each cell.

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the interval [a, b].

	If list: A random value will be picked per image from that list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	generate_mask(shape, nb_rows, nb_cols, alphas)

	Generate a mask following a checkerboard pattern.

	
draw_masks(self, batch, random_state=None)

	See draw_masks().

Added in 0.4.0.

	
classmethod generate_mask(shape, nb_rows, nb_cols, alphas)

	Generate a mask following a checkerboard pattern.

Added in 0.4.0.

	Parameters

	
	shape (tuple of int) – Height and width of the output mask.

	nb_rows (int) – Number of rows of the checkerboard pattern.

	nb_cols (int) – Number of columns of the checkerboard pattern.

	alphas (ndarray) – 1D or 2D array containing for each cell the alpha value, i.e.
nb_rows*nb_cols values.

	Returns

	float32 mask array with same height and width as
segmap.shape. Values are in [0.0, 1.0].

	Return type

	ndarray

	
class imgaug.augmenters.blend.SegMapClassIdsMaskGen(class_ids, nb_sample_classes=None)

	Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that produces masks highlighting segmentation map classes.

This class produces for each segmentation map in a batch a mask in which
the locations of a set of provided classes are highlighted (i.e. 1.0).
The classes may be provided as a fixed list of class ids or a stochastic
parameter from which class ids will be sampled.

The produced masks are initially of the same height and width as the
segmentation map arrays and later upscaled to the image height and width.

Note

Segmentation maps can have multiple channels. If that is the case
then for each position (x, y) it is sufficient that any class id
in any channel matches one of the desired class ids.

Note

This class will produce an AssertionError if there are no
segmentation maps in a batch.

Added in 0.4.0.

	Parameters

	
	class_ids (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Segmentation map classes to mark in the produced mask.

If nb_sample_classes is None then this is expected to be either
a single int (always mark this one class id) or a list of
int s (always mark these class ids).

If nb_sample_classes is set, then this parameter will be treated
as a stochastic parameter with the following valid types:

	If int: Exactly that class id will be used for all
segmentation maps.

	If tuple (a, b): N random values will be uniformly
sampled per segmentation map from the discrete interval
[a..b] and used as the class ids.

	If list: N random values will be picked per segmentation
map from that list and used as the class ids.

	If StochasticParameter: That parameter will be queried once
per batch for (sum(N),) values.

N denotes the number of classes to sample per segmentation
map (derived from nb_sample_classes) and sum(N) denotes the
sum of N s over all segmentation maps.

	nb_sample_classes (None or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of class ids to sample (with replacement) per segmentation map.
As sampling happens with replacement, fewer unique class ids may be
sampled.

	If None: class_ids is expected to be a fixed value of
class ids to be used for all segmentation maps.

	If int: Exactly that many class ids will be sampled for all
segmentation maps.

	If tuple (a, b): A random value will be uniformly
sampled per segmentation map from the discrete interval
[a..b].

	If list or int: A random value will be picked per
segmentation map from that list.

	If StochasticParameter: That parameter will be queried once
per batch for (B,) values, where B is the number of
segmentation maps.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	generate_mask(segmap, class_ids)

	Generate a mask of where the segmentation map has the given classes.

	
draw_masks(self, batch, random_state=None)

	See draw_masks().

Added in 0.4.0.

	
classmethod generate_mask(segmap, class_ids)

	Generate a mask of where the segmentation map has the given classes.

Added in 0.4.0.

	Parameters

	
	segmap (imgaug.augmentables.segmap.SegmentationMapsOnImage) – The segmentation map for which to generate the mask.

	class_ids (iterable of int) – IDs of the classes to set to 1.0.
For an (x, y) position, it is enough that any channel
at the given location to have one of these class ids to be marked
as 1.0.

	Returns

	float32 mask array with same height and width as
segmap.shape. Values are in [0.0, 1.0].

	Return type

	ndarray

	
imgaug.augmenters.blend.SimplexNoiseAlpha(first=None, second=None, per_channel=False, size_px_max=(2, 16), upscale_method=None, iterations=(1, 3), aggregation_method='max', sigmoid=True, sigmoid_thresh=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Deprecated. Use BlendAlphaSimplexNoise instead. SimplexNoiseAlpha is deprecated. Use BlendAlphaSimplexNoise instead. The order of parameters is the same. Parameter ‘first’ was renamed to ‘foreground’. Parameter ‘second’ was renamed to ‘background’.

See BlendAlphaSimplexNoise.

Deprecated since 0.4.0.

	
class imgaug.augmenters.blend.SomeColorsMaskGen(nb_bins=(5, 15), smoothness=(0.1, 0.3), alpha=[0.0, 1.0], rotation_deg=(0, 360), from_colorspace='RGB')

	Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that produces masks based on some similar colors in images.

This class receives batches for which to generate masks, iterates over
the batch rows (i.e. images) and generates one mask per row.
The mask contains high alpha values for some colors, while other colors
get low mask values. Which colors are chosen is random. How wide or
narrow the selection is (e.g. very specific blue tone or all blue-ish
colors) is determined by the hyperparameters.

The color selection method performs roughly the following steps:

	Split the full color range of the hue in HSV into nb_bins
bins (i.e. 256/nb_bins different possible hue tones).

	Shift the bins by rotation_deg degrees. (This way, the 0th
bin does not always start at exactly 0deg of hue.)

	Sample alpha values for each bin.

	Repeat the nb_bins bins until there are 256 bins.

	Smoothen the alpha values of neighbouring bins using a gaussian
kernel. The kernel’s sigma is derived from smoothness.

	Associate all hue values in the image with the corresponding bin’s
alpha value. This results in the alpha mask.

Note

This mask generator will produce an AssertionError for batches
that contain no images.

Added in 0.4.0.

Supported dtypes:

See change_colorspaces_().

	Parameters

	
	nb_bins (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of bins. For B bins, each bin denotes roughly 360/B
degrees of colors in the hue channel. Lower values lead to a coarser
selection of colors. Expected value range is [2, 256].

	If int: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the discrete interval [a..b].

	If list: A random value will be picked per image from that
list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	smoothness (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Strength of the 1D gaussian kernel applied to the sampled binwise
alpha values. Larger values will lead to more similar grayscaling of
neighbouring colors. Expected value range is [0.0, 1.0].

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the interval [a, b].

	If list: A random value will be picked per image from that
list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Parameter to sample binwise alpha blending factors from. Expected
value range is [0.0, 1.0]. Note that the alpha values will be
smoothed between neighbouring bins. Hence, it is usually a good idea
to set this so that the probability distribution peaks are around
0.0 and 1.0, e.g. via a list [0.0, 1.0] or a Beta
distribution.
It is not recommended to set this to a deterministic value, otherwise
all bins and hence all pixels in the generated mask will have the
same value.

	If number: Exactly that value will be used for all bins.

	If tuple (a, b): A random value will be uniformly sampled
per bin from the interval [a, b].

	If list: A random value will be picked per bin from that list.

	If StochasticParameter: That parameter will be queried once
per batch for (N*B,) values – one per image and bin.

	rotation_deg (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Rotiational shift of each bin as a fraction of 360 degrees.
E.g. 0.0 will not shift any bins, while a value of 0.5 will
shift by around 180 degrees. This shift is mainly used so that
the 0th bin does not always start at 0deg. Expected value
range is [-360, 360]. This parameter can usually be kept at the
default value.

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the interval [a, b].

	If list: A random value will be picked per image from that
list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	from_colorspace (str, optional) – The source colorspace (of the input images).
See change_colorspace_().

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	generate_mask(image, binwise_alphas, sigma, …)

	Generate a colorwise alpha mask for a single image.

	
draw_masks(self, batch, random_state=None)

	See draw_masks().

	
classmethod generate_mask(image, binwise_alphas, sigma, rotation_bins, from_colorspace)

	Generate a colorwise alpha mask for a single image.

Added in 0.4.0.

	Parameters

	
	image (ndarray) – Image for which to generate the mask. Must have shape (H,W,3)
in colorspace from_colorspace.

	binwise_alphas (ndarray) – Alpha values of shape (B,) with B in [1, 256]
and values in interval [0.0, 1.0]. Will be upscaled to
256 bins by simple repetition. Each bin represents 1/256 th
of the hue.

	sigma (float) – Sigma of the 1D gaussian kernel applied to the upscaled binwise
alpha value array.

	rotation_bins (int) – By how much to rotate the 256 bin alpha array. The rotation is
given in number of bins.

	from_colorspace (str) – Colorspace of the input image. One of
imgaug.augmenters.color.CSPACE_*.

	Returns

	float32 mask array of shape (H, W) with values in
[0.0, 1.0]

	Return type

	ndarray

	
class imgaug.augmenters.blend.StochasticParameterMaskGen(parameter, per_channel)

	Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Mask generator that queries stochastic parameters for mask values.

This class receives batches for which to generate masks, iterates over
the batch rows (i.e. images) and generates one mask per row.
For a row with shape (H, W, C) (= image shape), it generates
either a (H, W) mask (if per_channel is false-like) or a
(H, W, C) mask (if per_channel is true-like).
The per_channel is sampled per batch for each row/image.

Added in 0.4.0.

	Parameters

	
	parameter (imgaug.parameters.StochasticParameter) – Stochastic parameter to draw mask samples from.
Expected to return values in interval [0.0, 1.0] (not all
stochastic parameters do that) and must be able to handle sampling
shapes (H, W) and (H, W, C) (all stochastic parameters should
do that).

	per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to use the same mask for all channels (False)
or to sample a new mask for each channel (True).
If this value is a float p, then for p percent of all rows
(i.e. images) per_channel will be treated as True, otherwise
as False.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	
draw_masks(self, batch, random_state=None)

	See draw_masks().

	
class imgaug.augmenters.blend.VerticalLinearGradientMaskGen(min_value=(0.0, 0.2), max_value=(0.8, 1.0), start_at=(0.0, 0.2), end_at=(0.8, 1.0))

	Bases: imgaug.augmenters.blend._LinearGradientMaskGen

Generator that produces vertical linear gradient masks.

See HorizontalLinearGradientMaskGen
for details.

Added in 0.4.0.

	Parameters

	
	min_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Minimum value that the mask will have up to the start point of the
linear gradient.
Note that min_value is allowed to be larger than max_value,
in which case the gradient will start at the (higher) min_value
and decrease towards the (lower) max_value.

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly sampled
per image from the interval [a, b].

	If list: A random value will be picked per image from that list.

	If StochasticParameter: That parameter will be queried once
per batch for (N,) values – one per image.

	max_value (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Maximum value that the mask will have at the end of the
linear gradient.

Datatypes are analogous to min_value.

	start_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Position on the y-axis where the linear gradient starts, given as a
fraction of the axis size. Interval is [0.0, 1.0], where 0.0
is at the top of the image.
If end_at < start_at the gradient will be inverted.

Datatypes are analogous to min_value.

	end_at (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Position on the x-axis where the linear gradient ends, given as a
fraction of the axis size. Interval is [0.0, 1.0], where 1.0
is at the bottom of the image.

Datatypes are analogous to min_value.

Methods

	draw_masks(self, batch[, random_state])

	See draw_masks().

	generate_mask(shape, min_value, max_value, …)

	Generate a linear horizontal gradient mask.

	
classmethod generate_mask(shape, min_value, max_value, start_at, end_at)

	Generate a linear horizontal gradient mask.

Added in 0.4.0.

	Parameters

	
	shape (tuple of int) – Shape of the image. The mask will have the same height and
width.

	min_value (number) – Minimum value of the gradient in interval [0.0, 1.0].

	max_value (number) – Maximum value of the gradient in interval [0.0, 1.0].

	start_at (number) – Position on the x-axis where the linear gradient starts, given as
a fraction of the axis size. Interval is [0.0, 1.0].

	end_at (number) – Position on the x-axis where the linear gradient ends, given as
a fraction of the axis size. Interval is [0.0, 1.0].

	Returns

	float32 mask array with same height and width as the image.
Values are in [0.0, 1.0].

	Return type

	ndarray

	
imgaug.augmenters.blend.blend_alpha(image_fg, image_bg, alpha, eps=0.01)

	Blend two images using an alpha blending.

In alpha blending, the two images are naively mixed using a multiplier.
Let A be the foreground image and B the background image and
a is the alpha value. Each pixel intensity is then computed as
a * A_ij + (1-a) * B_ij.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; fully tested

	uint32: yes; fully tested

	uint64: yes; fully tested (1)

	int8: yes; fully tested

	int16: yes; fully tested

	int32: yes; fully tested

	int64: yes; fully tested (1)

	float16: yes; fully tested

	float32: yes; fully tested

	float64: yes; fully tested (1)

	float128: no (2)

	bool: yes; fully tested (2)

	
	Tests show that these dtypes work, but a conversion to
float128 happens, which only has 96 bits of size instead of
true 128 bits and hence not twice as much resolution. It is
possible that these dtypes result in inaccuracies, though the
tests did not indicate that.

	
	Not available due to the input dtype having to be increased to
an equivalent float dtype with two times the input resolution.

	
	Mapped internally to float16.

	Parameters

	
	image_fg ((H,W,[C]) ndarray) – Foreground image. Shape and dtype kind must match the one of the
background image.

	image_bg ((H,W,[C]) ndarray) – Background image. Shape and dtype kind must match the one of the
foreground image.

	alpha (number or iterable of number or ndarray) – The blending factor, between 0.0 and 1.0. Can be interpreted
as the opacity of the foreground image. Values around 1.0 result
in only the foreground image being visible. Values around 0.0
result in only the background image being visible. Multiple alphas
may be provided. In these cases, there must be exactly one alpha per
channel in the foreground/background image. Alternatively, for
(H,W,C) images, either one (H,W) array or an (H,W,C)
array of alphas may be provided, denoting the elementwise alpha value.

	eps (number, optional) – Controls when an alpha is to be interpreted as exactly 1.0 or
exactly 0.0, resulting in only the foreground/background being
visible and skipping the actual computation.

	Returns

	image_blend – Blend of foreground and background image.

	Return type

	(H,W,C) ndarray

imgaug.augmenters.blur

Augmenters that blur images.

List of augmenters:

	GaussianBlur

	AverageBlur

	MedianBlur

	BilateralBlur

	MotionBlur

	MeanShiftBlur

	
class imgaug.augmenters.blur.AverageBlur(k=(1, 7), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Blur an image by computing simple means over neighbourhoods.

The padding behaviour around the image borders is cv2’s
BORDER_REFLECT_101.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested (3)

	int16: yes; tested

	int32: no (4)

	int64: no (5)

	float16: yes; tested (6)

	float32: yes; tested

	float64: yes; tested

	float128: no

	bool: yes; tested (7)

	
	rejected by cv2.blur()

	
	loss of resolution in cv2.blur() (result is int32)

	
	int8 is mapped internally to int16, int8 itself
leads to cv2 error “Unsupported combination of source format
(=1), and buffer format (=4) in function ‘getRowSumFilter’” in
cv2

	
	results too inaccurate

	
	loss of resolution in cv2.blur() (result is int32)

	
	float16 is mapped internally to float32

	
	bool is mapped internally to float32

	Parameters

	
	k (int or tuple of int or tuple of tuple of int or imgaug.parameters.StochasticParameter or tuple of StochasticParameter, optional) –

Kernel size to use.

	If a single int, then that value will be used for the height
and width of the kernel.

	If a tuple of two int s (a, b), then the kernel size will
be sampled from the interval [a..b].

	If a tuple of two tuples of int s ((a, b), (c, d)),
then per image a random kernel height will be sampled from the
interval [a..b] and a random kernel width will be sampled
from the interval [c..d].

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images, each representing
the kernel size for the n-th image.

	If a tuple (a, b), where either a or b is a tuple,
then a and b will be treated according to the rules
above. This leads to different values for height and width of
the kernel.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AverageBlur(k=5)

Blur all images using a kernel size of 5x5.

>>> aug = iaa.AverageBlur(k=(2, 5))

Blur images using a varying kernel size, which is sampled (per image)
uniformly from the interval [2..5].

>>> aug = iaa.AverageBlur(k=((5, 7), (1, 3)))

Blur images using a varying kernel size, which’s height is sampled
(per image) uniformly from the interval [5..7] and which’s width is
sampled (per image) uniformly from [1..3].

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.blur.BilateralBlur(d=(1, 9), sigma_color=(10, 250), sigma_space=(10, 250), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Blur/Denoise an image using a bilateral filter.

Bilateral filters blur homogenous and textured areas, while trying to
preserve edges.

See
http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#bilateralfilter
for more information regarding the parameters.

Supported dtypes:

	uint8: yes; not tested

	uint16: ?

	uint32: ?

	uint64: ?

	int8: ?

	int16: ?

	int32: ?

	int64: ?

	float16: ?

	float32: ?

	float64: ?

	float128: ?

	bool: ?

	Parameters

	
	d (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Diameter of each pixel neighborhood with value range [1 .. inf).
High values for d lead to significantly worse performance. Values
equal or less than 10 seem to be good. Use <5 for real-time
applications.

	If a single int, then that value will be used for the
diameter.

	If a tuple of two int s (a, b), then the diameter will
be a value sampled from the interval [a..b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images, each representing
the diameter for the n-th image. Expected to be discrete.

	sigma_color (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Filter sigma in the color space with value range [1, inf). A
large value of the parameter means that farther colors within the
pixel neighborhood (see sigma_space) will be mixed together,
resulting in larger areas of semi-equal color.

	If a single int, then that value will be used for the
diameter.

	If a tuple of two int s (a, b), then the diameter will
be a value sampled from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images, each representing
the diameter for the n-th image. Expected to be discrete.

	sigma_space (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Filter sigma in the coordinate space with value range [1, inf). A
large value of the parameter means that farther pixels will influence
each other as long as their colors are close enough (see
sigma_color).

	If a single int, then that value will be used for the
diameter.

	If a tuple of two int s (a, b), then the diameter will
be a value sampled from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images, each representing
the diameter for the n-th image. Expected to be discrete.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BilateralBlur(
>>> d=(3, 10), sigma_color=(10, 250), sigma_space=(10, 250))

Blur all images using a bilateral filter with a max distance sampled
uniformly from the interval [3, 10] and wide ranges for sigma_color
and sigma_space.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.blur.GaussianBlur(sigma=(0.0, 3.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter to blur images using gaussian kernels.

Supported dtypes:

See ~imgaug.augmenters.blur.blur_gaussian_(backend="auto").

	Parameters

	
	sigma (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Standard deviation of the gaussian kernel.
Values in the range 0.0 (no blur) to 3.0 (strong blur) are
common.

	If a single float, that value will always be used as the
standard deviation.

	If a tuple (a, b), then a random value from the interval
[a, b] will be picked per image.

	If a list, then a random value will be sampled per image from
that list.

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.GaussianBlur(sigma=1.5)

Blur all images using a gaussian kernel with a standard deviation of
1.5.

>>> aug = iaa.GaussianBlur(sigma=(0.0, 3.0))

Blur images using a gaussian kernel with a random standard deviation
sampled uniformly (per image) from the interval [0.0, 3.0].

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.blur.MeanShiftBlur(spatial_radius=(5.0, 40.0), color_radius=(5.0, 40.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply a pyramidic mean shift filter to each image.

See also blur_mean_shift_() for details.

This augmenter expects input images of shape (H,W) or (H,W,1)
or (H,W,3).

Note

This augmenter is quite slow.

Added in 0.4.0.

Supported dtypes:

See blur_mean_shift_().

	Parameters

	
	spatial_radius (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

Spatial radius for pixels that are assumed to be similar.

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly
sampled per image from the interval [a, b).

	If list: A random value will be sampled from that list
per image.

	If StochasticParameter: The parameter will be queried once
per batch for (N,) values with N denoting the number of
images.

	color_radius (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

Color radius for pixels that are assumed to be similar.

	If number: Exactly that value will be used for all images.

	If tuple (a, b): A random value will be uniformly
sampled per image from the interval [a, b).

	If list: A random value will be sampled from that list
per image.

	If StochasticParameter: The parameter will be queried once
per batch for (N,) values with N denoting the number of
images.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MeanShiftBlur()

Create a mean shift blur augmenter.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.blur.MedianBlur(k=(1, 7), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Blur an image by computing median values over neighbourhoods.

Median blurring can be used to remove small dirt from images.
At larger kernel sizes, its effects have some similarity with Superpixels.

Supported dtypes:

	uint8: yes; fully tested

	uint16: ?

	uint32: ?

	uint64: ?

	int8: ?

	int16: ?

	int32: ?

	int64: ?

	float16: ?

	float32: ?

	float64: ?

	float128: ?

	bool: ?

	Parameters

	
	k (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Kernel size.

	If a single int, then that value will be used for the
height and width of the kernel. Must be an odd value.

	If a tuple of two ints (a, b), then the kernel size will be
an odd value sampled from the interval [a..b]. a and
b must both be odd values.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images, each representing
the kernel size for the nth image. Expected to be discrete. If
a sampled value is not odd, then that value will be increased
by 1.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MedianBlur(k=5)

Blur all images using a kernel size of 5x5.

>>> aug = iaa.MedianBlur(k=(3, 7))

Blur images using varying kernel sizes, which are sampled uniformly from
the interval [3..7]. Only odd values will be sampled, i.e. 3
or 5 or 7.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.blur.MotionBlur(k=(3, 7), angle=(0, 360), direction=(-1.0, 1.0), order=1, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.convolutional.Convolve

Blur images in a way that fakes camera or object movements.

Supported dtypes:

See Convolve.

	Parameters

	
	k (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Kernel size to use.

	If a single int, then that value will be used for the height
and width of the kernel.

	If a tuple of two int s (a, b), then the kernel size
will be sampled from the interval [a..b].

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then N samples will be drawn
from that parameter per N input images, each representing
the kernel size for the n-th image.

	angle (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Angle of the motion blur in degrees (clockwise, relative to top center
direction).

	If a number, exactly that value will be used.

	If a tuple (a, b), a random value from the interval
[a, b] will be uniformly sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	direction (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Forward/backward direction of the motion blur. Lower values towards
-1.0 will point the motion blur towards the back (with angle
provided via angle). Higher values towards 1.0 will point the
motion blur forward. A value of 0.0 leads to a uniformly (but
still angled) motion blur.

	If a number, exactly that value will be used.

	If a tuple (a, b), a random value from the interval
[a, b] will be uniformly sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – Interpolation order to use when rotating the kernel according to
angle.
See __init__().
Recommended to be 0 or 1, with 0 being faster, but less
continuous/smooth as angle is changed, particularly around multiple
of 45 degrees.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MotionBlur(k=15)

Apply motion blur with a kernel size of 15x15 pixels to images.

>>> aug = iaa.MotionBlur(k=15, angle=[-45, 45])

Apply motion blur with a kernel size of 15x15 pixels and a blur angle
of either -45 or 45 degrees (randomly picked per image).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
imgaug.augmenters.blur.blur_gaussian_(image, sigma, ksize=None, backend='auto', eps=0.001)

	Blur an image using gaussian blurring in-place.

This operation may change the input image in-place.

Supported dtypes:

if (backend=”auto”):

	uint8: yes; fully tested (1)

	uint16: yes; tested (1)

	uint32: yes; tested (2)

	uint64: yes; tested (2)

	int8: yes; tested (1)

	int16: yes; tested (1)

	int32: yes; tested (1)

	int64: yes; tested (2)

	float16: yes; tested (1)

	float32: yes; tested (1)

	float64: yes; tested (1)

	float128: no

	bool: yes; tested (1)

	
	Handled by cv2. See backend="cv2".

	
	Handled by scipy. See backend="scipy".

if (backend=”cv2”):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (2)

	uint64: no (3)

	int8: yes; tested (4)

	int16: yes; tested

	int32: yes; tested (5)

	int64: no (6)

	float16: yes; tested (7)

	float32: yes; tested

	float64: yes; tested

	float128: no (8)

	bool: yes; tested (1)

	
	Mapped internally to float32. Otherwise causes
TypeError: src data type = 0 is not supported.

	
	Causes TypeError: src data type = 6 is not supported.

	
	Causes cv2.error: OpenCV(3.4.5) (...)/filter.cpp:2957:
error: (-213:The function/feature is not implemented)
Unsupported combination of source format (=4), and buffer
format (=5) in function 'getLinearRowFilter'.

	
	Mapped internally to int16. Otherwise causes
cv2.error: OpenCV(3.4.5) (...)/filter.cpp:2957: error:
(-213:The function/feature is not implemented) Unsupported
combination of source format (=1), and buffer format (=5)
in function 'getLinearRowFilter'.

	
	Mapped internally to float64. Otherwise causes
cv2.error: OpenCV(3.4.5) (...)/filter.cpp:2957: error:
(-213:The function/feature is not implemented) Unsupported
combination of source format (=4), and buffer format (=5)
in function 'getLinearRowFilter'.

	
	Causes cv2.error: OpenCV(3.4.5) (...)/filter.cpp:2957:
error: (-213:The function/feature is not implemented)
Unsupported combination of source format (=4), and buffer
format (=5) in function 'getLinearRowFilter'.

	
	Mapped internally to float32. Otherwise causes
TypeError: src data type = 23 is not supported.

	
	Causes TypeError: src data type = 13 is not supported.

if (backend=”scipy”):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested (1)

	float32: yes; tested

	float64: yes; tested

	float128: no (2)

	bool: yes; tested (3)

	
	Mapped internally to float32. Otherwise causes
RuntimeError: array type dtype('float16') not supported.

	
	Causes RuntimeError: array type dtype('float128') not
supported.

	
	Mapped internally to float32. Otherwise too inaccurate.

	Parameters

	
	image (numpy.ndarray) – The image to blur. Expected to be of shape (H, W) or (H, W, C).

	sigma (number) – Standard deviation of the gaussian blur. Larger numbers result in
more large-scale blurring, which is overall slower than small-scale
blurring.

	ksize (None or int, optional) – Size in height/width of the gaussian kernel. This argument is only
understood by the cv2 backend. If it is set to None, an
appropriate value for ksize will automatically be derived from
sigma. The value is chosen tighter for larger sigmas to avoid as
much as possible very large kernel sizes and therey improve
performance.

	backend ({‘auto’, ‘cv2’, ‘scipy’}, optional) – Backend library to use. If auto, then the likely best library
will be automatically picked per image. That is usually equivalent
to cv2 (OpenCV) and it will fall back to scipy for datatypes
not supported by OpenCV.

	eps (number, optional) – A threshold used to decide whether sigma can be considered zero.

	Returns

	The blurred image. Same shape and dtype as the input.
(Input image might have been altered in-place.)

	Return type

	numpy.ndarray

	
imgaug.augmenters.blur.blur_mean_shift_(image, spatial_window_radius, color_window_radius)

	Apply a pyramidic mean shift filter to the input image in-place.

This produces an output image that has similarity with one modified by
a bilateral filter. That is different from mean shift segmentation,
which averages the colors in segments found by mean shift clustering.

This function is a thin wrapper around cv2.pyrMeanShiftFiltering.

Note

This function does not change the image’s colorspace to RGB
before applying the mean shift filter. A non-RGB colorspace will
hence influence the results.

Note

This function is quite slow.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	Not supported by cv2.pyrMeanShiftFiltering.

	Parameters

	
	image (ndarray) – (H,W) or (H,W,1) or (H,W,3) image to blur.
Images with no or one channel will be temporarily tiled to have
three channels.

	spatial_window_radius (number) – Spatial radius for pixels that are assumed to be similar.

	color_window_radius (number) – Color radius for pixels that are assumed to be similar.

	Returns

	Blurred input image. Same shape and dtype as the input.
(Input image might have been altered in-place.)

	Return type

	ndarray

imgaug.augmenters.collections

Augmenters that are collections of other augmenters.

List of augmenters:

	RandAugment

Added in 0.4.0.

	
class imgaug.augmenters.collections.RandAugment(n=2, m=(6, 12), cval=128, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Sequential

Apply RandAugment to inputs as described in the corresponding paper.

See paper:

Cubuk et al.

RandAugment: Practical automated data augmentation with a reduced
search space

Note

The paper contains essentially no hyperparameters for the individual
augmentation techniques. The hyperparameters used here come mostly
from the official code repository, which however seems to only contain
code for CIFAR10 and SVHN, not for ImageNet. So some guesswork was
involved and a few of the hyperparameters were also taken from
https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py .

This implementation deviates from the code repository for all PIL
enhance operations. In the repository these use a factor of
0.1 + M*1.8/M_max, which would lead to a factor of 0.1 for the
weakest M of M=0. For e.g. Brightness that would result in
a basically black image. This definition is fine for AutoAugment (from
where the code and hyperparameters are copied), which optimizes
each transformation’s M individually, but not for RandAugment,
which uses a single fixed M. We hence redefine these
hyperparameters to 1.0 + S * M * 0.9/M_max, where S is
randomly either 1 or -1.

We also note that it is not entirely clear which transformations
were used in the ImageNet experiments. The paper lists some
transformations in Figure 2, but names others in the text too (e.g.
crops, flips, cutout). While Figure 2 lists the Identity function,
this transformation seems to not appear in the repository (and in fact,
the function randaugment(N, M) doesn’t seem to exist in the
repository either). So we also make a best guess here about what
transformations might have been used.

Warning

This augmenter only works with image data, not e.g. bounding boxes.
The used PIL-based affine transformations are not yet able to
process non-image data. (This augmenter uses PIL-based affine
transformations to ensure that outputs are as similar as possible
to the paper’s implementation.)

Added in 0.4.0.

Supported dtypes:

	minimum of (

	Fliplr,
KeepSizeByResize,
Crop,
Sequential,
SomeOf,
Identity,
Autocontrast,
Equalize,
Invert,
Affine,
Posterize,
Solarize,
EnhanceColor,
EnhanceContrast,
EnhanceBrightness,
EnhanceSharpness,
Cutout,
FilterBlur,
FilterSmooth

)

	Parameters

	n (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or None, optional) – Parameter N in the paper, i.e. number of transformations to apply.
The paper suggests N=2 for ImageNet.
See also parameter n in SomeOf
for more details.

Note that horizontal flips (p=50%) and crops are always applied. This
parameter only determines how many of the other transformations
are applied per image.

	mint or tuple of int or list of int or imgaug.parameters.StochasticParameter or None, optional

	Parameter M in the paper, i.e. magnitude/severity/strength of the
applied transformations in interval [0 .. 30] with M=0 being
the weakest. The paper suggests for ImageNet M=9 in case of
ResNet-50 and M=28 in case of EfficientNet-B7.
This implementation uses a default value of (6, 12), i.e. the
value is uniformly sampled per image from the interval [6 .. 12].
This ensures greater diversity of transformations than using a single
fixed value.

	If int: That value will always be used.

	If tuple (a, b): A random value will be uniformly sampled per
image from the discrete interval [a .. b].

	If list: A random value will be picked from the list per image.

	If StochasticParameter: For B images in a batch, B values
will be sampled per augmenter (provided the augmenter is dependent
on the magnitude).

	cvalnumber or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional

	The constant value to use when filling in newly created pixels.
See parameter fillcolor in
Affine for details.

The paper’s repository uses an RGB value of 125, 122, 113.
This implementation uses a single intensity value of 128, which
should work better for cases where input images don’t have exactly
3 channels or come from a different dataset than used by the
paper.

	seedNone or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional

	See __init__().

	nameNone or str, optional

	See __init__().

	random_stateNone or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional

	Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministicbool, optional

	Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RandAugment(n=2, m=9)

Create a RandAugment augmenter similar to the suggested hyperparameters
in the paper.

>>> aug = iaa.RandAugment(m=30)

Create a RandAugment augmenter with maximum magnitude/strength.

>>> aug = iaa.RandAugment(m=(0, 9))

Create a RandAugment augmenter that applies its transformations with a
random magnitude between 0 (very weak) and 9 (recommended for
ImageNet and ResNet-50). m is sampled per transformation.

>>> aug = iaa.RandAugment(n=(0, 3))

Create a RandAugment augmenter that applies 0 to 3 of its
child transformations to images. Horizontal flips (p=50%) and crops are
always applied.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	append(self, object, /)

	Append object to the end of the list.

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	clear(self, /)

	Remove all items from list.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	count(self, value, /)

	Return number of occurrences of value.

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	extend(self, iterable, /)

	Extend list by appending elements from the iterable.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	index(self, value[, start, stop])

	Return first index of value.

	insert(self, index, object, /)

	Insert object before index.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	pop(self[, index])

	Remove and return item at index (default last).

	remove(self, value, /)

	Remove first occurrence of value.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	reverse(self, /)

	Reverse IN PLACE.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	sort(self, /, *[, key, reverse])

	Stable sort IN PLACE.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

imgaug.augmenters.color

Augmenters that affect image colors or image colorspaces.

List of augmenters:

	InColorspace (deprecated)

	WithColorspace

	WithBrightnessChannels

	MultiplyAndAddToBrightness

	MultiplyBrightness

	AddToBrightness

	WithHueAndSaturation

	MultiplyHueAndSaturation

	MultiplyHue

	MultiplySaturation

	RemoveSaturation

	AddToHueAndSaturation

	AddToHue

	AddToSaturation

	ChangeColorspace

	Grayscale

	ChangeColorTemperature

	KMeansColorQuantization

	UniformColorQuantization

	Posterize

	
class imgaug.augmenters.color.AddToBrightness(add=(-30, 30), to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.MultiplyAndAddToBrightness

Add to the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence
performs internally the same projection to random colorspaces.

Added in 0.4.0.

Supported dtypes:

See MultiplyAndAddToBrightness.

	Parameters

	
	add (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Add.

	to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See WithBrightnessChannels.

	from_colorspace (str, optional) – See WithBrightnessChannels.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToBrightness((-30, 30))

Convert each image to a colorspace with a brightness-related channel,
extract that channel, add between -30 and 30 and convert back
to the original colorspace.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.AddToHue(value=(-255, 255), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.AddToHueAndSaturation

Add random values to the hue of images.

The augmenter first transforms images to HSV colorspace, then adds random
values to the H channel and afterwards converts back to RGB.

If you want to change both the hue and the saturation, it is recommended
to use AddToHueAndSaturation as otherwise the image will be
converted twice to HSV and back to RGB.

This augmenter is a shortcut for AddToHueAndSaturation(value_hue=...).

Supported dtypes:

See AddToHueAndSaturation.

	Parameters

	
	value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the hue of all pixels.
This is expected to be in the range -255 to +255 and will
automatically be projected to an angular representation using
(hue/255) * (360/2) (OpenCV’s hue representation is in the
range [0, 180] instead of [0, 360]).

	If an integer, then that value will be used for all images.

	If a tuple (a, b), then a value from the discrete
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToHue((-50, 50))

Sample random values from the discrete uniform range [-50..50],
convert them to angular representation and add them to the hue, i.e.
to the H channel in HSV colorspace.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.AddToHueAndSaturation(value=None, value_hue=None, value_saturation=None, per_channel=False, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Increases or decreases hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then adds random
values to the H and S channels and afterwards converts back to RGB.

This augmenter is faster than using WithHueAndSaturation in combination
with Add.

TODO add float support

Supported dtypes:

See change_colorspace_().

	Parameters

	
	value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the hue and saturation of all pixels.
It is expected to be in the range -255 to +255.

	If this is None, value_hue and/or value_saturation
may be set to values other than None.

	If an integer, then that value will be used for all images.

	If a tuple (a, b), then a value from the discrete
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	value_hue (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the hue of all pixels.
This is expected to be in the range -255 to +255 and will
automatically be projected to an angular representation using
(hue/255) * (360/2) (OpenCV’s hue representation is in the
range [0, 180] instead of [0, 360]).
Only this or value may be set, not both.

	If this and value_saturation are both None, value may
be set to a non-None value.

	If an integer, then that value will be used for all images.

	If a tuple (a, b), then a value from the discrete
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	value_saturation (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the saturation of all pixels.
It is expected to be in the range -255 to +255.
Only this or value may be set, not both.

	If this and value_hue are both None, value may
be set to a non-None value.

	If an integer, then that value will be used for all images.

	If a tuple (a, b), then a value from the discrete
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	per_channel (bool or float, optional) – Whether to sample per image only one value from value and use it for
both hue and saturation (False) or to sample independently one
value for hue and one for saturation (True).
If this value is a float p, then for p percent of all images
per_channel will be treated as True, otherwise as False.

This parameter has no effect is value_hue and/or value_saturation
are used instead of value.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToHueAndSaturation((-50, 50), per_channel=True)

Add random values between -50 and 50 to the hue and saturation
(independently per channel and the same value for all pixels within
that channel).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.color.AddToSaturation(value=(-75, 75), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.AddToHueAndSaturation

Add random values to the saturation of images.

The augmenter first transforms images to HSV colorspace, then adds random
values to the S channel and afterwards converts back to RGB.

If you want to change both the hue and the saturation, it is recommended
to use AddToHueAndSaturation as otherwise the image will be
converted twice to HSV and back to RGB.

This augmenter is a shortcut for
AddToHueAndSaturation(value_saturation=...).

Supported dtypes:

See AddToHueAndSaturation.

	Parameters

	
	value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Value to add to the saturation of all pixels.
It is expected to be in the range -255 to +255.

	If an integer, then that value will be used for all images.

	If a tuple (a, b), then a value from the discrete
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToSaturation((-50, 50))

Sample random values from the discrete uniform range [-50..50],
and add them to the saturation, i.e. to the S channel in HSV
colorspace.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.ChangeColorTemperature(kelvin=(1000, 11000), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Change the temperature to a provided Kelvin value.

Low Kelvin values around 1000 to 4000 will result in red, yellow
or orange images. Kelvin values around 10000 to 40000 will result
in progressively darker blue tones.

Color temperatures taken from
http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html

Basic method to change color temperatures taken from
https://stackoverflow.com/a/11888449

Added in 0.4.0.

Supported dtypes:

See change_color_temperatures_().

	Parameters

	kelvin (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Temperature in Kelvin. The temperatures of images will be modified to
this value. Must be in the interval [1000, 40000].

	If a number, exactly that value will always be used.

	If a tuple (a, b), then a value from the
interval [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that

list per image.
* If a StochasticParameter, then a value will be sampled per

image from that parameter.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ChangeColorTemperature((1100, 10000))

Create an augmenter that changes the color temperature of images to
a random value between 1100 and 10000 Kelvin.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.color.ChangeColorspace(to_colorspace, from_colorspace='RGB', alpha=1.0, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter to change the colorspace of images.

Note

This augmenter is not tested. Some colorspaces might work, others
might not.

..note:

This augmenter tries to project the colorspace value range on
0-255. It outputs dtype=uint8 images.

Supported dtypes:

See change_colorspace_().

	Parameters

	
	to_colorspace (str or list of str or imgaug.parameters.StochasticParameter) – The target colorspace.
Allowed strings are: RGB, BGR, GRAY, CIE, YCrCb,
HSV, HLS, Lab, Luv.
These are also accessible via
imgaug.augmenters.color.CSPACE_<NAME>,
e.g. imgaug.augmenters.CSPACE_YCrCb.

	If a string, it must be among the allowed colorspaces.

	If a list, it is expected to be a list of strings, each one
being an allowed colorspace. A random element from the list
will be chosen per image.

	If a StochasticParameter, it is expected to return string. A new
sample will be drawn per image.

	from_colorspace (str, optional) – The source colorspace (of the input images).
See to_colorspace. Only a single string is allowed.

	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – The alpha value of the new colorspace when overlayed over the
old one. A value close to 1.0 means that mostly the new
colorspace is visible. A value close to 0.0 means, that mostly the
old image is visible.

	If an int or float, exactly that value will be used.

	If a tuple (a, b), a random value from the range
a <= x <= b will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
BGR = 'BGR'

	

	
CIE = 'CIE'

	

	
COLORSPACES = {'BGR', 'CIE', 'GRAY', 'HLS', 'HSV', 'Lab', 'Luv', 'RGB', 'YCrCb'}

	

	
CV_VARS = {'BGR2CIE': <MagicMock id='139942589687288'>, 'BGR2GRAY': <MagicMock id='139942589670680'>, 'BGR2HLS': <MagicMock id='139942589728920'>, 'BGR2HSV': <MagicMock id='139942589712312'>, 'BGR2Lab': <MagicMock id='139942589741432'>, 'BGR2Luv': <MagicMock id='139942589749848'>, 'BGR2RGB': <MagicMock id='139942589658168'>, 'BGR2YCrCb': <MagicMock id='139942589699800'>, 'HLS2BGR': <MagicMock id='139942589812184'>, 'HLS2RGB': <MagicMock id='139942589799672'>, 'HSV2BGR': <MagicMock id='139942589791256'>, 'HSV2RGB': <MagicMock id='139942589770552'>, 'Lab2BGR': <MagicMock id='139942589874584'>, 'Lab2RGB': <MagicMock id='139942589837208'>, 'RGB2BGR': <MagicMock id='139942590672120'>, 'RGB2CIE': <MagicMock id='139942590095032'>, 'RGB2GRAY': <MagicMock id='139942590082520'>, 'RGB2HLS': <MagicMock id='139942590140824'>, 'RGB2HSV': <MagicMock id='139942590132408'>, 'RGB2Lab': <MagicMock id='139942590157432'>, 'RGB2Luv': <MagicMock id='139942590174040'>, 'RGB2YCrCb': <MagicMock id='139942590103448'>}

	

	
GRAY = 'GRAY'

	

	
HLS = 'HLS'

	

	
HSV = 'HSV'

	

	
Lab = 'Lab'

	

	
Luv = 'Luv'

	

	
RGB = 'RGB'

	

	
YCrCb = 'YCrCb'

	

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.color.Grayscale(alpha=1, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.ChangeColorspace

Augmenter to convert images to their grayscale versions.

Note

Number of output channels is still 3, i.e. this augmenter just
“removes” color.

TODO check dtype support

Supported dtypes:

See change_colorspace_().

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – The alpha value of the grayscale image when overlayed over the
old image. A value close to 1.0 means, that mostly the new grayscale
image is visible. A value close to 0.0 means, that mostly the
old image is visible.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value from the range
a <= x <= b will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	from_colorspace (str, optional) – The source colorspace (of the input images).
See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Grayscale(alpha=1.0)

Creates an augmenter that turns images to their grayscale versions.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Grayscale(alpha=(0.0, 1.0))

Creates an augmenter that turns images to their grayscale versions with
an alpha value in the range 0 <= alpha <= 1. An alpha value of 0.5 would
mean, that the output image is 50 percent of the input image and 50
percent of the grayscale image (i.e. 50 percent of color removed).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
imgaug.augmenters.color.InColorspace(to_colorspace, from_colorspace='RGB', children=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Deprecated. Use WithColorspace instead.

Convert images to another colorspace.

	
class imgaug.augmenters.color.KMeansColorQuantization(n_colors=(2, 16), from_colorspace='RGB', to_colorspace=['RGB', 'Lab'], max_size=128, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color._AbstractColorQuantization

Quantize colors using k-Means clustering.

This “collects” the colors from the input image, groups them into
k clusters using k-Means clustering and replaces the colors in the
input image using the cluster centroids.

This is slower than UniformColorQuantization, but adapts dynamically
to the color range in the input image.

Note

This augmenter expects input images to be either grayscale
or to have 3 or 4 channels and use colorspace from_colorspace. If
images have 4 channels, it is assumed that the 4th channel is an alpha
channel and it will not be quantized.

Supported dtypes:

if (image size <= max_size):

	minimum of (

	ChangeColorspace,
quantize_kmeans()

)

if (image size > max_size):

	minimum of (

	ChangeColorspace,
quantize_kmeans(),
imresize_single_image()

)

	Parameters

	
	n_colors (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Target number of colors in the generated output image.
This corresponds to the number of clusters in k-Means, i.e. k.
Sampled values below 2 will always be clipped to 2.

	If a number, exactly that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The colorspace in which to perform the quantization.
See change_colorspace_() for valid values.
This will be ignored for grayscale input images.

	If None the colorspace of input images will not be changed.

	If a string, it must be among the allowed colorspaces.

	If a list, it is expected to be a list of strings, each one
being an allowed colorspace. A random element from the list
will be chosen per image.

	If a StochasticParameter, it is expected to return string. A new
sample will be drawn per image.

	from_colorspace (str, optional) – The colorspace of the input images.
See to_colorspace. Only a single string is allowed.

	max_size (int or None, optional) – Maximum image size at which to perform the augmentation.
If the width or height of an image exceeds this value, it will be
downscaled before running the augmentation so that the longest side
matches max_size.
This is done to speed up the augmentation. The final output image has
the same size as the input image. Use None to apply no downscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.KMeansColorQuantization()

Create an augmenter to apply k-Means color quantization to images using a
random amount of colors, sampled uniformly from the interval [2..16].
It assumes the input image colorspace to be RGB and clusters colors
randomly in RGB or Lab colorspace.

>>> aug = iaa.KMeansColorQuantization(n_colors=8)

Create an augmenter that quantizes images to (up to) eight colors.

>>> aug = iaa.KMeansColorQuantization(n_colors=(4, 16))

Create an augmenter that quantizes images to (up to) n colors,
where n is randomly and uniformly sampled from the discrete interval
[4..16].

>>> aug = iaa.KMeansColorQuantization(
>>> from_colorspace=iaa.CSPACE_BGR)

Create an augmenter that quantizes input images that are in
BGR colorspace. The quantization happens in RGB or Lab
colorspace, into which the images are temporarily converted.

>>> aug = iaa.KMeansColorQuantization(
>>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

Create an augmenter that quantizes images by clustering colors randomly
in either RGB or HSV colorspace. The assumed input colorspace
of images is RGB.

	Attributes

	
	n_colors

	Alias for property counts.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
n_colors

	Alias for property counts.

Added in 0.4.0.

	
class imgaug.augmenters.color.MultiplyAndAddToBrightness(mul=(0.7, 1.3), add=(-30, 30), to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', random_order=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.WithBrightnessChannels

Multiply and add to the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence
performs internally the same projection to random colorspaces.

Added in 0.4.0.

Supported dtypes:

See WithBrightnessChannels.

	Parameters

	
	mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Multiply.

	add (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Add.

	to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See WithBrightnessChannels.

	from_colorspace (str, optional) – See WithBrightnessChannels.

	random_order (bool, optional) – Whether to apply the add and multiply operations in random
order (True). If False, this augmenter will always first
multiply and then add.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyAndAddToBrightness(mul=(0.5, 1.5), add=(-30, 30))

Convert each image to a colorspace with a brightness-related channel,
extract that channel, multiply it by a factor between 0.5 and 1.5,
add a value between -30 and 30 and convert back to the original
colorspace.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.MultiplyBrightness(mul=(0.7, 1.3), to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.MultiplyAndAddToBrightness

Multiply the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence
performs internally the same projection to random colorspaces.

Added in 0.4.0.

Supported dtypes:

See MultiplyAndAddToBrightness.

	Parameters

	
	mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Multiply.

	to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See WithBrightnessChannels.

	from_colorspace (str, optional) – See WithBrightnessChannels.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyBrightness((0.5, 1.5))

Convert each image to a colorspace with a brightness-related channel,
extract that channel, multiply it by a factor between 0.5 and 1.5,
and convert back to the original colorspace.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.MultiplyHue(mul=(-3.0, 3.0), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.MultiplyHueAndSaturation

Multiply the hue of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies
the pixel values in the H channel and afterwards converts back to
RGB.

This augmenter is a shortcut for MultiplyHueAndSaturation(mul_hue=...).

Supported dtypes:

See MultiplyHueAndSaturation.

	Parameters

	
	mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all hue values.
This is expected to be in the range -10.0 to +10.0 and will
automatically be projected to an angular representation using
(hue/255) * (360/2) (OpenCV’s hue representation is in the
range [0, 180] instead of [0, 360]).
Only this or mul may be set, not both.

	If a number, then that multiplier will be used for all images.

	If a tuple (a, b), then a value from the continuous
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHue((0.5, 1.5))

Multiply the hue channel of images using random values between 0.5
and 1.5.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.MultiplyHueAndSaturation(mul=None, mul_hue=None, mul_saturation=None, per_channel=False, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.WithHueAndSaturation

Multipy hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then multiplies
the pixel values in the H and S channels and afterwards converts back to
RGB.

This augmenter is a wrapper around WithHueAndSaturation.

Supported dtypes:

See WithHueAndSaturation.

	Parameters

	
	mul (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all hue and saturation values of
all pixels.
It is expected to be in the range -10.0 to +10.0.
Note that values of 0.0 or lower will remove all saturation.

	If this is None, mul_hue and/or mul_saturation
may be set to values other than None.

	If a number, then that multiplier will be used for all images.

	If a tuple (a, b), then a value from the continuous
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	mul_hue (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all hue values.
This is expected to be in the range -10.0 to +10.0 and will
automatically be projected to an angular representation using
(hue/255) * (360/2) (OpenCV’s hue representation is in the
range [0, 180] instead of [0, 360]).
Only this or mul may be set, not both.

	If this and mul_saturation are both None, mul may
be set to a non-None value.

	If a number, then that multiplier will be used for all images.

	If a tuple (a, b), then a value from the continuous
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	mul_saturation (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all saturation values.
It is expected to be in the range 0.0 to +10.0.
Only this or mul may be set, not both.

	If this and mul_hue are both None, mul may
be set to a non-None value.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the continuous
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	per_channel (bool or float, optional) – Whether to sample per image only one value from mul and use it for
both hue and saturation (False) or to sample independently one
value for hue and one for saturation (True).
If this value is a float p, then for p percent of all images
per_channel will be treated as True, otherwise as False.

This parameter has no effect if mul_hue and/or mul_saturation
are used instead of mul.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True)

Multiply hue and saturation by random values between 0.5 and 1.5
(independently per channel and the same value for all pixels within
that channel). The hue will be automatically projected to an angular
representation.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHueAndSaturation(mul_hue=(0.5, 1.5))

Multiply only the hue by random values between 0.5 and 1.5.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHueAndSaturation(mul_saturation=(0.5, 1.5))

Multiply only the saturation by random values between 0.5 and 1.5.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.MultiplySaturation(mul=(0.0, 3.0), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.MultiplyHueAndSaturation

Multiply the saturation of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies
the pixel values in the H channel and afterwards converts back to
RGB.

This augmenter is a shortcut for
MultiplyHueAndSaturation(mul_saturation=...).

Supported dtypes:

See MultiplyHueAndSaturation.

	Parameters

	
	mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all saturation values.
It is expected to be in the range 0.0 to +10.0.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the continuous
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplySaturation((0.5, 1.5))

Multiply the saturation channel of images using random values between
0.5 and 1.5.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.Posterize(nb_bits=(1, 8), from_colorspace='RGB', to_colorspace=None, max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.UniformColorQuantizationToNBits

Alias for UniformColorQuantizationToNBits.

Added in 0.4.0.

Supported dtypes:

See UniformColorQuantizationToNBits.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.RemoveSaturation(mul=1, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.MultiplySaturation

Decrease the saturation of images by varying degrees.

This creates images looking similar to Grayscale.

This augmenter is the same as MultiplySaturation((0.0, 1.0)).

Added in 0.4.0.

Supported dtypes:

See MultiplySaturation.

	Parameters

	
	mul (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Inverse multiplier to use for the saturation values.
High values denote stronger color removal. E.g. 1.0 will remove
all saturation, 0.0 will remove nothing.
Expected value range is [0.0, 1.0].

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the continuous
range [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled from that
parameter per image.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RemoveSaturation((0.0, 1.0))

Create an augmenter that decreases saturation by varying degrees.

>>> aug = iaa.RemoveSaturation(1.0)

Create an augmenter that removes all saturation from input images.
This is similar to Grayscale.

>>> aug = iaa.RemoveSaturation(from_colorspace=iaa.CSPACE_BGR)

Create an augmenter that decreases saturation of images in BGR
colorspace by varying degrees.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.UniformColorQuantization(n_colors=(2, 16), from_colorspace='RGB', to_colorspace=None, max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color._AbstractColorQuantization

Quantize colors into N bins with regular distance.

For uint8 images the equation is floor(v/q)*q + q/2 with
q = 256/N, where v is a pixel intensity value and N is
the target number of colors after quantization.

This augmenter is faster than KMeansColorQuantization, but the
set of possible output colors is constant (i.e. independent of the
input images). It may produce unsatisfying outputs for input images
that are made up of very similar colors.

Note

This augmenter expects input images to be either grayscale
or to have 3 or 4 channels and use colorspace from_colorspace. If
images have 4 channels, it is assumed that the 4th channel is an alpha
channel and it will not be quantized.

Supported dtypes:

if (image size <= max_size):

	minimum of (

	ChangeColorspace,
quantize_uniform_()

)

if (image size > max_size):

	minimum of (

	ChangeColorspace,
quantize_uniform_(),
imresize_single_image()

)

	Parameters

	
	n_colors (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Target number of colors to use in the generated output image.

	If a number, exactly that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The colorspace in which to perform the quantization.
See change_colorspace_() for valid values.
This will be ignored for grayscale input images.

	If None the colorspace of input images will not be changed.

	If a string, it must be among the allowed colorspaces.

	If a list, it is expected to be a list of strings, each one
being an allowed colorspace. A random element from the list
will be chosen per image.

	If a StochasticParameter, it is expected to return string. A new
sample will be drawn per image.

	from_colorspace (str, optional) – The colorspace of the input images.
See to_colorspace. Only a single string is allowed.

	max_size (None or int, optional) – Maximum image size at which to perform the augmentation.
If the width or height of an image exceeds this value, it will be
downscaled before running the augmentation so that the longest side
matches max_size.
This is done to speed up the augmentation. The final output image has
the same size as the input image. Use None to apply no downscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.UniformColorQuantization()

Create an augmenter to apply uniform color quantization to images using a
random amount of colors, sampled uniformly from the discrete interval
[2..16].

>>> aug = iaa.UniformColorQuantization(n_colors=8)

Create an augmenter that quantizes images to (up to) eight colors.

>>> aug = iaa.UniformColorQuantization(n_colors=(4, 16))

Create an augmenter that quantizes images to (up to) n colors,
where n is randomly and uniformly sampled from the discrete interval
[4..16].

>>> aug = iaa.UniformColorQuantization(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

Create an augmenter that uniformly quantizes images in either RGB
or HSV colorspace (randomly picked per image). The input colorspace
of all images has to be BGR.

	Attributes

	
	n_colors

	Alias for property counts.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
n_colors

	Alias for property counts.

Added in 0.4.0.

	
class imgaug.augmenters.color.UniformColorQuantizationToNBits(nb_bits=(1, 8), from_colorspace='RGB', to_colorspace=None, max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color._AbstractColorQuantization

Quantize images by setting 8-B bits of each component to zero.

This augmenter sets the 8-B highest frequency (rightmost) bits of
each array component to zero. For B bits this is equivalent to
changing each component’s intensity value v to
v' = v & (2**(8-B) - 1), e.g. for B=3 this results in
v' = c & ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111 1100.

This augmenter behaves for B similarly to
UniformColorQuantization(2**B), but quantizes each bin with interval
(a, b) to a instead of to a + (b-a)/2.

This augmenter is comparable to PIL.ImageOps.posterize().

Note

This augmenter expects input images to be either grayscale
or to have 3 or 4 channels and use colorspace from_colorspace. If
images have 4 channels, it is assumed that the 4th channel is an alpha
channel and it will not be quantized.

Added in 0.4.0.

Supported dtypes:

if (image size <= max_size):

	minimum of (

	ChangeColorspace,
quantize_uniform()

)

if (image size > max_size):

	minimum of (

	ChangeColorspace,
quantize_uniform(),
imresize_single_image()

)

	Parameters

	
	nb_bits (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Number of bits to keep in each image’s array component.

	If a number, exactly that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The colorspace in which to perform the quantization.
See change_colorspace_() for valid values.
This will be ignored for grayscale input images.

	If None the colorspace of input images will not be changed.

	If a string, it must be among the allowed colorspaces.

	If a list, it is expected to be a list of strings, each one
being an allowed colorspace. A random element from the list
will be chosen per image.

	If a StochasticParameter, it is expected to return string. A new
sample will be drawn per image.

	from_colorspace (str, optional) – The colorspace of the input images.
See to_colorspace. Only a single string is allowed.

	max_size (None or int, optional) – Maximum image size at which to perform the augmentation.
If the width or height of an image exceeds this value, it will be
downscaled before running the augmentation so that the longest side
matches max_size.
This is done to speed up the augmentation. The final output image has
the same size as the input image. Use None to apply no downscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.UniformColorQuantizationToNBits()

Create an augmenter to apply uniform color quantization to images using a
random amount of bits to remove, sampled uniformly from the discrete
interval [1..8].

>>> aug = iaa.UniformColorQuantizationToNBits(nb_bits=(2, 8))

Create an augmenter that quantizes images by removing 8-B rightmost
bits from each component, where B is uniformly sampled from the
discrete interval [2..8].

>>> aug = iaa.UniformColorQuantizationToNBits(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

Create an augmenter that uniformly quantizes images in either RGB
or HSV colorspace (randomly picked per image). The input colorspace
of all images has to be BGR.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.color.WithBrightnessChannels(children=None, to_colorspace=['YCrCb', 'HSV', 'HLS', 'Lab', 'Luv', 'YUV'], from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter to apply child augmenters to brightness-related image channels.

This augmenter first converts an image to a random colorspace containing a
brightness-related channel (e.g. V in HSV), then extracts that
channel and applies its child augmenters to this one channel. Afterwards,
it reintegrates the augmented channel into the full image and converts
back to the input colorspace.

Added in 0.4.0.

Supported dtypes:

See change_colorspaces_().

	Parameters

	
	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to the brightness channels.
They receive images with a single channel and have to modify these.

	to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – Colorspace in which to extract the brightness-related channels.
Currently, imgaug.augmenters.color.CSPACE_YCrCb, CSPACE_HSV,
CSPACE_HLS, CSPACE_Lab, CSPACE_Luv, CSPACE_YUV,
CSPACE_CIE are supported.

	If imgaug.ALL: Will pick imagewise a random colorspace from
all supported colorspaces.

	If str: Will always use this colorspace.

	If list or str: Will pick imagewise a random colorspace
from this list.

	If StochasticParameter:
A parameter that will be queried once per batch to generate
all target colorspaces. Expected to return strings matching the
CSPACE_* constants.

	from_colorspace (str, optional) – See change_colorspace_().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithBrightnessChannels(iaa.Add((-50, 50)))

Add -50 to 50 to the brightness-related channels of each image.

>>> aug = iaa.WithBrightnessChannels(
>>> iaa.Add((-50, 50)), to_colorspace=[iaa.CSPACE_Lab, iaa.CSPACE_HSV])

Add -50 to 50 to the brightness-related channels of each image,
but pick those brightness-related channels only from Lab (L) and
HSV (V) colorspaces.

>>> aug = iaa.WithBrightnessChannels(
>>> iaa.Add((-50, 50)), from_colorspace=iaa.CSPACE_BGR)

Add -50 to 50 to the brightness-related channels of each image,
where the images are provided in BGR colorspace instead of the
standard RGB.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.color.WithColorspace(to_colorspace, from_colorspace='RGB', children=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenters within a specific colorspace.

This augumenter takes a source colorspace A and a target colorspace B
as well as children C. It changes images from A to B, then applies the
child augmenters C and finally changes the colorspace back from B to A.
See also ChangeColorspace() for more.

Supported dtypes:

See change_colorspaces_().

	Parameters

	
	to_colorspace (str) – See change_colorspace_().

	from_colorspace (str, optional) – See change_colorspace_().

	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to converted images.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithColorspace(
>>> to_colorspace=iaa.CSPACE_HSV,
>>> from_colorspace=iaa.CSPACE_RGB,
>>> children=iaa.WithChannels(
>>> 0,
>>> iaa.Add((0, 50))
>>>)
>>>)

Convert to HSV colorspace, add a value between 0 and 50
(uniformly sampled per image) to the Hue channel, then convert back to the
input colorspace (RGB).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.color.WithHueAndSaturation(children=None, from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenters to hue and saturation channels.

This augumenter takes an image in a source colorspace, converts
it to HSV, extracts the H (hue) and S (saturation) channels,
applies the provided child augmenters to these channels
and finally converts back to the original colorspace.

The image array generated by this augmenter and provided to its children
is in int16 (sic! only augmenters that can handle int16 arrays
can be children!). The hue channel is mapped to the value
range [0, 255]. Before converting back to the source colorspace, the
saturation channel’s values are clipped to [0, 255]. A modulo operation
is applied to the hue channel’s values, followed by a mapping from
[0, 255] to [0, 180] (and finally the colorspace conversion).

Supported dtypes:

See change_colorspaces_().

	Parameters

	
	from_colorspace (str, optional) – See change_colorspace_().

	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to converted images.
They receive int16 images with two channels (hue, saturation)
and have to modify these.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithHueAndSaturation(
>>> iaa.WithChannels(0, iaa.Add((0, 50)))
>>>)

Create an augmenter that will add a random value between 0 and 50
(uniformly sampled per image) hue channel in HSV colorspace. It
automatically accounts for the hue being in angular representation, i.e.
if the angle goes beyond 360 degrees, it will start again at 0 degrees.
The colorspace is finally converted back to RGB (default setting).

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithHueAndSaturation([
>>> iaa.WithChannels(0, iaa.Add((-30, 10))),
>>> iaa.WithChannels(1, [
>>> iaa.Multiply((0.5, 1.5)),
>>> iaa.LinearContrast((0.75, 1.25))
>>>])
>>>])

Create an augmenter that adds a random value sampled uniformly
from the range [-30, 10] to the hue and multiplies the saturation
by a random factor sampled uniformly from [0.5, 1.5]. It also
modifies the contrast of the saturation channel. After these steps,
the HSV image is converted back to RGB.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
imgaug.augmenters.color.change_color_temperature(image, kelvin, from_colorspace='RGB')

	Change the temperature of an image to a given value in Kelvin.

Added in 0.4.0.

Supported dtypes:

See change_color_temperatures_.

	Parameters

	
	image (ndarray) – The image which’s color temperature is supposed to be changed.
Expected to be of shape (H,W,3) array.

	kelvin (number) – The temperature in Kelvin. Expected value range is in
the interval (1000, 4000).

	from_colorspace (str, optional) – The source colorspace.
See change_colorspaces_().
Defaults to RGB.

	Returns

	Image with target color temperature.

	Return type

	ndarray

	
imgaug.augmenters.color.change_color_temperatures_(images, kelvins, from_colorspaces='RGB')

	Change in-place the temperature of images to given values in Kelvin.

Added in 0.4.0.

Supported dtypes:

See change_colorspace_.

	Parameters

	
	images (ndarray or list of ndarray) – The images which’s color temperature is supposed to be changed.
Either a list of (H,W,3) arrays or a single (N,H,W,3) array.

	kelvins (iterable of number) – Temperatures in Kelvin. One per image. Expected value range is in
the interval (1000, 4000).

	from_colorspaces (str or list of str, optional) – The source colorspace.
See change_colorspaces_().
Defaults to RGB.

	Returns

	Images with target color temperatures.
The input array(s) might have been changed in-place.

	Return type

	ndarray or list of ndarray

	
imgaug.augmenters.color.change_colorspace_(image, to_colorspace, from_colorspace='RGB')

	Change the colorspace of an image inplace.

Note

All outputs of this function are uint8. For some colorspaces this
may not be optimal.

Note

Output grayscale images will still have three channels.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – The image to convert from one colorspace into another.
Usually expected to have shape (H,W,3).

	to_colorspace (str) – The target colorspace. See the CSPACE constants,
e.g. imgaug.augmenters.color.CSPACE_RGB.

	from_colorspace (str, optional) – The source colorspace. Analogous to to_colorspace. Defaults
to RGB.

	Returns

	Image with target colorspace. Can be the same array instance as was
originally provided (i.e. changed inplace). Grayscale images will
still have three channels.

	Return type

	ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> # fake RGB image
>>> image_rgb = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3))
>>> image_bgr = iaa.change_colorspace_(np.copy(image_rgb), iaa.CSPACE_BGR)

	
imgaug.augmenters.color.change_colorspaces_(images, to_colorspaces, from_colorspaces='RGB')

	Change the colorspaces of a batch of images inplace.

Note

All outputs of this function are uint8. For some colorspaces this
may not be optimal.

Note

Output grayscale images will still have three channels.

Supported dtypes:

See change_colorspace_().

	Parameters

	
	images (ndarray or list of ndarray) – The images to convert from one colorspace into another.
Either a list of (H,W,3) arrays or a single (N,H,W,3) array.

	to_colorspaces (str or iterable of str) – The target colorspaces. Either a single string (all images will be
converted to the same colorspace) or an iterable of strings (one per
image). See the CSPACE constants, e.g.
imgaug.augmenters.color.CSPACE_RGB.

	from_colorspaces (str or list of str, optional) – The source colorspace. Analogous to to_colorspace. Defaults
to RGB.

	Returns

	Images with target colorspaces. Can contain the same array instances
as were originally provided (i.e. changed inplace). Grayscale images
will still have three channels.

	Return type

	ndarray or list of ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> # fake RGB image
>>> image_rgb = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3))
>>> images_rgb = [image_rgb, image_rgb, image_rgb]
>>> images_rgb_copy = [np.copy(image_rgb) for image_rgb in images_rgb]
>>> images_bgr = iaa.change_colorspaces_(images_rgb_copy, iaa.CSPACE_BGR)

Create three example RGB images and convert them to BGR colorspace.

>>> images_rgb_copy = [np.copy(image_rgb) for image_rgb in images_rgb]
>>> images_various = iaa.change_colorspaces_(
>>> images_rgb_copy, [iaa.CSPACE_BGR, iaa.CSPACE_HSV, iaa.CSPACE_GRAY])

Chnage the colorspace of the first image to BGR, the one of the second
image to HSV and the one of the third image to grayscale (note
that in the latter case the image will still have shape (H,W,3),
not (H,W,1)).

	
imgaug.augmenters.color.posterize(arr, nb_bits)

	Alias for quantize_uniform_to_n_bits().

This function is an alias for quantize_uniform_to_n_bits() and was
added for users familiar with the same function in PIL.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits().

	Parameters

	
	arr (ndarray) – See quantize_uniform_to_n_bits().

	nb_bits (int) – See quantize_uniform_to_n_bits().

	Returns

	Array with quantized components.

	Return type

	ndarray

	
imgaug.augmenters.color.quantize_colors_kmeans(image, n_colors, n_max_iter=10, eps=1.0)

	Deprecated. Use imgaug.augmenters.colors.quantize_kmeans instead.

Outdated name of quantize_kmeans().

Deprecated since 0.4.0.

	
imgaug.augmenters.color.quantize_colors_uniform(image, n_colors)

	Deprecated. Use imgaug.augmenters.colors.quantize_uniform instead.

Outdated name for quantize_uniform().

Deprecated since 0.4.0.

	
imgaug.augmenters.color.quantize_kmeans(arr, nb_clusters, nb_max_iter=10, eps=1.0)

	Quantize an array into N bins using k-means clustering.

If the input is an image, this method returns in an image with a maximum
of N colors. Similar colors are grouped to their mean. The k-means
clustering happens across channels and not channelwise.

Code similar to https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/
py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html

Warning

This function currently changes the RNG state of both OpenCV’s
internal RNG and imgaug’s global RNG. This is necessary in order
to ensure that the k-means clustering happens deterministically.

Added in 0.4.0. (Previously called quantize_colors_kmeans().)

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	arr (ndarray) – Array to quantize. Expected to be of shape (H,W) or (H,W,C)
with C usually being 1 or 3.

	nb_clusters (int) – Number of clusters to quantize into, i.e. k in k-means clustering.
This corresponds to the maximum number of colors in an output image.

	nb_max_iter (int, optional) – Maximum number of iterations that the k-means clustering algorithm
is run.

	eps (float, optional) – Minimum change of all clusters per k-means iteration. If all clusters
change by less than this amount in an iteration, the clustering is
stopped.

	Returns

	Image with quantized colors.

	Return type

	ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3))
>>> image_quantized = iaa.quantize_kmeans(image, 6)

Generates a 4x4 image with 3 channels, containing consecutive
values from 0 to 4*4*3, leading to an equal number of colors.
These colors are then quantized so that only 6 are remaining. Note
that the six remaining colors do have to appear in the input image.

	
imgaug.augmenters.color.quantize_uniform(arr, nb_bins, to_bin_centers=True)

	Quantize an array into N equally-sized bins.

See quantize_uniform_() for details.

Added in 0.4.0. (Previously called quantize_colors_uniform().)

Supported dtypes:

See quantize_uniform_().

	Parameters

	
	arr (ndarray) – See quantize_uniform_().

	nb_bins (int) – See quantize_uniform_().

	to_bin_centers (bool) – See quantize_uniform_().

	Returns

	Array with quantized components.

	Return type

	ndarray

	
imgaug.augmenters.color.quantize_uniform_(arr, nb_bins, to_bin_centers=True)

	Quantize an array into N equally-sized bins in-place.

This can be used to quantize/posterize an image into N colors.

For uint8 arrays the equation is floor(v/q)*q + q/2 with
q = 256/N, where v is a pixel intensity value and N is
the target number of bins (roughly matches number of colors) after
quantization.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	arr (ndarray) – Array to quantize, usually an image. Expected to be of shape (H,W)
or (H,W,C) with C usually being 1 or 3.
This array may be changed in-place.

	nb_bins (int) – Number of equally-sized bins to quantize into. This corresponds to
the maximum number of colors in an output image.

	to_bin_centers (bool) – Whether to quantize each bin (a, b) to a + (b-a)/2 (center
of bin, True) or to a (lower boundary, False).

	Returns

	Array with quantized components. This may be the input array with
components changed in-place.

	Return type

	ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3))
>>> image_quantized = iaa.quantize_uniform_(np.copy(image), 6)

Generates a 4x4 image with 3 channels, containing consecutive
values from 0 to 4*4*3, leading to an equal number of colors.
Each component is then quantized into one of 6 bins that regularly
split up the value range of [0..255], i.e. the resolution w.r.t. to
the value range is reduced.

	
imgaug.augmenters.color.quantize_uniform_to_n_bits(arr, nb_bits)

	Reduce each component in an array to a maximum number of bits.

See quantize_uniform_to_n_bits() for details.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits_().

	Parameters

	
	arr (ndarray) – See quantize_uniform_to_n_bits().

	nb_bits (int) – See quantize_uniform_to_n_bits().

	Returns

	Array with quantized components.

	Return type

	ndarray

	
imgaug.augmenters.color.quantize_uniform_to_n_bits_(arr, nb_bits)

	Reduce each component in an array to a maximum number of bits in-place.

This operation sets the 8-B highest frequency (rightmost) bits to zero.
For B bits this is equivalent to changing each component’s intensity
value v to v' = v & (2**(8-B) - 1), e.g. for B=3 this results
in v' = c & ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111 1100.

This is identical to quantize_uniform() with nb_bins=2**nb_bits
and to_bin_centers=False.

This function produces the same outputs as PIL.ImageOps.posterize(),
but is significantly faster.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_().

	Parameters

	
	arr (ndarray) – Array to quantize, usually an image. Expected to be of shape (H,W)
or (H,W,C) with C usually being 1 or 3.
This array may be changed in-place.

	nb_bits (int) – Number of bits to keep in each array component.

	Returns

	Array with quantized components. This may be the input array with
components changed in-place.

	Return type

	ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3))
>>> image_quantized = iaa.quantize_uniform_to_n_bits_(np.copy(image), 6)

Generates a 4x4 image with 3 channels, containing consecutive
values from 0 to 4*4*3, leading to an equal number of colors.
These colors are then quantized so that each component’s 8-6=2
rightmost bits are set to zero.

imgaug.augmenters.contrast

Augmenters that perform contrast changes.

List of augmenters:

	GammaContrast

	SigmoidContrast

	LogContrast

	LinearContrast

	AllChannelsHistogramEqualization

	HistogramEqualization

	AllChannelsCLAHE

	CLAHE

	
class imgaug.augmenters.contrast.AllChannelsCLAHE(clip_limit=(0.1, 8), tile_grid_size_px=(3, 12), tile_grid_size_px_min=3, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply CLAHE to all channels of images in their original colorspaces.

CLAHE (Contrast Limited Adaptive Histogram Equalization) performs
histogram equilization within image patches, i.e. over local
neighbourhoods.

In contrast to imgaug.augmenters.contrast.CLAHE, this augmenter
operates directly on all channels of the input images. It does not
perform any colorspace transformations and does not focus on specific
channels (e.g. L in Lab colorspace).

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: no (2)

	int16: no (2)

	int32: no (2)

	int64: no (2)

	float16: no (2)

	float32: no (2)

	float64: no (2)

	float128: no (1)

	bool: no (1)

	
	rejected by cv2

	
	results in error in cv2: cv2.error:
OpenCV(3.4.2) (...)/clahe.cpp:351: error: (-215:Assertion
failed) src.type() == (((0) & ((1 << 3) - 1)) + (((1)-1) << 3))
|| _src.type() == (((2) & ((1 << 3) - 1)) + (((1)-1) << 3)) in
function 'apply'

	Parameters

	
	clip_limit (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See imgaug.augmenters.contrast.CLAHE.

	tile_grid_size_px (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or tuple of imgaug.parameters.StochasticParameter, optional) – See imgaug.augmenters.contrast.CLAHE.

	tile_grid_size_px_min (int, optional) – See imgaug.augmenters.contrast.CLAHE.

	per_channel (bool or float, optional) – Whether to use the same value for all channels (False) or to
sample a new value for each channel (True). If this value is a
float p, then for p percent of all images per_channel will
be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AllChannelsCLAHE()

Create an augmenter that applies CLAHE to all channels of input images.

>>> aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10))

Same as in the previous example, but the clip_limit used by CLAHE is
uniformly sampled per image from the interval [1, 10]. Some images
will therefore have stronger contrast than others (i.e. higher clip limit
values).

>>> aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True)

Same as in the previous example, but the clip_limit is sampled per
image and channel, leading to different levels of contrast for each
channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.contrast.AllChannelsHistogramEqualization(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply Histogram Eq. to all channels of images in their original colorspaces.

In contrast to imgaug.augmenters.contrast.HistogramEqualization, this
augmenter operates directly on all channels of the input images. It does
not perform any colorspace transformations and does not focus on specific
channels (e.g. L in Lab colorspace).

Supported dtypes:

	uint8: yes; fully tested

	uint16: no (1)

	uint32: no (2)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (2)

	float32: no (1)

	float64: no (1)

	float128: no (2)

	bool: no (1)

	
	causes cv2 error: cv2.error:
OpenCV(3.4.5) (...)/histogram.cpp:3345: error: (-215:Assertion
failed) src.type() == CV_8UC1 in function 'equalizeHist'

	
	rejected by cv2

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AllChannelsHistogramEqualization()

Create an augmenter that applies histogram equalization to all channels
of input images in the original colorspaces.

>>> aug = iaa.Alpha((0.0, 1.0), iaa.AllChannelsHistogramEqualization())

Same as in the previous example, but alpha-blends the contrast-enhanced
augmented images with the original input images using random blend
strengths. This leads to random strengths of the contrast adjustment.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.contrast.CLAHE(clip_limit=(0.1, 8), tile_grid_size_px=(3, 12), tile_grid_size_px_min=3, from_colorspace='RGB', to_colorspace='Lab', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply CLAHE to L/V/L channels in HLS/HSV/Lab colorspaces.

This augmenter applies CLAHE (Contrast Limited Adaptive Histogram
Equalization) to images, a form of histogram equalization that normalizes
within local image patches.
The augmenter transforms input images to a target colorspace (e.g.
Lab), extracts an intensity-related channel from the converted
images (e.g. L for Lab), applies CLAHE to the channel and then
converts the resulting image back to the original colorspace.

Grayscale images (images without channel axis or with only one channel
axis) are automatically handled, from_colorspace does not have to be
adjusted for them. For images with four channels (e.g. RGBA), the
fourth channel is ignored in the colorspace conversion (e.g. from an
RGBA image, only the RGB part is converted, normalized, converted
back and concatenated with the input A channel). Images with unusual
channel numbers (2, 5 or more than 5) are normalized channel-by-channel
(same behaviour as AllChannelsCLAHE, though a warning will be raised).

If you want to apply CLAHE to each channel of the original input image’s
colorspace (without any colorspace conversion), use
imgaug.augmenters.contrast.AllChannelsCLAHE instead.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	This augmenter uses
ChangeColorspace, which is
currently limited to uint8.

	Parameters

	
	clip_limit (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Clipping limit. Higher values result in stronger contrast. OpenCV
uses a default of 40, though values around 5 seem to already
produce decent contrast.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the range [a, b]
will be used per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	tile_grid_size_px (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or tuple of imgaug.parameters.StochasticParameter, optional) –

Kernel size, i.e. size of each local neighbourhood in pixels.

	If an int, then that value will be used for all images for
both kernel height and width.

	If a tuple (a, b), then a value from the discrete interval
[a..b] will be uniformly sampled per image.

	If a list, then a random value will be sampled from that list
per image and used for both kernel height and width.

	If a StochasticParameter, then a value will be sampled per
image from that parameter per image and used for both kernel
height and width.

	If a tuple of tuple of int given as ((a, b), (c, d)),
then two values will be sampled independently from the discrete
ranges [a..b] and [c..d] per image and used as the
kernel height and width.

	If a tuple of lists of int, then two values will be sampled
independently per image, one from the first list and one from
the second, and used as the kernel height and width.

	If a tuple of StochasticParameter, then two values will be
sampled indepdently per image, one from the first parameter and
one from the second, and used as the kernel height and width.

	tile_grid_size_px_min (int, optional) – Minimum kernel size in px, per axis. If the sampling results in a
value lower than this minimum, it will be clipped to this value.

	from_colorspace ({“RGB”, “BGR”, “HSV”, “HLS”, “Lab”}, optional) – Colorspace of the input images.
If any input image has only one or zero channels, this setting will
be ignored and it will be assumed that the input is grayscale.
If a fourth channel is present in an input image, it will be removed
before the colorspace conversion and later re-added.
See also change_colorspace_() for
details.

	to_colorspace ({“Lab”, “HLS”, “HSV”}, optional) – Colorspace in which to perform CLAHE. For Lab, CLAHE will only be
applied to the first channel (L), for HLS to the
second (L) and for HSV to the third (V). To apply CLAHE
to all channels of an input image (without colorspace conversion),
see imgaug.augmenters.contrast.AllChannelsCLAHE.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CLAHE()

Create a standard CLAHE augmenter.

>>> aug = iaa.CLAHE(clip_limit=(1, 10))

Create a CLAHE augmenter with a clip limit uniformly sampled from
[1..10], where 1 is rather low contrast and 10 is rather
high contrast.

>>> aug = iaa.CLAHE(tile_grid_size_px=(3, 21))

Create a CLAHE augmenter with kernel sizes of SxS, where S is
uniformly sampled from [3..21]. Sampling happens once per image.

>>> aug = iaa.CLAHE(
>>> tile_grid_size_px=iap.Discretize(iap.Normal(loc=7, scale=2)),
>>> tile_grid_size_px_min=3)

Create a CLAHE augmenter with kernel sizes of SxS, where S is
sampled from N(7, 2), but does not go below 3.

>>> aug = iaa.CLAHE(tile_grid_size_px=((3, 21), [3, 5, 7]))

Create a CLAHE augmenter with kernel sizes of HxW, where H is
uniformly sampled from [3..21] and W is randomly picked from the
list [3, 5, 7].

>>> aug = iaa.CLAHE(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=iaa.CSPACE_HSV)

Create a CLAHE augmenter that converts images from BGR colorspace to
HSV colorspace and then applies the local histogram equalization to the
V channel of the images (before converting back to BGR).
Alternatively, Lab (default) or HLS can be used as the target
colorspace. Grayscale images (no channels / one channel) are never
converted and are instead directly normalized (i.e. from_colorspace
does not have to be changed for them).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
BGR = 'BGR'

	

	
HLS = 'HLS'

	

	
HSV = 'HSV'

	

	
Lab = 'Lab'

	

	
RGB = 'RGB'

	

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.contrast.GammaContrast(gamma=(0.7, 1.7), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust image contrast by scaling pixel values to 255*((v/255)**gamma).

Values in the range gamma=(0.5, 2.0) seem to be sensible.

Supported dtypes:

See adjust_contrast_gamma().

	Parameters

	
	gamma (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) –

Exponent for the contrast adjustment. Higher values darken the image.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the range [a, b]
will be used per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	per_channel (bool or float, optional) – Whether to use the same value for all channels (False) or to
sample a new value for each channel (True). If this value is a
float p, then for p percent of all images per_channel will
be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.GammaContrast((0.5, 2.0))

Modify the contrast of images according to 255*((v/255)**gamma),
where v is a pixel value and gamma is sampled uniformly from
the interval [0.5, 2.0] (once per image).

>>> aug = iaa.GammaContrast((0.5, 2.0), per_channel=True)

Same as in the previous example, but gamma is sampled once per image
and channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.contrast.HistogramEqualization(from_colorspace='RGB', to_colorspace='Lab', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply Histogram Eq. to L/V/L channels of images in HLS/HSV/Lab colorspaces.

This augmenter is similar to imgaug.augmenters.contrast.CLAHE.

The augmenter transforms input images to a target colorspace (e.g.
Lab), extracts an intensity-related channel from the converted images
(e.g. L for Lab), applies Histogram Equalization to the channel
and then converts the resulting image back to the original colorspace.

Grayscale images (images without channel axis or with only one channel
axis) are automatically handled, from_colorspace does not have to be
adjusted for them. For images with four channels (e.g. RGBA), the fourth
channel is ignored in the colorspace conversion (e.g. from an RGBA
image, only the RGB part is converted, normalized, converted back and
concatenated with the input A channel). Images with unusual channel
numbers (2, 5 or more than 5) are normalized channel-by-channel (same
behaviour as AllChannelsHistogramEqualization, though a warning will
be raised).

If you want to apply HistogramEqualization to each channel of the original
input image’s colorspace (without any colorspace conversion), use
imgaug.augmenters.contrast.AllChannelsHistogramEqualization instead.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	This augmenter uses AllChannelsHistogramEqualization,
which only supports uint8.

	Parameters

	
	from_colorspace ({“RGB”, “BGR”, “HSV”, “HLS”, “Lab”}, optional) – Colorspace of the input images.
If any input image has only one or zero channels, this setting will be
ignored and it will be assumed that the input is grayscale.
If a fourth channel is present in an input image, it will be removed
before the colorspace conversion and later re-added.
See also change_colorspace_() for
details.

	to_colorspace ({“Lab”, “HLS”, “HSV”}, optional) – Colorspace in which to perform Histogram Equalization. For Lab,
the equalization will only be applied to the first channel (L),
for HLS to the second (L) and for HSV to the third (V).
To apply histogram equalization to all channels of an input image
(without colorspace conversion), see
imgaug.augmenters.contrast.AllChannelsHistogramEqualization.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.HistogramEqualization()

Create an augmenter that converts images to HLS/HSV/Lab
colorspaces, extracts intensity-related channels (i.e. L/V/L),
applies histogram equalization to these channels and converts back to the
input colorspace.

>>> aug = iaa.Alpha((0.0, 1.0), iaa.HistogramEqualization())

Same as in the previous example, but alpha blends the result, leading
to various strengths of contrast normalization.

>>> aug = iaa.HistogramEqualization(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=iaa.CSPACE_HSV)

Same as in the first example, but the colorspace of input images has
to be BGR (instead of default RGB) and the histogram equalization
is applied to the V channel in HSV colorspace.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
BGR = 'BGR'

	

	
HLS = 'HLS'

	

	
HSV = 'HSV'

	

	
Lab = 'Lab'

	

	
RGB = 'RGB'

	

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.contrast.LinearContrast(alpha=(0.6, 1.4), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust contrast by scaling each pixel to 127 + alpha*(v-127).

Supported dtypes:

See adjust_contrast_linear().

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier to linearly pronounce (>1.0), dampen (0.0 to
1.0) or invert (<0.0) the difference between each pixel value
and the dtype’s center value, e.g. 127 for uint8.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the interval [a, b]
will be used per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	per_channel (bool or float, optional) – Whether to use the same value for all channels (False) or to
sample a new value for each channel (True). If this value is a
float p, then for p percent of all images per_channel will
be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.LinearContrast((0.4, 1.6))

Modify the contrast of images according to 127 + alpha*(v-127)`,
where v is a pixel value and alpha is sampled uniformly from the
interval [0.4, 1.6] (once per image).

>>> aug = iaa.LinearContrast((0.4, 1.6), per_channel=True)

Same as in the previous example, but alpha is sampled once per image
and channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.contrast.LogContrast(gain=(0.4, 1.6), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust image contrast by scaling pixels to 255*gain*log_2(1+v/255).

This augmenter is fairly similar to
imgaug.augmenters.arithmetic.Multiply.

Supported dtypes:

See adjust_contrast_log().

	Parameters

	
	gain (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier for the logarithm result. Values around 1.0 lead to a
contrast-adjusted images. Values above 1.0 quickly lead to
partially broken images due to exceeding the datatype’s value range.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the interval [a, b]
will uniformly sampled be used per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	per_channel (bool or float, optional) – Whether to use the same value for all channels (False) or to
sample a new value for each channel (True). If this value is a
float p, then for p percent of all images per_channel will
be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.LogContrast(gain=(0.6, 1.4))

Modify the contrast of images according to 255*gain*log_2(1+v/255),
where v is a pixel value and gain is sampled uniformly from the
interval [0.6, 1.4] (once per image).

>>> aug = iaa.LogContrast(gain=(0.6, 1.4), per_channel=True)

Same as in the previous example, but gain is sampled once per image
and channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.contrast.SigmoidContrast(gain=(5, 6), cutoff=(0.3, 0.6), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust image contrast to 255*1/(1+exp(gain*(cutoff-I_ij/255))).

Values in the range gain=(5, 20) and cutoff=(0.25, 0.75) seem to
be sensible.

A combination of gain=5.5 and cutof=0.45 is fairly close to
the identity function.

Supported dtypes:

See adjust_contrast_sigmoid().

	Parameters

	
	gain (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier for the sigmoid function’s output.
Higher values lead to quicker changes from dark to light pixels.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the interval
[a, b] will be sampled uniformly per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	cutoff (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Cutoff that shifts the sigmoid function in horizontal direction.
Higher values mean that the switch from dark to light pixels happens
later, i.e. the pixels will remain darker.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value from the range [a, b]
will be used per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then a value will be sampled per
image from that parameter.

	per_channel (bool or float, optional) – Whether to use the same value for all channels (False) or to
sample a new value for each channel (True). If this value is a
float p, then for p percent of all images per_channel will
be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6))

Modify the contrast of images according to
255*1/(1+exp(gain*(cutoff-v/255))), where v is a pixel value,
gain is sampled uniformly from the interval [3, 10] (once per
image) and cutoff is sampled uniformly from the interval
[0.4, 0.6] (also once per image).

>>> aug = iaa.SigmoidContrast(
>>> gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True)

Same as in the previous example, but gain and cutoff are each
sampled once per image and channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
imgaug.augmenters.contrast.adjust_contrast_gamma(arr, gamma)

	Adjust image contrast by scaling pixel values to 255*((v/255)**gamma).

Supported dtypes:

	uint8: yes; fully tested (1) (2) (3)

	uint16: yes; tested (2) (3)

	uint32: yes; tested (2) (3)

	uint64: yes; tested (2) (3) (4)

	int8: limited; tested (2) (3) (5)

	int16: limited; tested (2) (3) (5)

	int32: limited; tested (2) (3) (5)

	int64: limited; tested (2) (3) (4) (5)

	float16: limited; tested (5)

	float32: limited; tested (5)

	float64: limited; tested (5)

	float128: no (6)

	bool: no (7)

	
	Handled by cv2. Other dtypes are handled by skimage.

	
	Normalization is done as I_ij/max, where max is the
maximum value of the dtype, e.g. 255 for uint8. The
normalization is reversed afterwards, e.g. result*255 for
uint8.

	
	Integer-like values are not rounded after applying the contrast
adjustment equation (before inverting the normalization to
[0.0, 1.0] space), i.e. projection from continuous
space to discrete happens according to floor function.

	
	Note that scikit-image doc says that integers are converted to
float64 values before applying the contrast normalization
method. This might lead to inaccuracies for large 64bit integer
values. Tests showed no indication of that happening though.

	
	Must not contain negative values. Values >=0 are fully supported.

	
	Leads to error in scikit-image.

	
	Does not make sense for contrast adjustments.

	Parameters

	
	arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

	gamma (number) – Exponent for the contrast adjustment. Higher values darken the image.

	Returns

	Array with adjusted contrast.

	Return type

	numpy.ndarray

	
imgaug.augmenters.contrast.adjust_contrast_linear(arr, alpha)

	Adjust contrast by scaling each pixel to 127 + alpha*(v-127).

Supported dtypes:

	uint8: yes; fully tested (1) (2)

	uint16: yes; tested (2)

	uint32: yes; tested (2)

	uint64: no (3)

	int8: yes; tested (2)

	int16: yes; tested (2)

	int32: yes; tested (2)

	int64: no (2)

	float16: yes; tested (2)

	float32: yes; tested (2)

	float64: yes; tested (2)

	float128: no (2)

	bool: no (4)

	
	Handled by cv2. Other dtypes are handled by raw numpy.

	
	Only tested for reasonable alphas with up to a value of
around 100.

	
	Conversion to float64 is done during augmentation, hence
uint64, int64, and float128 support cannot be
guaranteed.

	
	Does not make sense for contrast adjustments.

	Parameters

	
	arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

	alpha (number) – Multiplier to linearly pronounce (>1.0), dampen (0.0 to
1.0) or invert (<0.0) the difference between each pixel value
and the dtype’s center value, e.g. 127 for uint8.

	Returns

	Array with adjusted contrast.

	Return type

	numpy.ndarray

	
imgaug.augmenters.contrast.adjust_contrast_log(arr, gain)

	Adjust image contrast by scaling pixels to 255*gain*log_2(1+v/255).

Supported dtypes:

	uint8: yes; fully tested (1) (2) (3)

	uint16: yes; tested (2) (3)

	uint32: no; tested (2) (3) (8)

	uint64: no; tested (2) (3) (4) (8)

	int8: limited; tested (2) (3) (5)

	int16: limited; tested (2) (3) (5)

	int32: no; tested (2) (3) (5) (8)

	int64: no; tested (2) (3) (4) (5) (8)

	float16: limited; tested (5)

	float32: limited; tested (5)

	float64: limited; tested (5)

	float128: no (6)

	bool: no (7)

	
	Handled by cv2. Other dtypes are handled by skimage.

	
	Normalization is done as I_ij/max, where max is the
maximum value of the dtype, e.g. 255 for uint8. The
normalization is reversed afterwards, e.g. result*255 for
uint8.

	
	Integer-like values are not rounded after applying the contrast
adjustment equation (before inverting the normalization
to [0.0, 1.0] space), i.e. projection from continuous
space to discrete happens according to floor function.

	
	Note that scikit-image doc says that integers are converted to
float64 values before applying the contrast normalization
method. This might lead to inaccuracies for large 64bit integer
values. Tests showed no indication of that happening though.

	
	Must not contain negative values. Values >=0 are fully supported.

	
	Leads to error in scikit-image.

	
	Does not make sense for contrast adjustments.

	
	No longer supported since numpy 1.17. Previously: ‘yes’ for
uint32, uint64; ‘limited’ for int32, int64.

	Parameters

	
	arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

	gain (number) – Multiplier for the logarithm result. Values around 1.0 lead to a
contrast-adjusted images. Values above 1.0 quickly lead to partially
broken images due to exceeding the datatype’s value range.

	Returns

	Array with adjusted contrast.

	Return type

	numpy.ndarray

	
imgaug.augmenters.contrast.adjust_contrast_sigmoid(arr, gain, cutoff)

	Adjust image contrast to 255*1/(1+exp(gain*(cutoff-I_ij/255))).

Supported dtypes:

	uint8: yes; fully tested (1) (2) (3)

	uint16: yes; tested (2) (3)

	uint32: yes; tested (2) (3)

	uint64: yes; tested (2) (3) (4)

	int8: limited; tested (2) (3) (5)

	int16: limited; tested (2) (3) (5)

	int32: limited; tested (2) (3) (5)

	int64: limited; tested (2) (3) (4) (5)

	float16: limited; tested (5)

	float32: limited; tested (5)

	float64: limited; tested (5)

	float128: no (6)

	bool: no (7)

	
	Handled by cv2. Other dtypes are handled by skimage.

	
	Normalization is done as I_ij/max, where max is the
maximum value of the dtype, e.g. 255 for uint8. The
normalization is reversed afterwards, e.g. result*255
for uint8.

	
	Integer-like values are not rounded after applying the contrast
adjustment equation before inverting the normalization
to [0.0, 1.0] space), i.e. projection from continuous
space to discrete happens according to floor function.

	
	Note that scikit-image doc says that integers are converted to
float64 values before applying the contrast normalization
method. This might lead to inaccuracies for large 64bit integer
values. Tests showed no indication of that happening though.

	
	Must not contain negative values. Values >=0 are fully supported.

	
	Leads to error in scikit-image.

	
	Does not make sense for contrast adjustments.

	Parameters

	
	arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

	gain (number) – Multiplier for the sigmoid function’s output.
Higher values lead to quicker changes from dark to light pixels.

	cutoff (number) – Cutoff that shifts the sigmoid function in horizontal direction.
Higher values mean that the switch from dark to light pixels happens
later, i.e. the pixels will remain darker.

	Returns

	Array with adjusted contrast.

	Return type

	numpy.ndarray

imgaug.augmenters.convolutional

Augmenters that are based on applying convolution kernels to images.

List of augmenters:

	Convolve

	Sharpen

	Emboss

	EdgeDetect

	DirectedEdgeDetect

For MotionBlur, see blur.py.

	
class imgaug.augmenters.convolutional.Convolve(matrix=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply a convolution to input images.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested (3)

	int16: yes; tested

	int32: no (2)

	int64: no (2)

	float16: yes; tested (4)

	float32: yes; tested

	float64: yes; tested

	float128: no (1)

	bool: yes; tested (4)

	
	rejected by cv2.filter2D().

	
	causes error: cv2.error: OpenCV(3.4.2) (…)/filter.cpp:4487:
error: (-213:The function/feature is not implemented)
Unsupported combination of source format (=1), and destination
format (=1) in function ‘getLinearFilter’.

	
	mapped internally to int16.

	
	mapped internally to float32.

	Parameters

	
	matrix (None or (H, W) ndarray or imgaug.parameters.StochasticParameter or callable, optional) –

The weight matrix of the convolution kernel to apply.

	If None, the input images will not be changed.

	If a 2D numpy array, that array will always be used for all
images and channels as the kernel.

	If a callable, that method will be called for each image
via parameter(image, C, random_state). The function must
either return a list of C matrices (i.e. one per channel)
or a 2D numpy array (will be used for all channels) or a
3D HxWxC numpy array. If a list is returned, each entry may
be None, which will result in no changes to the respective
channel.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> matrix = np.array([[0, -1, 0],
>>> [-1, 4, -1],
>>> [0, -1, 0]])
>>> aug = iaa.Convolve(matrix=matrix)

Convolves all input images with the kernel shown in the matrix
variable.

>>> def gen_matrix(image, nb_channels, random_state):
>>> matrix_A = np.array([[0, -1, 0],
>>> [-1, 4, -1],
>>> [0, -1, 0]])
>>> matrix_B = np.array([[0, 1, 0],
>>> [1, -4, 1],
>>> [0, 1, 0]])
>>> if image.shape[0] % 2 == 0:
>>> return [matrix_A] * nb_channels
>>> else:
>>> return [matrix_B] * nb_channels
>>> aug = iaa.Convolve(matrix=gen_matrix)

Convolves images that have an even height with matrix A and images
having an odd height with matrix B.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.convolutional.DirectedEdgeDetect(alpha=(0.0, 0.75), direction=(0.0, 1.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.convolutional.Convolve

Detect edges from specified angles and alpha-blend with the input image.

This augmenter first detects edges along a certain angle.
Usually, edges are detected in x- or y-direction, while here the edge
detection kernel is rotated to match a specified angle.
The result of applying the kernel is a black (non-edges) and white (edges)
image. That image is alpha-blended with the input image.

Supported dtypes:

See Convolve.

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Blending factor of the edge image. At 0.0, only the original
image is visible, at 1.0 only the edge image is visible.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value will be sampled from the
interval [a, b] per image.

	If a list, a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from that
parameter per image.

	direction (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Angle (in degrees) of edges to pronounce, where 0 represents
0 degrees and 1.0 represents 360 degrees (both clockwise,
starting at the top). Default value is (0.0, 1.0), i.e. pick a
random angle per image.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value will be sampled from the
interval [a, b] will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=0)

Turn input images into edge images in which edges are detected from
the top side of the image (i.e. the top sides of horizontal edges are
part of the edge image, while vertical edges are ignored).

>>> aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=90/360)

Same as before, but edges are detected from the right. Horizontal edges
are now ignored.

>>> aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=(0.0, 1.0))

Same as before, but edges are detected from a random angle sampled
uniformly from the interval [0deg, 360deg].

>>> aug = iaa.DirectedEdgeDetect(alpha=(0.0, 0.3), direction=0)

Similar to the previous examples, but here the edge image is alpha-blended
with the input image. The result is a mixture between the edge image and
the input image. The blending factor is randomly sampled between 0%
and 30%.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.convolutional.EdgeDetect(alpha=(0.0, 0.75), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.convolutional.Convolve

Generate a black & white edge image and alpha-blend it with the input image.

Supported dtypes:

See Convolve.

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Blending factor of the edge image. At 0.0, only the original
image is visible, at 1.0 only the edge image is visible.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value will be sampled from the
interval [a, b] per image.

	If a list, a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from that
parameter per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.EdgeDetect(alpha=(0.0, 1.0))

Detect edges in an image, mark them as black (non-edge) and white (edges)
and alpha-blend the result with the original input image using a random
blending factor between 0% and 100%.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.convolutional.Emboss(alpha=(0.0, 1.0), strength=(0.25, 1.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.convolutional.Convolve

Emboss images and alpha-blend the result with the original input images.

The embossed version pronounces highlights and shadows,
letting the image look as if it was recreated on a metal plate (“embossed”).

Supported dtypes:

See Convolve.

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Blending factor of the embossed image. At 0.0, only the original
image is visible, at 1.0 only its embossed version is visible.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value will be sampled from the
interval [a, b] per image.

	If a list, a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from that
parameter per image.

	strength (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Parameter that controls the strength of the embossing.
Sane values are somewhere in the interval [0.0, 2.0] with 1.0
being the standard embossing effect. Default value is 1.0.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value will be sampled from the
interval [a, b] per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Emboss(alpha=(0.0, 1.0), strength=(0.5, 1.5))

Emboss an image with a strength sampled uniformly from the interval
[0.5, 1.5] and alpha-blend the result with the original input image
using a random blending factor between 0% and 100%.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.convolutional.Sharpen(alpha=(0.0, 0.2), lightness=(0.8, 1.2), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.convolutional.Convolve

Sharpen images and alpha-blend the result with the original input images.

Supported dtypes:

See Convolve.

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Blending factor of the sharpened image. At 0.0, only the original
image is visible, at 1.0 only its sharpened version is visible.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value will be sampled from the
interval [a, b] per image.

	If a list, a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from that
parameter per image.

	lightness (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Lightness/brightness of the sharped image.
Sane values are somewhere in the interval [0.5, 2.0].
The value 0.0 results in an edge map. Values higher than 1.0
create bright images. Default value is 1.0.

	If a number, exactly that value will always be used.

	If a tuple (a, b), a random value will be sampled from the
interval [a, b] per image.

	If a list, a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from that
parameter per image.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sharpen(alpha=(0.0, 1.0))

Sharpens input images and blends the sharpened image with the input image
using a random blending factor between 0% and 100% (uniformly
sampled).

>>> aug = iaa.Sharpen(alpha=(0.0, 1.0), lightness=(0.75, 2.0))

Sharpens input images with a variable lightness sampled uniformly from
the interval [0.75, 2.0] and with a fully random blending factor
(as in the above example).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

imgaug.augmenters.debug

Augmenters that help with debugging.

List of augmenters:

	SaveDebugImageEveryNBatches

Added in 0.4.0.

	
class imgaug.augmenters.debug.SaveDebugImageEveryNBatches(destination, interval, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.debug._SaveDebugImage

Visualize data in batches and save corresponding plots to a folder.

Added in 0.4.0.

Supported dtypes:

See draw_debug_image().

	Parameters

	
	destination (str or _IImageDestination) – Path to a folder. The saved images will follow a filename pattern
of batch_<batch_id>.png. The latest image will additionally be
saved to latest.png.

	interval (int) – Interval in batches. If set to N, every N th batch an
image will be generated and saved, starting with the first observed
batch.
Note that the augmenter only counts batches that it sees. If it is
executed conditionally or re-instantiated, it may not see all batches
or the counter may be wrong in other ways.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> import tempfile
>>> folder_path = tempfile.mkdtemp()
>>> seq = iaa.Sequential([
>>> iaa.Sequential([
>>> iaa.Fliplr(0.5),
>>> iaa.Crop(px=(0, 16))
>>>], random_order=True),
>>> iaa.SaveDebugImageEveryNBatches(folder_path, 100)
>>>])

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	Get the parameters of this augmenter.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	Get the parameters of this augmenter.

	Returns

	List of parameters of arbitrary types (usually child class
of StochasticParameter, but not
guaranteed to be).

	Return type

	list

	
imgaug.augmenters.debug.draw_debug_image(images, heatmaps=None, segmentation_maps=None, keypoints=None, bounding_boxes=None, polygons=None, line_strings=None)

	Generate a debug image grid of a single batch and various datatypes.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; tested

	uint16: ?

	uint32: ?

	uint64: ?

	int8: ?

	int16: ?

	int32: ?

	int64: ?

	float16: ?

	float32: ?

	float64: ?

	float128: ?

	bool: ?

	Parameters

	
	images (ndarray or list of ndarray) – Images in the batch. Must always be provided. Batches without images
cannot be visualized.

	heatmaps (None or list of imgaug.augmentables.heatmaps.HeatmapsOnImage, optional) – Heatmaps on the provided images.

	segmentation_maps (None or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage, optional) – Segmentation maps on the provided images.

	keypoints (None or list of imgaug.augmentables.kps.KeypointsOnImage, optional) – Keypoints on the provided images.

	bounding_boxes (None or list of imgaug.augmentables.bbs.BoundingBoxesOnImage, optional) – Bounding boxes on the provided images.

	polygons (None or list of imgaug.augmentables.polys.PolygonsOnImage, optional) – Polygons on the provided images.

	line_strings (None or list of imgaug.augmentables.lines.LineStringsOnImage, optional) – Line strings on the provided images.

	Returns

	Visualized batch as RGB image.

	Return type

	ndarray

Examples

>>> import numpy as np
>>> import imgaug.augmenters as iaa
>>> image = np.zeros((64, 64, 3), dtype=np.uint8)
>>> debug_image = iaa.draw_debug_image(images=[image, image])

Generate a debug image for two empty images.

>>> from imgaug.augmentables.kps import KeypointsOnImage
>>> kpsoi = KeypointsOnImage.from_xy_array([(10.5, 20.5), (30.5, 30.5)],
>>> shape=image.shape)
>>> debug_image = iaa.draw_debug_image(images=[image, image],
>>> keypoints=[kpsoi, kpsoi])

Generate a debug image for two empty images, each having two keypoints
drawn on them.

>>> from imgaug.augmentables.batches import UnnormalizedBatch
>>> segmap_arr = np.zeros((32, 32, 1), dtype=np.int32)
>>> kp_tuples = [(10.5, 20.5), (30.5, 30.5)]
>>> batch = UnnormalizedBatch(images=[image, image],
>>> segmentation_maps=[segmap_arr, segmap_arr],
>>> keypoints=[kp_tuples, kp_tuples])
>>> batch = batch.to_normalized_batch()
>>> debug_image = iaa.draw_debug_image(
>>> images=batch.images_unaug,
>>> segmentation_maps=batch.segmentation_maps_unaug,
>>> keypoints=batch.keypoints_unaug)

Generate a debug image for two empty images, each having an empty
segmentation map and two keypoints drawn on them. This example uses
UnnormalizedBatch to show how to mostly evade going through imgaug
classes.

imgaug.augmenters.edges

Augmenters that deal with edge detection.

List of augmenters:

	Canny

EdgeDetect and
DirectedEdgeDetect are currently
still in convolutional.py.

	
class imgaug.augmenters.edges.Canny(alpha=(0.0, 1.0), hysteresis_thresholds=((60, 140), (160, 240)), sobel_kernel_size=(3, 7), colorizer=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply a canny edge detector to input images.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no; not tested

	uint32: no; not tested

	uint64: no; not tested

	int8: no; not tested

	int16: no; not tested

	int32: no; not tested

	int64: no; not tested

	float16: no; not tested

	float32: no; not tested

	float64: no; not tested

	float128: no; not tested

	bool: no; not tested

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Blending factor to use in alpha blending.
A value close to 1.0 means that only the edge image is visible.
A value close to 0.0 means that only the original image is visible.
A value close to 0.5 means that the images are merged according to
0.5*image + 0.5*edge_image.
If a sample from this parameter is 0, no action will be performed for
the corresponding image.

	If an int or float, exactly that value will be used.

	If a tuple (a, b), a random value from the range
a <= x <= b will be sampled per image.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, a value will be sampled from the
parameter per image.

	hysteresis_thresholds (number or tuple of number or list of number or imgaug.parameters.StochasticParameter or tuple of tuple of number or tuple of list of number or tuple of imgaug.parameters.StochasticParameter, optional) – Min and max values to use in hysteresis thresholding.
(This parameter seems to have not very much effect on the results.)
Either a single parameter or a tuple of two parameters.
If a single parameter is provided, the sampling happens once for all
images with (N,2) samples being requested from the parameter,
where each first value denotes the hysteresis minimum and each second
the maximum.
If a tuple of two parameters is provided, one sampling of (N,) values
is independently performed per parameter (first parameter: hysteresis
minimum, second: hysteresis maximum).

	If this is a single number, both min and max value will always be
exactly that value.

	If this is a tuple of numbers (a, b), two random values from
the range a <= x <= b will be sampled per image.

	If this is a list, two random values will be sampled from that
list per image.

	If this is a StochasticParameter, two random values will be
sampled from that parameter per image.

	If this is a tuple (min, max) with min and max
both not being numbers, they will be treated according to the
rules above (i.e. may be a number, tuple, list or
StochasticParameter). A single value will be sampled per image
and parameter.

	sobel_kernel_size (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Kernel size of the sobel operator initially applied to each image.
This corresponds to apertureSize in cv2.Canny().
If a sample from this parameter is <=1, no action will be performed
for the corresponding image.
The maximum for this parameter is 7 (inclusive). Higher values are
not accepted by OpenCV.
If an even value v is sampled, it is automatically changed to
v-1.

	If this is a single integer, the kernel size always matches that
value.

	If this is a tuple of integers (a, b), a random discrete
value will be sampled from the range a <= x <= b per image.

	If this is a list, a random value will be sampled from that
list per image.

	If this is a StochasticParameter, a random value will be sampled
from that parameter per image.

	colorizer (None or imgaug.augmenters.edges.IBinaryImageColorizer, optional) – A strategy to convert binary edge images to color images.
If this is None, an instance of RandomColorBinaryImageColorizer
is created, which means that each edge image is converted into an
uint8 image, where edge and non-edge pixels each have a different
color that was uniformly randomly sampled from the space of all
uint8 colors.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Canny()

Create an augmenter that generates random blends between images and
their canny edge representations.

>>> aug = iaa.Canny(alpha=(0.0, 0.5))

Create a canny edge augmenter that generates edge images with a blending
factor of max 50%, i.e. the original (non-edge) image is always at
least partially visible.

>>> aug = iaa.Canny(
>>> alpha=(0.0, 0.5),
>>> colorizer=iaa.RandomColorsBinaryImageColorizer(
>>> color_true=255,
>>> color_false=0
>>>)
>>>)

Same as in the previous example, but the edge image always uses the
color white for edges and black for the background.

>>> aug = iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7])

Create a canny edge augmenter that initially preprocesses images using
a sobel filter with kernel size of either 3x3 or 13x13 and
alpha-blends with result using a strength of 50% (both images
equally visible) to 100% (only edge image visible).

>>> aug = iaa.Alpha(
>>> (0.0, 1.0),
>>> iaa.Canny(alpha=1),
>>> iaa.MedianBlur(13)
>>>)

Create an augmenter that blends a canny edge image with a median-blurred
version of the input image. The median blur uses a fixed kernel size
of 13x13 pixels.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.edges.IBinaryImageColorizer

	Bases: object

Interface for classes that convert binary masks to color images.

Methods

	colorize(self, image_binary, image_original, …)

	Convert a binary image to a colorized one.

	
colorize(self, image_binary, image_original, nth_image, random_state)

	Convert a binary image to a colorized one.

	Parameters

	
	image_binary (ndarray) – Boolean (H,W) image.

	image_original (ndarray) – Original (H,W,C) input image.

	nth_image (int) – Index of the image in the batch.

	random_state (imgaug.random.RNG) – Random state to use.

	Returns

	Colorized form of image_binary.

	Return type

	ndarray

	
class imgaug.augmenters.edges.RandomColorsBinaryImageColorizer(color_true=(0, 255), color_false=(0, 255))

	Bases: imgaug.augmenters.edges.IBinaryImageColorizer

Colorizer using two randomly sampled foreground/background colors.

	Parameters

	
	color_true (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Color of the foreground, i.e. all pixels in binary images that are
True. This parameter will be queried once per image to
generate (3,) samples denoting the color. (Note that even for
grayscale images three values will be sampled and converted to
grayscale according to 0.299*R + 0.587*G + 0.114*B. This is the
same equation that is also used by OpenCV.)

	If an int, exactly that value will always be used, i.e. every
color will be (v, v, v) for value v.

	If a tuple (a, b), three random values from the range
a <= x <= b will be sampled per image.

	If a list, then three random values will be sampled from that
list per image.

	If a StochasticParameter, three values will be sampled from the
parameter per image.

	color_false (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Analogous to color_true, but denotes the color for all pixels that
are False in the binary input image.

Methods

	colorize(self, image_binary, image_original, …)

	Convert a binary image to a colorized one.

	
colorize(self, image_binary, image_original, nth_image, random_state)

	Convert a binary image to a colorized one.

	Parameters

	
	image_binary (ndarray) – Boolean (H,W) image.

	image_original (ndarray) – Original (H,W,C) input image.

	nth_image (int) – Index of the image in the batch.

	random_state (imgaug.random.RNG) – Random state to use.

	Returns

	Colorized form of image_binary.

	Return type

	ndarray

imgaug.augmenters.flip

Augmenters that apply mirroring/flipping operations to images.

List of augmenters:

	Fliplr

	Flipud

	
class imgaug.augmenters.flip.Fliplr(p=1, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Flip/mirror input images horizontally.

Note

The default value for the probability is 0.0.
So, to flip all input images use Fliplr(1.0) and not just
Fliplr().

Supported dtypes:

See fliplr().

	Parameters

	
	p (number or imgaug.parameters.StochasticParameter, optional) – Probability of each image to get flipped.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Fliplr(0.5)

Flip 50 percent of all images horizontally.

>>> aug = iaa.Fliplr(1.0)

Flip all images horizontally.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.flip.Flipud(p=1, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Flip/mirror input images vertically.

Note

The default value for the probability is 0.0.
So, to flip all input images use Flipud(1.0) and not just
Flipud().

Supported dtypes:

See flipud().

	Parameters

	
	p (number or imgaug.parameters.StochasticParameter, optional) – Probability of each image to get flipped.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Flipud(0.5)

Flip 50 percent of all images vertically.

>>> aug = iaa.Flipud(1.0)

Flip all images vertically.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
imgaug.augmenters.flip.HorizontalFlip(*args, **kwargs)

	Alias for Fliplr.

	
imgaug.augmenters.flip.VerticalFlip(*args, **kwargs)

	Alias for Flipud.

	
imgaug.augmenters.flip.fliplr(arr)

	Flip an image-like array horizontally.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; fully tested

	uint32: yes; fully tested

	uint64: yes; fully tested

	int8: yes; fully tested

	int16: yes; fully tested

	int32: yes; fully tested

	int64: yes; fully tested

	float16: yes; fully tested

	float32: yes; fully tested

	float64: yes; fully tested

	float128: yes; fully tested

	bool: yes; fully tested

	Parameters

	arr (ndarray) – A 2D/3D (H, W, [C]) image array.

	Returns

	Horizontally flipped array.

	Return type

	ndarray

Examples

>>> import numpy as np
>>> import imgaug.augmenters.flip as flip
>>> arr = np.arange(16).reshape((4, 4))
>>> arr_flipped = flip.fliplr(arr)

Create a 4x4 array and flip it horizontally.

	
imgaug.augmenters.flip.flipud(arr)

	Flip an image-like array vertically.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; fully tested

	uint32: yes; fully tested

	uint64: yes; fully tested

	int8: yes; fully tested

	int16: yes; fully tested

	int32: yes; fully tested

	int64: yes; fully tested

	float16: yes; fully tested

	float32: yes; fully tested

	float64: yes; fully tested

	float128: yes; fully tested

	bool: yes; fully tested

	Parameters

	arr (ndarray) – A 2D/3D (H, W, [C]) image array.

	Returns

	Vertically flipped array.

	Return type

	ndarray

Examples

>>> import numpy as np
>>> import imgaug.augmenters.flip as flip
>>> arr = np.arange(16).reshape((4, 4))
>>> arr_flipped = flip.flipud(arr)

Create a 4x4 array and flip it vertically.

imgaug.augmenters.geometric

Augmenters that apply affine or similar transformations.

List of augmenters:

	Affine

	ScaleX

	ScaleY

	TranslateX

	TranslateY

	Rotate

	ShearX

	ShearY

	AffineCv2

	PiecewiseAffine

	PerspectiveTransform

	ElasticTransformation

	Rot90

	WithPolarWarping

	Jigsaw

	
class imgaug.augmenters.geometric.Affine(scale=None, translate_percent=None, translate_px=None, rotate=None, shear=None, order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter to apply affine transformations to images.

This is mostly a wrapper around the corresponding classes and functions
in OpenCV and skimage.

Affine transformations involve:

	Translation (“move” image on the x-/y-axis)

	Rotation

	Scaling (“zoom” in/out)

	Shear (move one side of the image, turning a square into a trapezoid)

All such transformations can create “new” pixels in the image without a
defined content, e.g. if the image is translated to the left, pixels
are created on the right.
A method has to be defined to deal with these pixel values. The
parameters cval and mode of this class deal with this.

Some transformations involve interpolations between several pixels
of the input image to generate output pixel values. The parameter order
deals with the method of interpolation used for this.

Note

While this augmenter supports segmentation maps and heatmaps that
have a different size than the corresponding image, it is strongly
recommended to use the same aspect ratios. E.g. for an image of
shape (200, 100, 3), good segmap/heatmap array shapes also follow
a 2:1 ratio and ideally are (200, 100, C), (100, 50, C) or
(50, 25, C). Otherwise, transformations involving rotations or
shearing will produce unaligned outputs.
For performance reasons, there is no explicit validation of whether
the aspect ratios are similar.

Supported dtypes:

if (backend=”skimage”, order in [0, 1]):

	uint8: yes; tested

	uint16: yes; tested

	uint32: yes; tested (1)

	uint64: no (2)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested (1)

	int64: no (2)

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: no (2)

	bool: yes; tested

	
	scikit-image converts internally to float64, which might
affect the accuracy of large integers. In tests this seemed
to not be an issue.

	
	results too inaccurate

if (backend=”skimage”, order in [3, 4]):

	uint8: yes; tested

	uint16: yes; tested

	uint32: yes; tested (1)

	uint64: no (2)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested (1)

	int64: no (2)

	float16: yes; tested

	float32: yes; tested

	float64: limited; tested (3)

	float128: no (2)

	bool: yes; tested

	
	scikit-image converts internally to float64, which might
affect the accuracy of large integers. In tests this seemed
to not be an issue.

	
	results too inaccurate

	
	NaN around minimum and maximum of float64 value range

if (backend=”skimage”, order=5]):

	uint8: yes; tested

	uint16: yes; tested

	uint32: yes; tested (1)

	uint64: no (2)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested (1)

	int64: no (2)

	float16: yes; tested

	float32: yes; tested

	float64: limited; not tested (3)

	float128: no (2)

	bool: yes; tested

	
	scikit-image converts internally to float64, which
might affect the accuracy of large integers. In tests
this seemed to not be an issue.

	
	results too inaccurate

	
	NaN around minimum and maximum of float64 value range

if (backend=”cv2”, order=0):

	uint8: yes; tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: no (2)

	float16: yes; tested (3)

	float32: yes; tested

	float64: yes; tested

	float128: no (1)

	bool: yes; tested (3)

	
	rejected by cv2

	
	changed to int32 by cv2

	
	mapped internally to float32

if (backend=”cv2”, order=1):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested (3)

	int16: yes; tested

	int32: no (2)

	int64: no (2)

	float16: yes; tested (4)

	float32: yes; tested

	float64: yes; tested

	float128: no (1)

	bool: yes; tested (4)

	
	rejected by cv2

	
	causes cv2 error: cv2.error: OpenCV(3.4.4)
(...)imgwarp.cpp:1805: error:
(-215:Assertion failed) ifunc != 0 in function 'remap'

	
	mapped internally to int16

	
	mapped internally to float32

if (backend=”cv2”, order=3):

	uint8: yes; tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested (3)

	int16: yes; tested

	int32: no (2)

	int64: no (2)

	float16: yes; tested (4)

	float32: yes; tested

	float64: yes; tested

	float128: no (1)

	bool: yes; tested (4)

	
	rejected by cv2

	
	causes cv2 error: cv2.error: OpenCV(3.4.4)
(...)imgwarp.cpp:1805: error:
(-215:Assertion failed) ifunc != 0 in function 'remap'

	
	mapped internally to int16

	
	mapped internally to float32

	Parameters

	
	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter, “y”: number/tuple/list/StochasticParameter}, optional) – Scaling factor to use, where 1.0 denotes “no change” and
0.5 is zoomed out to 50 percent of the original size.

	If a single number, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b]. That value will be
used identically for both x- and y-axis.

	If a list, then a random value will be sampled from that list
per image (again, used for both x- and y-axis).

	If a StochasticParameter, then from that parameter a value
will be sampled per image (again, used for both x- and y-axis).

	If a dictionary, then it is expected to have the keys x
and/or y. Each of these keys can have the same values as
described above. Using a dictionary allows to set different
values for the two axis and sampling will then happen
independently per axis, resulting in samples that differ
between the axes.

	translate_percent (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter, “y”: number/tuple/list/StochasticParameter}, optional) – Translation as a fraction of the image height/width (x-translation,
y-translation), where 0 denotes “no change” and 0.5 denotes
“half of the axis size”.

	If None then equivalent to 0.0 unless translate_px has
a value other than None.

	If a single number, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b]. That sampled fraction
value will be used identically for both x- and y-axis.

	If a list, then a random value will be sampled from that list
per image (again, used for both x- and y-axis).

	If a StochasticParameter, then from that parameter a value
will be sampled per image (again, used for both x- and y-axis).

	If a dictionary, then it is expected to have the keys x
and/or y. Each of these keys can have the same values as
described above. Using a dictionary allows to set different
values for the two axis and sampling will then happen
independently per axis, resulting in samples that differ
between the axes.

	translate_px (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, optional) –

Translation in pixels.

	If None then equivalent to 0 unless translate_percent
has a value other than None.

	If a single int, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the discrete interval [a..b]. That number
will be used identically for both x- and y-axis.

	If a list, then a random value will be sampled from that list
per image (again, used for both x- and y-axis).

	If a StochasticParameter, then from that parameter a value
will be sampled per image (again, used for both x- and y-axis).

	If a dictionary, then it is expected to have the keys x
and/or y. Each of these keys can have the same values as
described above. Using a dictionary allows to set different
values for the two axis and sampling will then happen
independently per axis, resulting in samples that differ
between the axes.

	rotate (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Rotation in degrees (NOT radians), i.e. expected value range is
around [-360, 360]. Rotation happens around the center of the
image, not the top left corner as in some other frameworks.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b] and used as the rotation
value.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then this parameter will be used to
sample the rotation value per image.

	shear (number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, optional) – Shear in degrees (NOT radians), i.e. expected value range is
around [-360, 360], with reasonable values being in the range
of [-45, 45].

	If a number, then that value will be used for all images as
the shear on the x-axis (no shear on the y-axis will be done).

	If a tuple (a, b), then two value will be uniformly sampled
per image from the interval [a, b] and be used as the
x- and y-shear value.

	If a list, then two random values will be sampled from that list
per image, denoting x- and y-shear.

	If a StochasticParameter, then this parameter will be used
to sample the x- and y-shear values per image.

	If a dictionary, then similar to translate_percent, i.e. one
x key and/or one y key are expected, denoting the
shearing on the x- and y-axis respectively. The allowed datatypes
are again number, tuple (a, b), list or
StochasticParameter.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) –

Interpolation order to use. Same meaning as in skimage:

	0: Nearest-neighbor

	1: Bi-linear (default)

	2: Bi-quadratic (not recommended by skimage)

	3: Bi-cubic

	4: Bi-quartic

	5: Bi-quintic

Method 0 and 1 are fast, 3 is a bit slower, 4 and
5 are very slow. If the backend is cv2, the mapping to
OpenCV’s interpolation modes is as follows:

	0 -> cv2.INTER_NEAREST

	1 -> cv2.INTER_LINEAR

	2 -> cv2.INTER_CUBIC

	3 -> cv2.INTER_CUBIC

	4 -> cv2.INTER_CUBIC

As datatypes this parameter accepts:

	If a single int, then that order will be used for all images.

	If a list, then a random value will be sampled from that list
per image.

	If imgaug.ALL, then equivalant to list [0, 1, 3, 4, 5]
in case of backend=skimage and otherwise [0, 1, 3].

	If StochasticParameter, then that parameter is queried per
image to sample the order value to use.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – The constant value to use when filling in newly created pixels.
(E.g. translating by 1px to the right will create a new 1px-wide
column of pixels on the left of the image). The value is only used
when mode=constant. The expected value range is [0, 255] for
uint8 images. It may be a float value.

	If this is a single number, then that value will be used
(e.g. 0 results in black pixels).

	If a tuple (a, b), then three values (for three image
channels) will be uniformly sampled per image from the
interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If imgaug.ALL then equivalent to tuple ``(0, 255)`.

	If a StochasticParameter, a new value will be sampled from
the parameter per image.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – Method to use when filling in newly created pixels.
Same meaning as in skimage (and numpy.pad()):

	constant: Pads with a constant value

	edge: Pads with the edge values of array

	symmetric: Pads with the reflection of the vector mirrored
along the edge of the array.

	reflect: Pads with the reflection of the vector mirrored on
the first and last values of the vector along each axis.

	wrap: Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the end values
are used to pad the beginning.

If cv2 is chosen as the backend the mapping is as follows:

	constant -> cv2.BORDER_CONSTANT

	edge -> cv2.BORDER_REPLICATE

	symmetric -> cv2.BORDER_REFLECT

	reflect -> cv2.BORDER_REFLECT_101

	wrap -> cv2.BORDER_WRAP

The datatype of the parameter may be:

	If a single string, then that mode will be used for all images.

	If a list of strings, then a random mode will be picked
from that list per image.

	If imgaug.ALL, then a random mode from all possible modes
will be picked.

	If StochasticParameter, then the mode will be sampled from
that parameter per image, i.e. it must return only the above
mentioned strings.

	fit_output (bool, optional) – Whether to modify the affine transformation so that the whole output
image is always contained in the image plane (True) or accept
parts of the image being outside the image plane (False).
This can be thought of as first applying the affine transformation
and then applying a second transformation to “zoom in” on the new
image so that it fits the image plane,
This is useful to avoid corners of the image being outside of the image
plane after applying rotations. It will however negate translation
and scaling.
Note also that activating this may lead to image sizes differing from
the input image sizes. To avoid this, wrap Affine in
KeepSizeByResize,
e.g. KeepSizeByResize(Affine(...)).

	backend (str, optional) – Framework to use as a backend. Valid values are auto, skimage
(scikit-image’s warp) and cv2 (OpenCV’s warp).
If auto is used, the augmenter will automatically try
to use cv2 whenever possible (order must be in [0, 1, 3]). It
will silently fall back to skimage if order/dtype is not supported by
cv2. cv2 is generally faster than skimage. It also supports RGB cvals,
while skimage will resort to intensity cvals (i.e. 3x the same value
as RGB). If cv2 is chosen and order is 2 or 4, it will
automatically fall back to order 3.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Affine(scale=2.0)

Zoom in on all images by a factor of 2.

>>> aug = iaa.Affine(translate_px=16)

Translate all images on the x- and y-axis by 16 pixels (towards the
bottom right) and fill up any new pixels with zero (black values).

>>> aug = iaa.Affine(translate_percent=0.1)

Translate all images on the x- and y-axis by 10 percent of their
width/height (towards the bottom right). The pixel values are computed
per axis based on that axis’ size. Fill up any new pixels with zero
(black values).

>>> aug = iaa.Affine(rotate=35)

Rotate all images by 35 degrees. Fill up any new pixels with zero
(black values).

>>> aug = iaa.Affine(shear=15)

Shear all images by 15 degrees. Fill up any new pixels with zero
(black values).

>>> aug = iaa.Affine(translate_px=(-16, 16))

Translate all images on the x- and y-axis by a random value
between -16 and 16 pixels (to the bottom right) and fill up any new
pixels with zero (black values). The translation value is sampled once
per image and is the same for both axis.

>>> aug = iaa.Affine(translate_px={"x": (-16, 16), "y": (-4, 4)})

Translate all images on the x-axis by a random value
between -16 and 16 pixels (to the right) and on the y-axis by a
random value between -4 and 4 pixels to the bottom. The sampling
happens independently per axis, so even if both intervals were identical,
the sampled axis-wise values would likely be different.
This also fills up any new pixels with zero (black values).

>>> aug = iaa.Affine(scale=2.0, order=[0, 1])

Same as in the above scale example, but uses (randomly) either
nearest neighbour interpolation or linear interpolation. If order is
not specified, order=1 would be used by default.

>>> aug = iaa.Affine(translate_px=16, cval=(0, 255))

Same as in the translate_px example above, but newly created pixels
are now filled with a random color (sampled once per image and the
same for all newly created pixels within that image).

>>> aug = iaa.Affine(translate_px=16, mode=["constant", "edge"])

Similar to the previous example, but the newly created pixels are
filled with black pixels in half of all images (mode constant with
default cval being 0) and in the other half of all images using
edge mode, which repeats the color of the spatially closest pixel
of the corresponding image edge.

>>> aug = iaa.Affine(shear={"y": (-45, 45)})

Shear images only on the y-axis. Set shear to shear=(-45, 45) to
shear randomly on both axes, using for each image the same sample for
both the x- and y-axis. Use shear={"x": (-45, 45), "y": (-45, 45)}
to get independent samples per axis.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.geometric.AffineCv2(scale=1.0, translate_percent=None, translate_px=None, rotate=0.0, shear=0.0, order=<MagicMock id='139942547911344'>, cval=0, mode=<MagicMock id='139942547944336'>, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Deprecated. Augmenter to apply affine transformations to images using
cv2 (i.e. opencv) backend.

Warning

This augmenter is deprecated since 0.4.0.
Use Affine(..., backend='cv2') instead.

Affine transformations
involve:

	Translation (“move” image on the x-/y-axis)

	Rotation

	Scaling (“zoom” in/out)

	Shear (move one side of the image, turning a square into a trapezoid)

All such transformations can create “new” pixels in the image without a
defined content, e.g. if the image is translated to the left, pixels
are created on the right.
A method has to be defined to deal with these pixel values. The
parameters cval and mode of this class deal with this.

Some transformations involve interpolations between several pixels
of the input image to generate output pixel values. The parameter order
deals with the method of interpolation used for this.

Deprecated since 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: ?

	uint32: ?

	uint64: ?

	int8: ?

	int16: ?

	int32: ?

	int64: ?

	float16: ?

	float32: ?

	float64: ?

	float128: ?

	bool: ?

	Parameters

	
	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter, “y”: number/tuple/list/StochasticParameter}, optional) – Scaling factor to use, where 1.0 denotes “no change” and
0.5 is zoomed out to 50 percent of the original size.

	If a single number, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b]. That value will be
used identically for both x- and y-axis.

	If a list, then a random value will be sampled from that list
per image (again, used for both x- and y-axis).

	If a StochasticParameter, then from that parameter a value
will be sampled per image (again, used for both x- and y-axis).

	If a dictionary, then it is expected to have the keys x
and/or y. Each of these keys can have the same values as
described above. Using a dictionary allows to set different
values for the two axis and sampling will then happen
independently per axis, resulting in samples that differ
between the axes.

	translate_percent (number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter, “y”: number/tuple/list/StochasticParameter}, optional) – Translation as a fraction of the image height/width (x-translation,
y-translation), where 0 denotes “no change” and 0.5 denotes
“half of the axis size”.

	If None then equivalent to 0.0 unless translate_px has
a value other than None.

	If a single number, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b]. That sampled fraction
value will be used identically for both x- and y-axis.

	If a list, then a random value will be sampled from that list
per image (again, used for both x- and y-axis).

	If a StochasticParameter, then from that parameter a value
will be sampled per image (again, used for both x- and y-axis).

	If a dictionary, then it is expected to have the keys x
and/or y. Each of these keys can have the same values as
described above. Using a dictionary allows to set different
values for the two axis and sampling will then happen
independently per axis, resulting in samples that differ
between the axes.

	translate_px (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, optional) –

Translation in pixels.

	If None then equivalent to 0 unless translate_percent
has a value other than None.

	If a single int, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the discrete interval [a..b]. That number
will be used identically for both x- and y-axis.

	If a list, then a random value will be sampled from that list
per image (again, used for both x- and y-axis).

	If a StochasticParameter, then from that parameter a value
will be sampled per image (again, used for both x- and y-axis).

	If a dictionary, then it is expected to have the keys x
and/or y. Each of these keys can have the same values as
described above. Using a dictionary allows to set different
values for the two axis and sampling will then happen
independently per axis, resulting in samples that differ
between the axes.

	rotate (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Rotation in degrees (NOT radians), i.e. expected value range is
around [-360, 360]. Rotation happens around the center of the
image, not the top left corner as in some other frameworks.

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b] and used as the rotation
value.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then this parameter will be used to
sample the rotation value per image.

	shear (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Shear in degrees (NOT radians), i.e. expected value range is
around [-360, 360].

	If a number, then that value will be used for all images.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b] and be used as the
rotation value.

	If a list, then a random value will be sampled from that list
per image.

	If a StochasticParameter, then this parameter will be used
to sample the shear value per image.

	order (int or list of int or str or list of str or imaug.ALL or imgaug.parameters.StochasticParameter, optional) –

Interpolation order to use. Allowed are:

	cv2.INTER_NEAREST (nearest-neighbor interpolation)

	cv2.INTER_LINEAR (bilinear interpolation, used by default)

	
	cv2.INTER_CUBIC (bicubic interpolation over 4x4 pixel

	neighborhood)

	cv2.INTER_LANCZOS4

	string nearest (same as cv2.INTER_NEAREST)

	string linear (same as cv2.INTER_LINEAR)

	string cubic (same as cv2.INTER_CUBIC)

	string lanczos4 (same as cv2.INTER_LANCZOS)

INTER_NEAREST (nearest neighbour interpolation) and
INTER_NEAREST (linear interpolation) are the fastest.

	If a single int, then that order will be used for all images.

	If a string, then it must be one of: nearest, linear,
cubic, lanczos4.

	If an iterable of int/str, then for each image a random
value will be sampled from that iterable (i.e. list of allowed
order values).

	If imgaug.ALL, then equivalant to list [cv2.INTER_NEAREST,
cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4].

	If StochasticParameter, then that parameter is queried per
image to sample the order value to use.

	cval (number or tuple of number or list of number or imaug.ALL or imgaug.parameters.StochasticParameter, optional) – The constant value to use when filling in newly created pixels.
(E.g. translating by 1px to the right will create a new 1px-wide
column of pixels on the left of the image). The value is only used
when mode=constant. The expected value range is [0, 255] for
uint8 images. It may be a float value.

	If this is a single number, then that value will be used
(e.g. 0 results in black pixels).

	If a tuple (a, b), then three values (for three image
channels) will be uniformly sampled per image from the
interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If imgaug.ALL then equivalent to tuple ``(0, 255)`.

	If a StochasticParameter, a new value will be sampled from
the parameter per image.

	mode (int or str or list of str or list of int or imgaug.ALL or imgaug.parameters.StochasticParameter,) – optional
Method to use when filling in newly created pixels.
Same meaning as in OpenCV’s border mode. Let abcdefgh be an image’s
content and | be an image boundary after which new pixels are
filled in, then the valid modes and their behaviour are the following:

	cv2.BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh

	cv2.BORDER_REFLECT: fedcba|abcdefgh|hgfedcb

	cv2.BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba

	cv2.BORDER_WRAP: cdefgh|abcdefgh|abcdefg

	
	cv2.BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii,

	where i is the defined cval.

	replicate: Same as cv2.BORDER_REPLICATE.

	reflect: Same as cv2.BORDER_REFLECT.

	reflect_101: Same as cv2.BORDER_REFLECT_101.

	wrap: Same as cv2.BORDER_WRAP.

	constant: Same as cv2.BORDER_CONSTANT.

The datatype of the parameter may be:

	If a single int, then it must be one of the cv2.BORDER_*
constants.

	If a single string, then it must be one of: replicate,
reflect, reflect_101, wrap, constant.

	If a list of int/str, then per image a random mode will
be picked from that list.

	If imgaug.ALL, then a random mode from all possible modes
will be picked.

	If StochasticParameter, then the mode will be sampled from
that parameter per image, i.e. it must return only the above
mentioned strings.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AffineCv2(scale=2.0)

Zoom in on all images by a factor of 2.

>>> aug = iaa.AffineCv2(translate_px=16)

Translate all images on the x- and y-axis by 16 pixels (towards the
bottom right) and fill up any new pixels with zero (black values).

>>> aug = iaa.AffineCv2(translate_percent=0.1)

Translate all images on the x- and y-axis by 10 percent of their
width/height (towards the bottom right). The pixel values are computed
per axis based on that axis’ size. Fill up any new pixels with zero
(black values).

>>> aug = iaa.AffineCv2(rotate=35)

Rotate all images by 35 degrees. Fill up any new pixels with zero
(black values).

>>> aug = iaa.AffineCv2(shear=15)

Shear all images by 15 degrees. Fill up any new pixels with zero
(black values).

>>> aug = iaa.AffineCv2(translate_px=(-16, 16))

Translate all images on the x- and y-axis by a random value
between -16 and 16 pixels (to the bottom right) and fill up any new
pixels with zero (black values). The translation value is sampled once
per image and is the same for both axis.

>>> aug = iaa.AffineCv2(translate_px={"x": (-16, 16), "y": (-4, 4)})

Translate all images on the x-axis by a random value
between -16 and 16 pixels (to the right) and on the y-axis by a
random value between -4 and 4 pixels to the bottom. The sampling
happens independently per axis, so even if both intervals were identical,
the sampled axis-wise values would likely be different.
This also fills up any new pixels with zero (black values).

>>> aug = iaa.AffineCv2(scale=2.0, order=[0, 1])

Same as in the above scale example, but uses (randomly) either
nearest neighbour interpolation or linear interpolation. If order is
not specified, order=1 would be used by default.

>>> aug = iaa.AffineCv2(translate_px=16, cval=(0, 255))

Same as in the translate_px example above, but newly created pixels
are now filled with a random color (sampled once per image and the
same for all newly created pixels within that image).

>>> aug = iaa.AffineCv2(translate_px=16, mode=["constant", "replicate"])

Similar to the previous example, but the newly created pixels are
filled with black pixels in half of all images (mode constant with
default cval being 0) and in the other half of all images using
replicate mode, which repeats the color of the spatially closest pixel
of the corresponding image edge.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.geometric.ElasticTransformation(alpha=(0.0, 40.0), sigma=(4.0, 8.0), order=3, cval=0, mode='constant', polygon_recoverer='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Transform images by moving pixels locally around using displacement fields.

The augmenter has the parameters alpha and sigma. alpha
controls the strength of the displacement: higher values mean that pixels
are moved further. sigma controls the smoothness of the displacement:
higher values lead to smoother patterns – as if the image was below water
– while low values will cause indivdual pixels to be moved very
differently from their neighbours, leading to noisy and pixelated images.

A relation of 10:1 seems to be good for alpha and sigma, e.g.
alpha=10 and sigma=1 or alpha=50, sigma=5. For 128x128
a setting of alpha=(0, 70.0), sigma=(4.0, 6.0) may be a good
choice and will lead to a water-like effect.

Code here was initially inspired by
https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a

For a detailed explanation, see

Simard, Steinkraus and Platt
Best Practices for Convolutional Neural Networks applied to Visual
Document Analysis
in Proc. of the International Conference on Document Analysis and
Recognition, 2003

Note

For coordinate-based inputs (keypoints, bounding boxes, polygons,
…), this augmenter still has to perform an image-based augmentation,
which will make it significantly slower for such inputs than other
augmenters. See Performance.

Supported dtypes:

	uint8: yes; fully tested (1)

	uint16: yes; tested (1)

	uint32: yes; tested (2)

	uint64: limited; tested (3)

	int8: yes; tested (1) (4) (5)

	int16: yes; tested (4) (6)

	int32: yes; tested (4) (6)

	int64: limited; tested (3)

	float16: yes; tested (1)

	float32: yes; tested (1)

	float64: yes; tested (1)

	float128: no

	bool: yes; tested (1) (7)

	
	Always handled by cv2.

	
	Always handled by scipy.

	
	Only supported for order != 0. Will fail for order=0.

	
	Mapped internally to float64 when order=1.

	
	Mapped internally to int16 when order>=2.

	
	Handled by cv2 when order=0 or order=1, otherwise by
scipy.

	
	Mapped internally to float32.

	Parameters

	
	alpha (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Strength of the distortion field. Higher values mean that pixels are
moved further with respect to the distortion field’s direction. Set
this to around 10 times the value of sigma for visible effects.

	If number, then that value will be used for all images.

	If tuple (a, b), then a random value will be uniformly
sampled per image from the interval [a, b].

	If a list, then for each image a random value will be sampled
from that list.

	If StochasticParameter, then that parameter will be used to
sample a value per image.

	sigma (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Standard deviation of the gaussian kernel used to smooth the distortion
fields. Higher values (for 128x128 images around 5.0) lead to more
water-like effects, while lower values (for 128x128 images
around 1.0 and lower) lead to more noisy, pixelated images. Set
this to around 1/10th of alpha for visible effects.

	If number, then that value will be used for all images.

	If tuple (a, b), then a random value will be uniformly
sampled per image from the interval [a, b].

	If a list, then for each image a random value will be sampled
from that list.

	If StochasticParameter, then that parameter will be used to
sample a value per image.

	order (int or list of int or imaug.ALL or imgaug.parameters.StochasticParameter, optional) – Interpolation order to use. Same meaning as in
scipy.ndimage.map_coordinates() and may take any integer value
in the range 0 to 5, where orders close to 0 are faster.

	If a single int, then that order will be used for all images.

	If a tuple (a, b), then a random value will be uniformly
sampled per image from the interval [a, b].

	If a list, then for each image a random value will be sampled
from that list.

	If imgaug.ALL, then equivalant to list
[0, 1, 2, 3, 4, 5].

	If StochasticParameter, then that parameter is queried per
image to sample the order value to use.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – The constant intensity value used to fill in new pixels.
This value is only used if mode is set to constant.
For standard uint8 images (value range 0 to 255), this
value may also should also be in the range 0 to 255. It may
be a float value, even for images with integer dtypes.

	If this is a single number, then that value will be used
(e.g. 0 results in black pixels).

	If a tuple (a, b), then a random value will be uniformly
sampled per image from the interval [a, b].

	If a list, then a random value will be picked from that list per
image.

	If imgaug.ALL, a value from the discrete range [0..255]
will be sampled per image.

	If a StochasticParameter, a new value will be sampled from
the parameter per image.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – Parameter that defines the handling of newly created pixels.
May take the same values as in scipy.ndimage.map_coordinates(),
i.e. constant, nearest, reflect or wrap.

	If a single string, then that mode will be used for all images.

	If a list of strings, then per image a random mode will be picked
from that list.

	If imgaug.ALL, then a random mode from all possible modes
will be picked.

	If StochasticParameter, then the mode will be sampled from
that parameter per image, i.e. it must return only the above
mentioned strings.

	polygon_recoverer (‘auto’ or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer, optional) – The class to use to repair invalid polygons.
If "auto", a new instance of
:class`imgaug.augmentables.polygons._ConcavePolygonRecoverer`
will be created.
If None, no polygon recoverer will be used.
If an object, then that object will be used and must provide a
recover_from() method, similar to
_ConcavePolygonRecoverer.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ElasticTransformation(alpha=50.0, sigma=5.0)

Apply elastic transformations with a strength/alpha of 50.0 and
smoothness of 5.0 to all images.

>>> aug = iaa.ElasticTransformation(alpha=(0.0, 70.0), sigma=5.0)

Apply elastic transformations with a strength/alpha that comes
from the interval [0.0, 70.0] (randomly picked per image) and
with a smoothness of 5.0.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
KEYPOINT_AUG_ALPHA_THRESH = 0.05

	

	
KEYPOINT_AUG_SIGMA_THRESH = 1.0

	

	
NB_NEIGHBOURING_KEYPOINTS = 3

	

	
NEIGHBOURING_KEYPOINTS_DISTANCE = 1.0

	

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.geometric.Jigsaw(nb_rows=(3, 10), nb_cols=(3, 10), max_steps=1, allow_pad=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Move cells within images similar to jigsaw patterns.

Note

This augmenter will by default pad images until their height is a
multiple of nb_rows. Analogous for nb_cols.

Note

This augmenter will resize heatmaps and segmentation maps to the
image size, then apply similar padding as for the corresponding images
and resize back to the original map size. That also means that images
may change in shape (due to padding), but heatmaps/segmaps will not
change. For heatmaps/segmaps, this deviates from pad augmenters that
will change images and heatmaps/segmaps in corresponding ways and then
keep the heatmaps/segmaps at the new size.

Warning

This augmenter currently only supports augmentation of images,
heatmaps, segmentation maps and keypoints. Other augmentables,
i.e. bounding boxes, polygons and line strings, will result in errors.

Added in 0.4.0.

Supported dtypes:

See apply_jigsaw().

	Parameters

	
	nb_rows (int or list of int or tuple of int or imgaug.parameters.StochasticParameter, optional) –

How many rows the jigsaw pattern should have.

	If a single int, then that value will be used for all images.

	If a tuple (a, b), then a random value will be uniformly
sampled per image from the discrete interval [a..b].

	If a list, then for each image a random value will be sampled
from that list.

	If StochasticParameter, then that parameter is queried per
image to sample the value to use.

	nb_cols (int or list of int or tuple of int or imgaug.parameters.StochasticParameter, optional) –

How many cols the jigsaw pattern should have.

	If a single int, then that value will be used for all images.

	If a tuple (a, b), then a random value will be uniformly
sampled per image from the discrete interval [a..b].

	If a list, then for each image a random value will be sampled
from that list.

	If StochasticParameter, then that parameter is queried per
image to sample the value to use.

	max_steps (int or list of int or tuple of int or imgaug.parameters.StochasticParameter, optional) –

How many steps each jigsaw cell may be moved.

	If a single int, then that value will be used for all images.

	If a tuple (a, b), then a random value will be uniformly
sampled per image from the discrete interval [a..b].

	If a list, then for each image a random value will be sampled
from that list.

	If StochasticParameter, then that parameter is queried per
image to sample the value to use.

	allow_pad (bool, optional) – Whether to allow automatically padding images until they are evenly
divisible by nb_rows and nb_cols.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Jigsaw(nb_rows=10, nb_cols=10)

Create a jigsaw augmenter that splits images into 10x10 cells
and shifts them around by 0 to 2 steps (default setting).

>>> aug = iaa.Jigsaw(nb_rows=(1, 4), nb_cols=(1, 4))

Create a jigsaw augmenter that splits each image into 1 to 4
cells along each axis.

>>> aug = iaa.Jigsaw(nb_rows=10, nb_cols=10, max_steps=(1, 5))

Create a jigsaw augmenter that moves the cells in each image by a random
amount between 1 and 5 times (decided per image). Some images will
be barely changed, some will be fairly distorted.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	Get the parameters of this augmenter.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	Get the parameters of this augmenter.

	Returns

	List of parameters of arbitrary types (usually child class
of StochasticParameter, but not
guaranteed to be).

	Return type

	list

	
class imgaug.augmenters.geometric.PerspectiveTransform(scale=(0.0, 0.06), cval=0, mode='constant', keep_size=True, fit_output=False, polygon_recoverer='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply random four point perspective transformations to images.

Each of the four points is placed on the image using a random distance from
its respective corner. The distance is sampled from a normal distribution.
As a result, most transformations don’t change the image very much, while
some “focus” on polygons far inside the image.

The results of this augmenter have some similarity with Crop.

Code partially from
http://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/

Supported dtypes:

if (keep_size=False):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested (3)

	int16: yes; tested

	int32: no (2)

	int64: no (2)

	float16: yes; tested (4)

	float32: yes; tested

	float64: yes; tested

	float128: no (1)

	bool: yes; tested (4)

	
	rejected by opencv

	
	leads to opencv error: cv2.error: OpenCV(3.4.4)
(...)imgwarp.cpp:1805: error: (-215:Assertion failed)
ifunc != 0 in function 'remap'.

	
	mapped internally to int16.

	
	mapped intenally to float32.

if (keep_size=True):

	minimum of (

	imgaug.augmenters.geometric.PerspectiveTransform(keep_size=False),
imresize_many_images()

)

	Parameters

	
	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Standard deviation of the normal distributions. These are used to
sample the random distances of the subimage’s corners from the full
image’s corners. The sampled values reflect percentage values (with
respect to image height/width). Recommended values are in the range
0.0 to 0.1.

	If a single number, then that value will always be used as the
scale.

	If a tuple (a, b) of numbers, then a random value will be
uniformly sampled per image from the interval (a, b).

	If a list of values, a random value will be picked from the
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	keep_size (bool, optional) – Whether to resize image’s back to their original size after applying
the perspective transform. If set to False, the resulting images
may end up having different shapes and will always be a list, never
an array.

	cval (number or tuple of number or list of number or imaug.ALL or imgaug.parameters.StochasticParameter, optional) – The constant value used to fill up pixels in the result image that
didn’t exist in the input image (e.g. when translating to the left,
some new pixels are created at the right). Such a fill-up with a
constant value only happens, when mode is constant.
The expected value range is [0, 255] for uint8 images.
It may be a float value.

	If this is a single int or float, then that value will be used
(e.g. 0 results in black pixels).

	If a tuple (a, b), then a random value is uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that list
per image.

	If imgaug.ALL, then equivalent to tuple (0, 255).

	If a StochasticParameter, a new value will be sampled from
the parameter per image.

	mode (int or str or list of str or list of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – Parameter that defines the handling of newly created pixels.
Same meaning as in OpenCV’s border mode. Let abcdefgh be an image’s
content and | be an image boundary, then:

	cv2.BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh

	cv2.BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii, where
i is the defined cval.

	replicate: Same as cv2.BORDER_REPLICATE.

	constant: Same as cv2.BORDER_CONSTANT.

The datatype of the parameter may be:

	If a single int, then it must be one of cv2.BORDER_*.

	If a single string, then it must be one of: replicate,
reflect, reflect_101, wrap, constant.

	If a list of ints/strings, then per image a random mode will be
picked from that list.

	If imgaug.ALL, then a random mode from all possible modes
will be picked per image.

	If StochasticParameter, then the mode will be sampled from
that parameter per image, i.e. it must return only the above
mentioned strings.

	fit_output (bool, optional) – If True, the image plane size and position will be adjusted
to still capture the whole image after perspective transformation.
(Followed by image resizing if keep_size is set to True.)
Otherwise, parts of the transformed image may be outside of the image
plane.
This setting should not be set to True when using large scale
values as it could lead to very large images.

Added in 0.4.0.

	polygon_recoverer (‘auto’ or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer, optional) – The class to use to repair invalid polygons.
If "auto", a new instance of
:class`imgaug.augmentables.polygons._ConcavePolygonRecoverer`
will be created.
If None, no polygon recoverer will be used.
If an object, then that object will be used and must provide a
recover_from() method, similar to
_ConcavePolygonRecoverer.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PerspectiveTransform(scale=(0.01, 0.15))

Apply perspective transformations using a random scale between 0.01
and 0.15 per image, where the scale is roughly a measure of how far
the perspective transformation’s corner points may be distanced from the
image’s corner points. Higher scale values lead to stronger “zoom-in”
effects (and thereby stronger distortions).

>>> aug = iaa.PerspectiveTransform(scale=(0.01, 0.15), keep_size=False)

Same as in the previous example, but images are not resized back to
the input image size after augmentation. This will lead to smaller
output images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.geometric.PiecewiseAffine(scale=(0.0, 0.04), nb_rows=(2, 4), nb_cols=(2, 4), order=1, cval=0, mode='constant', absolute_scale=False, polygon_recoverer=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply affine transformations that differ between local neighbourhoods.

This augmenter places a regular grid of points on an image and randomly
moves the neighbourhood of these point around via affine transformations.
This leads to local distortions.

This is mostly a wrapper around scikit-image’s PiecewiseAffine.
See also Affine for a similar technique.

Note

This augmenter is very slow. See Performance.
Try to use ElasticTransformation instead, which is at least 10x
faster.

Note

For coordinate-based inputs (keypoints, bounding boxes, polygons,
…), this augmenter still has to perform an image-based augmentation,
which will make it significantly slower for such inputs than other
augmenters. See Performance.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested (1)

	uint32: yes; tested (1) (2)

	uint64: no (3)

	int8: yes; tested (1)

	int16: yes; tested (1)

	int32: yes; tested (1) (2)

	int64: no (3)

	float16: yes; tested (1)

	float32: yes; tested (1)

	float64: yes; tested (1)

	float128: no (3)

	bool: yes; tested (1) (4)

	
	Only tested with order set to 0.

	
	scikit-image converts internally to float64, which might
introduce inaccuracies. Tests showed that these inaccuracies
seemed to not be an issue.

	
	Results too inaccurate.

	
	Mapped internally to float64.

	Parameters

	
	scale (float or tuple of float or imgaug.parameters.StochasticParameter, optional) – Each point on the regular grid is moved around via a normal
distribution. This scale factor is equivalent to the normal
distribution’s sigma. Note that the jitter (how far each point is
moved in which direction) is multiplied by the height/width of the
image if absolute_scale=False (default), so this scale can be
the same for different sized images.
Recommended values are in the range 0.01 to 0.05 (weak to
strong augmentations).

	If a single float, then that value will always be used as
the scale.

	If a tuple (a, b) of float s, then a random value will
be uniformly sampled per image from the interval [a, b].

	If a list, then a random value will be picked from that list
per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	nb_rows (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – Number of rows of points that the regular grid should have.
Must be at least 2. For large images, you might want to pick a
higher value than 4. You might have to then adjust scale to lower
values.

	If a single int, then that value will always be used as the
number of rows.

	If a tuple (a, b), then a value from the discrete interval
[a..b] will be uniformly sampled per image.

	If a list, then a random value will be picked from that list
per image.

	If a StochasticParameter, then that parameter will be queried to
draw one value per image.

	nb_cols (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – Number of columns. Analogous to nb_rows.

	order (int or list of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See __init__().

	cval (int or float or tuple of float or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See __init__().

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See __init__().

	absolute_scale (bool, optional) – Take scale as an absolute value rather than a relative value.

	polygon_recoverer (‘auto’ or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer, optional) – The class to use to repair invalid polygons.
If "auto", a new instance of
:class`imgaug.augmentables.polygons._ConcavePolygonRecoverer`
will be created.
If None, no polygon recoverer will be used.
If an object, then that object will be used and must provide a
recover_from() method, similar to
_ConcavePolygonRecoverer.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PiecewiseAffine(scale=(0.01, 0.05))

Place a regular grid of points on each image and then randomly move each
point around by 1 to 5 percent (with respect to the image
height/width). Pixels between these points will be moved accordingly.

>>> aug = iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=8, nb_cols=8)

Same as the previous example, but uses a denser grid of 8x8 points
(default is 4x4). This can be useful for large images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.geometric.Rot90(k=1, keep_size=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Rotate images clockwise by multiples of 90 degrees.

This could also be achieved using Affine, but Rot90 is
significantly more efficient.

Supported dtypes:

if (keep_size=False):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

if (keep_size=True):

	minimum of (

	imgaug.augmenters.geometric.Rot90(keep_size=False),
imresize_many_images()

)

	Parameters

	
	k (int or list of int or tuple of int or imaug.ALL or imgaug.parameters.StochasticParameter, optional) –

How often to rotate clockwise by 90 degrees.

	If a single int, then that value will be used for all images.

	If a tuple (a, b), then a random value will be uniformly
sampled per image from the discrete interval [a..b].

	If a list, then for each image a random value will be sampled
from that list.

	If imgaug.ALL, then equivalant to list [0, 1, 2, 3].

	If StochasticParameter, then that parameter is queried per
image to sample the value to use.

	keep_size (bool, optional) – After rotation by an odd-valued k (e.g. 1 or 3), the resulting image
may have a different height/width than the original image.
If this parameter is set to True, then the rotated
image will be resized to the input image’s size. Note that this might
also cause the augmented image to look distorted.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Rot90(1)

Rotate all images by 90 degrees.
Resize these images afterwards to keep the size that they had before
augmentation.
This may cause the images to look distorted.

>>> aug = iaa.Rot90([1, 3])

Rotate all images by 90 or 270 degrees.
Resize these images afterwards to keep the size that they had before
augmentation.
This may cause the images to look distorted.

>>> aug = iaa.Rot90((1, 3))

Rotate all images by 90, 180 or 270 degrees.
Resize these images afterwards to keep the size that they had before
augmentation.
This may cause the images to look distorted.

>>> aug = iaa.Rot90((1, 3), keep_size=False)

Rotate all images by 90, 180 or 270 degrees.
Does not resize to the original image size afterwards, i.e. each image’s
size may change.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.geometric.Rotate(rotate=(-30, 30), order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply affine rotation on the y-axis to input data.

This is a wrapper around Affine.
It is the same as Affine(rotate=<value>).

Added in 0.4.0.

Supported dtypes:

See Affine.

	Parameters

	
	rotate (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Affine.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	fit_output (bool, optional) – See Affine.

	backend (str, optional) – See Affine.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Rotate((-45, 45))

Create an augmenter that rotates images by a random value between -45
and 45 degress.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.geometric.ScaleX(scale=(0.5, 1.5), order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply affine scaling on the x-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

	Parameters

	
	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Analogous to scale in Affine, except that this scale
value only affects the x-axis. No dictionary input is allowed.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	fit_output (bool, optional) – See Affine.

	backend (str, optional) – See Affine.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ScaleX((0.5, 1.5))

Create an augmenter that scales images along the width to sizes between
50% and 150%. This does not change the image shape (i.e. height
and width), only the pixels within the image are remapped and potentially
new ones are filled in.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.geometric.ScaleY(scale=(0.5, 1.5), order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply affine scaling on the y-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

	Parameters

	
	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Analogous to scale in Affine, except that this scale
value only affects the y-axis. No dictionary input is allowed.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	fit_output (bool, optional) – See Affine.

	backend (str, optional) – See Affine.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ScaleY((0.5, 1.5))

Create an augmenter that scales images along the height to sizes between
50% and 150%. This does not change the image shape (i.e. height
and width), only the pixels within the image are remapped and potentially
new ones are filled in.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.geometric.ShearX(shear=(-30, 30), order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply affine shear on the x-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

	Parameters

	
	shear (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Analogous to shear in Affine, except that this shear
value only affects the x-axis. No dictionary input is allowed.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	fit_output (bool, optional) – See Affine.

	backend (str, optional) – See Affine.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ShearX((-20, 20))

Create an augmenter that shears images along the x-axis by random amounts
between -20 and 20 degrees.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.geometric.ShearY(shear=(-30, 30), order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply affine shear on the y-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

	Parameters

	
	shear (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Analogous to shear in Affine, except that this shear
value only affects the y-axis. No dictionary input is allowed.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	fit_output (bool, optional) – See Affine.

	backend (str, optional) – See Affine.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ShearY((-20, 20))

Create an augmenter that shears images along the y-axis by random amounts
between -20 and 20 degrees.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.geometric.TranslateX(percent=None, px=None, order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply affine translation on the x-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

	Parameters

	
	percent (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Analogous to translate_percent in Affine, except that
this translation value only affects the x-axis. No dictionary input
is allowed.

	px (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, optional) – Analogous to translate_px in Affine, except that
this translation value only affects the x-axis. No dictionary input
is allowed.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	fit_output (bool, optional) – See Affine.

	backend (str, optional) – See Affine.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.TranslateX(px=(-20, 20))

Create an augmenter that translates images along the x-axis by
-20 to 20 pixels.

>>> aug = iaa.TranslateX(percent=(-0.1, 0.1))

Create an augmenter that translates images along the x-axis by
-10% to 10% (relative to the x-axis size).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.geometric.TranslateY(percent=None, px=None, order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply affine translation on the y-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

	Parameters

	
	percent (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Analogous to translate_percent in Affine, except that
this translation value only affects the y-axis. No dictionary input
is allowed.

	px (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, optional) – Analogous to translate_px in Affine, except that
this translation value only affects the y-axis. No dictionary input
is allowed.

	order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	cval (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See Affine.

	fit_output (bool, optional) – See Affine.

	backend (str, optional) – See Affine.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.TranslateY(px=(-20, 20))

Create an augmenter that translates images along the y-axis by
-20 to 20 pixels.

>>> aug = iaa.TranslateY(percent=(-0.1, 0.1))

Create an augmenter that translates images along the y-axis by
-10% to 10% (relative to the y-axis size).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.geometric.WithPolarWarping(children, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter that applies other augmenters in a polar-transformed space.

This augmenter first transforms an image into a polar representation,
then applies its child augmenter, then transforms back to cartesian
space. The polar representation is still in the image’s input dtype
(i.e. uint8 stays uint8) and can be visualized. It can be thought
of as an “unrolled” version of the image, where previously circular lines
appear straight. Hence, applying child augmenters in that space can lead
to circular effects. E.g. replacing rectangular pixel areas in the polar
representation with black pixels will lead to curved black areas in
the cartesian result.

This augmenter can create new pixels in the image. It will fill these
with black pixels. For segmentation maps it will fill with class
id 0. For heatmaps it will fill with 0.0.

This augmenter is limited to arrays with a height and/or width of
32767 or less.

Warning

When augmenting coordinates in polar representation, it is possible
that these are shifted outside of the polar image, but are inside the
image plane after transforming back to cartesian representation,
usually on newly created pixels (i.e. black backgrounds).
These coordinates are currently not removed. It is recommended to
not use very strong child transformations when also augmenting
coordinate-based augmentables.

Warning

For bounding boxes, this augmenter suffers from the same problem as
affine rotations applied to bounding boxes, i.e. the resulting
bounding boxes can have unintuitive (seemingly wrong) appearance.
This is due to coordinates being “rotated” that are inside the
bounding box, but do not fall on the object and actually are
background.
It is recommended to use this augmenter with caution when augmenting
bounding boxes.

Warning

For polygons, this augmenter should not be combined with
augmenters that perform automatic polygon recovery for invalid
polygons, as the polygons will frequently appear broken in polar
representation and their “fixed” version will be very broken in
cartesian representation. Augmenters that perform such polygon
recovery are currently PerspectiveTransform, PiecewiseAffine
and ElasticTransformation.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: no (1)

	uint64: no (2)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: no (2)

	float16: yes; tested (3)

	float32: yes; tested

	float64: yes; tested

	float128: no (1)

	bool: yes; tested (4)

	(1) OpenCV produces error
TypeError: Expected cv::UMat for argument 'src'

	
	OpenCV produces array of nothing but zeros.

	
	Mapepd to float32.

	
	Mapped to uint8.

	Parameters

	
	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to images after they were transformed
to polar representation.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithPolarWarping(iaa.CropAndPad(percent=(-0.1, 0.1)))

Apply cropping and padding in polar representation, then warp back to
cartesian representation.

>>> aug = iaa.WithPolarWarping(
>>> iaa.Affine(
>>> translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
>>> rotate=(-35, 35),
>>> scale=(0.8, 1.2),
>>> shear={"x": (-15, 15), "y": (-15, 15)}
>>>)
>>>)

Apply affine transformations in polar representation.

>>> aug = iaa.WithPolarWarping(iaa.AveragePooling((2, 8)))

Apply average pooling in polar representation. This leads to circular
bins.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	warpPolarCoords(src, dsize, center, …)

	

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
classmethod warpPolarCoords(src, dsize, center, maxRadius, flags)

	

	
imgaug.augmenters.geometric.apply_jigsaw(arr, destinations)

	Move cells of an image similar to a jigsaw puzzle.

This function will split the image into rows x cols cells and
move each cell to the target index given in destinations.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; fully tested

	uint32: yes; fully tested

	uint64: yes; fully tested

	int8: yes; fully tested

	int16: yes; fully tested

	int32: yes; fully tested

	int64: yes; fully tested

	float16: yes; fully tested

	float32: yes; fully tested

	float64: yes; fully tested

	float128: yes; fully tested

	bool: yes; fully tested

	Parameters

	
	arr (ndarray) – Array with at least two dimensions denoting height and width.

	destinations (ndarray) – 2-dimensional array containing for each cell the id of the destination
cell. The order is expected to a flattened c-order, i.e. row by row.
The height of the image must be evenly divisible by the number of
rows in this array. Analogous for the width and columns.

	Returns

	Modified image with cells moved according to destinations.

	Return type

	ndarray

	
imgaug.augmenters.geometric.apply_jigsaw_to_coords(coords, destinations, image_shape)

	Move coordinates on an image similar to a jigsaw puzzle.

This is the same as apply_jigsaw(), but moves coordinates within
the cells.

Added in 0.4.0.

	Parameters

	
	coords (ndarray) – (N, 2) array denoting xy-coordinates.

	destinations (ndarray) – See apply_jigsaw().

	image_shape (tuple of int) – (height, width, ...) shape of the image on which the
coordinates are placed. Only height and width are required.

	Returns

	Moved coordinates.

	Return type

	ndarray

	
imgaug.augmenters.geometric.generate_jigsaw_destinations(nb_rows, nb_cols, max_steps, seed, connectivity=4)

	Generate a destination pattern for apply_jigsaw().

Added in 0.4.0.

	Parameters

	
	nb_rows (int) – Number of rows to split the image into.

	nb_cols (int) – Number of columns to split the image into.

	max_steps (int) – Maximum number of cells that each cell may be moved.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – Seed value or alternatively RNG to use.
If None the global RNG will be used.

	connectivity (int, optional) – Whether a diagonal move of a cell counts as one step
(connectivity=8) or two steps (connectivity=4).

	Returns

	2-dimensional array containing for each cell the id of the target
cell.

	Return type

	ndarray

imgaug.augmenters.imgcorruptlike

Augmenters that wrap methods from imagecorruptions package.

See `https://github.com/bethgelab/imagecorruptions`_ for the package.

The package is derived from `https://github.com/hendrycks/robustness`_.
The corresponding paper [https://arxiv.org/abs/1807.01697] is:

Hendrycks, Dan and Dietterich, Thomas G.
Benchmarking Neural Network Robustness to Common Corruptions and
Surface Variations

with the newer version [https://arxiv.org/abs/1903.12261] being:

Hendrycks, Dan and Dietterich, Thomas G.
Benchmarking Neural Network Robustness to Common Corruptions and
Perturbations

List of augmenters:

	GaussianNoise

	ShotNoise

	ImpulseNoise

	SpeckleNoise

	GaussianBlur

	GlassBlur

	DefocusBlur

	MotionBlur

	ZoomBlur

	Fog

	Frost

	Snow

	Spatter

	Contrast

	Brightness

	Saturate

	JpegCompression

	Pixelate

	ElasticTransform

Note

The functions provided here have identical outputs to the ones in
imagecorruptions when called using the corrupt() function of
that package. E.g. the outputs are always uint8 and not
float32 or float64.

Example usage:

>>> # Skip the doctests in this file as the imagecorruptions package is
>>> # not available in all python versions that are otherwise supported
>>> # by imgaug.
>>>
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.zeros((64, 64, 3), dtype=np.uint8)
>>> names, funcs = iaa.imgcorruptlike.get_corruption_names("validation")
>>> for name, func in zip(names, funcs):
>>> image_aug = func(image, severity=5, seed=1)
>>> image_aug = ia.draw_text(image_aug, x=20, y=20, text=name)
>>> ia.imshow(image_aug)

Use e.g. ``iaa.imgcorruptlike.GaussianNoise(severity=2)(images=...)`` to
create and apply a specific augmenter.

Added in 0.4.0.

	
class imgaug.augmenters.imgcorruptlike.Brightness(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.brightness.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_brightness().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Brightness(severity=2)

Create an augmenter around
imagecorruptions.corruptions.brightness.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.Contrast(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.contrast.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_contrast().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Contrast(severity=2)

Create an augmenter around
imagecorruptions.corruptions.contrast.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.DefocusBlur(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.defocus_blur.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_defocus_blur().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.DefocusBlur(severity=2)

Create an augmenter around
imagecorruptions.corruptions.defocus_blur.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.ElasticTransform(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.elastic_transform.

Warning

This augmenter can currently only transform image-data.
Batches containing heatmaps, segmentation maps and
coordinate-based augmentables will be rejected with an error.
Use ElasticTransformation if
you have to transform such inputs.

Added in 0.4.0.

Supported dtypes:

See apply_elastic_transform().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ElasticTransform(severity=2)

Create an augmenter around
imagecorruptions.corruptions.elastic_transform.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.Fog(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.fog.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_fog().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Fog(severity=2)

Create an augmenter around
imagecorruptions.corruptions.fog.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.Frost(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.frost.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_frost().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Frost(severity=2)

Create an augmenter around
imagecorruptions.corruptions.frost.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.GaussianBlur(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.gaussian_blur.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_gaussian_blur().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.GaussianBlur(severity=2)

Create an augmenter around
imagecorruptions.corruptions.gaussian_blur.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.GaussianNoise(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.gaussian_noise.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_gaussian_noise().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.GaussianNoise(severity=2)

Create an augmenter around
imagecorruptions.corruptions.gaussian_noise.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.GlassBlur(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.glass_blur.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_glass_blur().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.GlassBlur(severity=2)

Create an augmenter around
imagecorruptions.corruptions.glass_blur.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.ImpulseNoise(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.impulse_noise.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_impulse_noise().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ImpulseNoise(severity=2)

Create an augmenter around
imagecorruptions.corruptions.impulse_noise.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.JpegCompression(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.jpeg_compression.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_jpeg_compression().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.JpegCompression(severity=2)

Create an augmenter around
imagecorruptions.corruptions.jpeg_compression.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.MotionBlur(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.motion_blur.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_motion_blur().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.MotionBlur(severity=2)

Create an augmenter around
imagecorruptions.corruptions.motion_blur.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.Pixelate(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.pixelate.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_pixelate().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Pixelate(severity=2)

Create an augmenter around
imagecorruptions.corruptions.pixelate.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.Saturate(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.saturate.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_saturate().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Saturate(severity=2)

Create an augmenter around
imagecorruptions.corruptions.saturate.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.ShotNoise(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.shot_noise.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_shot_noise().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ShotNoise(severity=2)

Create an augmenter around
imagecorruptions.corruptions.shot_noise.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.Snow(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.snow.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_snow().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Snow(severity=2)

Create an augmenter around
imagecorruptions.corruptions.snow.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.Spatter(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.spatter.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_spatter().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Spatter(severity=2)

Create an augmenter around
imagecorruptions.corruptions.spatter.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.SpeckleNoise(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.speckle_noise.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_speckle_noise().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.SpeckleNoise(severity=2)

Create an augmenter around
imagecorruptions.corruptions.speckle_noise.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.imgcorruptlike.ZoomBlur(severity=(1, 5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.zoom_blur.

Note

This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_zoom_blur().

	Parameters

	
	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ZoomBlur(severity=2)

Create an augmenter around
imagecorruptions.corruptions.zoom_blur.
Apply it to images using e.g. aug(images=[image1, image2, ...]).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
imgaug.augmenters.imgcorruptlike.apply_brightness(x, severity=1, seed=None)

	Apply brightness from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_contrast(x, severity=1, seed=None)

	Apply contrast from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_defocus_blur(x, severity=1, seed=None)

	Apply defocus_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_elastic_transform(image, severity=1, seed=None)

	Apply elastic_transform from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	image (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_fog(x, severity=1, seed=None)

	Apply fog from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_frost(x, severity=1, seed=None)

	Apply frost from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_gaussian_blur(x, severity=1, seed=None)

	Apply gaussian_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_gaussian_noise(x, severity=1, seed=None)

	Apply gaussian_noise from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_glass_blur(x, severity=1, seed=None)

	Apply glass_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_impulse_noise(x, severity=1, seed=None)

	Apply impulse_noise from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_jpeg_compression(x, severity=1, seed=None)

	Apply jpeg_compression from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_motion_blur(x, severity=1, seed=None)

	Apply motion_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_pixelate(x, severity=1, seed=None)

	Apply pixelate from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_saturate(x, severity=1, seed=None)

	Apply saturate from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_shot_noise(x, severity=1, seed=None)

	Apply shot_noise from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_snow(x, severity=1, seed=None)

	Apply snow from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_spatter(x, severity=1, seed=None)

	Apply spatter from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_speckle_noise(x, severity=1, seed=None)

	Apply speckle_noise from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.apply_zoom_blur(x, severity=1, seed=None)

	Apply zoom_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

	Parameters

	
	x (ndarray) – Image array.
Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

	severity (int, optional) – Strength of the corruption, with valid values being
1 <= severity <= 5.

	seed (None or int, optional) – Seed for the random number generation to use.

	Returns

	Corrupted image.

	Return type

	ndarray

	
imgaug.augmenters.imgcorruptlike.get_corruption_names(subset='common')

	Get a named subset of image corruption functions.

Note

This function returns the augmentation names (as strings) and the
corresponding augmentation functions, while get_corruption_names()
in imagecorruptions only returns the augmentation names.

Added in 0.4.0.

	Parameters

	subset ({‘common’, ‘validation’, ‘all’}, optional.) – Name of the subset of image corruption functions.

	Returns

	
	list of str – Names of the corruption methods, e.g. “gaussian_noise”.

	list of callable – Function corresponding to the name. Is one of the
apply_*() functions in this module. Apply e.g.
via func(image, severity=2, seed=123).

imgaug.augmenters.meta

Augmenters that don’t apply augmentations themselves, but are needed
for meta usage.

List of augmenters:

	Augmenter (base class for all augmenters)

	Sequential

	SomeOf

	OneOf

	Sometimes

	WithChannels

	Identity

	Noop

	Lambda

	AssertLambda

	AssertShape

	ChannelShuffle

Note: WithColorspace is in color.py.

	
class imgaug.augmenters.meta.AssertLambda(func_images=None, func_heatmaps=None, func_segmentation_maps=None, func_keypoints=None, func_bounding_boxes=None, func_polygons=None, func_line_strings=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Lambda

Assert conditions based on lambda-function to be the case for input data.

This augmenter applies a lambda function to each image or other input.
The lambda function must return True or False. If False is
returned, an assertion error is produced.

This is useful to ensure that generic assumption about the input data
are actually the case and error out early otherwise.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	func_images (None or callable, optional) – The function to call for each batch of images.
It must follow the form:

function(images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input).
It essentially re-uses the interface of
_augment_images().

	func_heatmaps (None or callable, optional) – The function to call for each batch of heatmaps.
It must follow the form:

function(heatmaps, random_state, parents, hooks)

and return either True (valid input) or False (invalid input).
It essentially re-uses the interface of
_augment_heatmaps().

	func_segmentation_maps (None or callable, optional) – The function to call for each batch of segmentation maps.
It must follow the form:

function(segmaps, random_state, parents, hooks)

and return either True (valid input) or False (invalid input).
It essentially re-uses the interface of
_augment_segmentation_maps().

	func_keypoints (None or callable, optional) – The function to call for each batch of keypoints.
It must follow the form:

function(keypoints_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input).
It essentially re-uses the interface of
_augment_keypoints().

	func_bounding_boxes (None or callable, optional) – The function to call for each batch of bounding boxes.
It must follow the form:

function(bounding_boxes_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input).
It essentially re-uses the interface of
_augment_bounding_boxes().

Added in 0.4.0.

	func_polygons (None or callable, optional) – The function to call for each batch of polygons.
It must follow the form:

function(polygons_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input).
It essentially re-uses the interface of
_augment_polygons().

	func_line_strings (None or callable, optional) – The function to call for each batch of line strings.
It must follow the form:

function(line_strings_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input).
It essentially re-uses the interface of
_augment_line_strings().

Added in 0.4.0.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.meta.AssertShape(shape, check_images=True, check_heatmaps=True, check_segmentation_maps=True, check_keypoints=True, check_bounding_boxes=True, check_polygons=True, check_line_strings=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Lambda

Assert that inputs have a specified shape.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	shape (tuple) – The expected shape, given as a tuple. The number of entries in
the tuple must match the number of dimensions, i.e. it must
contain four entries for (N, H, W, C). If only a single entity
is augmented, e.g. via
augment_image(), then N is
1 in the input to this augmenter. Images that don’t have
a channel axis will automatically have one assigned, i.e. C is
at least 1.
For each component of the tuple one of the following datatypes
may be used:

	If a component is None, any value for that dimensions is
accepted.

	If a component is int, exactly that value (and no other one)
will be accepted for that dimension.

	If a component is a tuple of two int s with values a
and b, only a value within the interval [a, b) will be
accepted for that dimension.

	If an entry is a list of int s, only a value from that
list will be accepted for that dimension.

	check_images (bool, optional) – Whether to validate input images via the given shape.

	check_heatmaps (bool, optional) – Whether to validate input heatmaps via the given shape.
The number of heatmaps will be verified as N. For each
HeatmapsOnImage instance
its array’s height and width will be verified as H and W,
but not the channel count.

	check_segmentation_maps (bool, optional) – Whether to validate input segmentation maps via the given shape.
The number of segmentation maps will be verified as N. For each
SegmentationMapOnImage instance
its array’s height and width will be verified as H and W,
but not the channel count.

	check_keypoints (bool, optional) – Whether to validate input keypoints via the given shape.
This will check (a) the number of keypoints and (b) for each
KeypointsOnImage instance the
.shape attribute, i.e. the shape of the corresponding image.

	check_bounding_boxes (bool, optional) – Whether to validate input bounding boxes via the given shape.
This will check (a) the number of bounding boxes and (b) for each
BoundingBoxesOnImage instance the
.shape attribute, i.e. the shape of the corresponding image.

Added in 0.4.0.

	check_polygons (bool, optional) – Whether to validate input polygons via the given shape.
This will check (a) the number of polygons and (b) for each
PolygonsOnImage instance the
.shape attribute, i.e. the shape of the corresponding image.

	check_line_strings (bool, optional) – Whether to validate input line strings via the given shape.
This will check (a) the number of line strings and (b) for each
LineStringsOnImage instance the
.shape attribute, i.e. the shape of the corresponding image.

Added in 0.4.0.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.AssertShape((None, 32, 32, 3)),
>>> iaa.Fliplr(0.5)
>>>])

Verify first for each image batch if it contains a variable number of
32x32 images with 3 channels each. Only if that check succeeds, the
horizontal flip will be executed. Otherwise an assertion error will be
raised.

>>> seq = iaa.Sequential([
>>> iaa.AssertShape((None, (32, 64), 32, [1, 3])),
>>> iaa.Fliplr(0.5)
>>>])

Similar to the above example, but now the height may be in the interval
[32, 64) and the number of channels may be either 1 or 3.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.meta.Augmenter(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: object

Base class for Augmenter objects.
All augmenters derive from this class.

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Seed to use for this augmenter’s random number generator (RNG) or
alternatively an RNG itself. Setting this parameter allows to
control/influence the random number sampling of this specific
augmenter without affecting other augmenters. Usually, there is no
need to set this parameter.

	If None: The global RNG is used (shared by all
augmenters).

	If int: The value will be used as a seed for a new
RNG instance.

	If RNG: The RNG instance will be
used without changes.

	If Generator: A new
RNG instance will be
created, containing that generator.

	If BitGenerator: Will
be wrapped in a Generator. Then
similar behaviour to Generator
parameters.

	If SeedSequence: Will
be wrapped in a new bit generator and
Generator. Then
similar behaviour to Generator
parameters.

	If RandomState: Similar behaviour to
Generator. Outdated in numpy 1.17+.

If a new bit generator has to be created, it will be an instance
of numpy.random.SFC64.

Added in 0.4.0.

	name (None or str, optional) – Name given to the Augmenter instance. This name is used when
converting the instance to a string, e.g. for print statements.
It is also used for find, remove or similar operations
on augmenters with children.
If None, UnnamedX will be used as the name, where X
is the Augmenter’s class name.

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	Get the parameters of this augmenter.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
augment(self, return_batch=False, hooks=None, **kwargs)

	Augment a batch.

This method is a wrapper around
UnnormalizedBatch and
augment_batch(). Hence, it
supports the same datatypes as
UnnormalizedBatch.

If return_batch was set to False (the default), the method will
return a tuple of augmentables. It will return the same types of
augmentables (but in augmented form) as input into the method. This
behaviour is partly specific to the python version:

	In python 3.6+ (if return_batch=False):

	Any number of augmentables may be provided as input.

	None of the provided named arguments has to be image or
images (but of coarse you may provide them).

	The return order matches the order of the named arguments, e.g.
x_aug, y_aug, z_aug = augment(X=x, Y=y, Z=z).

	In python <3.6 (if return_batch=False):

	One or two augmentables may be used as input, not more than that.

	One of the input arguments has to be image or images.

	The augmented images are always returned first, independent
of the input argument order, e.g.
a_aug, b_aug = augment(b=b, images=a). This also means
that the output of the function can only be one of the
following three cases: a batch, list/array of images,
tuple of images and something (like images + segmentation maps).

If return_batch was set to True, an instance of
UnnormalizedBatch will be
returned. The output is the same for all python version and any
number or combination of augmentables may be provided.

So, to keep code downward compatible for python <3.6, use one of the
following three options:

	Use batch = augment(images=X, ..., return_batch=True).

	Call images = augment(images=X).

	Call images, other = augment(images=X, <something_else>=Y).

All augmentables must be provided as named arguments.
E.g. augment(<array>) will crash, but augment(images=<array>)
will work.

	Parameters

	
	image (None or (H,W,C) ndarray or (H,W) ndarray, optional) – The image to augment. Only this or images can be set, not both.
If return_batch is False and the python version is below 3.6,
either this or images must be provided.

	images (None or (N,H,W,C) ndarray or (N,H,W) ndarray or iterable of (H,W,C) ndarray or iterable of (H,W) ndarray, optional) – The images to augment. Only this or image can be set, not both.
If return_batch is False and the python version is below 3.6,
either this or image must be provided.

	heatmaps (None or (N,H,W,C) ndarray or imgaug.augmentables.heatmaps.HeatmapsOnImage or iterable of (H,W,C) ndarray or iterable of imgaug.augmentables.heatmaps.HeatmapsOnImage, optional) – The heatmaps to augment.
If anything else than
HeatmapsOnImage, then the
number of heatmaps must match the number of images provided via
parameter images. The number is contained either in N or the
first iterable’s size.

	segmentation_maps (None or (N,H,W) ndarray or imgaug.augmentables.segmaps.SegmentationMapsOnImage or iterable of (H,W) ndarray or iterable of imgaug.augmentables.segmaps.SegmentationMapsOnImage, optional) – The segmentation maps to augment.
If anything else than
SegmentationMapsOnImage, then
the number of segmaps must match the number of images provided via
parameter images. The number is contained either in N or the
first iterable’s size.

	keypoints (None or list of (N,K,2) ndarray or tuple of number or imgaug.augmentables.kps.Keypoint or iterable of (K,2) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.kps.KeypointOnImage or iterable of iterable of tuple of number or iterable of iterable of imgaug.augmentables.kps.Keypoint, optional) – The keypoints to augment.
If a tuple (or iterable(s) of tuple), then iterpreted as (x,y)
coordinates and must hence contain two numbers.
A single tuple represents a single coordinate on one image, an
iterable of tuples the coordinates on one image and an iterable of
iterable of tuples the coordinates on several images. Analogous if
Keypoint instances are used
instead of tuples.
If an ndarray, then N denotes the number of images and K
the number of keypoints on each image.
If anything else than
KeypointsOnImage is provided, then
the number of keypoint groups must match the number of images
provided via parameter images. The number is contained e.g. in
N or in case of “iterable of iterable of tuples” in the first
iterable’s size.

	bounding_boxes (None or (N,B,4) ndarray or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage or iterable of (B,4) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.bbs.BoundingBox or iterable of imgaug.augmentables.bbs.BoundingBoxesOnImage or iterable of iterable of tuple of number or iterable of iterable imgaug.augmentables.bbs.BoundingBox, optional) – The bounding boxes to augment.
This is analogous to the keypoints parameter. However, each
tuple – and also the last index in case of arrays – has size
4, denoting the bounding box coordinates x1, y1,
x2 and y2.

	polygons (None or (N,#polys,#points,2) ndarray or imgaug.augmentables.polys.Polygon or imgaug.augmentables.polys.PolygonsOnImage or iterable of (#polys,#points,2) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.polys.Polygon or iterable of imgaug.augmentables.polys.PolygonsOnImage or iterable of iterable of (#points,2) ndarray or iterable of iterable of tuple of number or iterable of iterable of imgaug.augmentables.kps.Keypoint or iterable of iterable of imgaug.augmentables.polys.Polygon or iterable of iterable of iterable of tuple of number or iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint, optional) – The polygons to augment.
This is similar to the keypoints parameter. However, each polygon
may be made up of several ``(x,y) ``coordinates (three or more are
required for valid polygons).
The following datatypes will be interpreted as a single polygon on
a single image:

	imgaug.augmentables.polys.Polygon

	iterable of tuple of number

	iterable of imgaug.augmentables.kps.Keypoint

The following datatypes will be interpreted as multiple polygons
on a single image:

	imgaug.augmentables.polys.PolygonsOnImage

	iterable of imgaug.augmentables.polys.Polygon

	iterable of iterable of tuple of number

	iterable of iterable of imgaug.augmentables.kps.Keypoint

	iterable of iterable of imgaug.augmentables.polys.Polygon

The following datatypes will be interpreted as multiple polygons on
multiple images:

	(N,#polys,#points,2) ndarray

	iterable of (#polys,#points,2) ndarray

	iterable of iterable of (#points,2) ndarray

	iterable of iterable of iterable of tuple of number

	iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint

	line_strings (None or (N,#lines,#points,2) ndarray or imgaug.augmentables.lines.LineString or imgaug.augmentables.lines.LineStringOnImage or iterable of (#polys,#points,2) ndarray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.lines.LineString or iterable of imgaug.augmentables.lines.LineStringOnImage or iterable of iterable of (#points,2) ndarray or iterable of iterable of tuple of number or iterable of iterable of imgaug.augmentables.kps.Keypoint or iterable of iterable of imgaug.augmentables.lines.LineString or iterable of iterable of iterable of tuple of number or iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint, optional) – The line strings to augment.
See polygons, which behaves similarly.

	return_batch (bool, optional) – Whether to return an instance of
UnnormalizedBatch. If the
python version is below 3.6 and more than two augmentables were
provided (e.g. images, keypoints and polygons), then this must be
set to True. Otherwise an error will be raised.

	hooks (None or imgaug.imgaug.HooksImages, optional) – Hooks object to dynamically interfere with the augmentation process.

	Returns

	If return_batch was set to True, a instance of
UnnormalizedBatch will be returned.
If return_batch was set to False, a tuple of augmentables
will be returned, e.g. (augmented images, augmented keypoints).
The datatypes match the input datatypes of the corresponding named
arguments. In python <3.6, augmented images are always the first
entry in the returned tuple. In python 3.6+ the order matches the
order of the named arguments.

	Return type

	tuple or imgaug.augmentables.batches.UnnormalizedBatch

Examples

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> aug = iaa.Affine(rotate=(-25, 25))
>>> image = np.zeros((64, 64, 3), dtype=np.uint8)
>>> keypoints = [(10, 20), (30, 32)] # (x,y) coordinates
>>> images_aug, keypoints_aug = aug.augment(
>>> image=image, keypoints=keypoints)

Create a single image and a set of two keypoints on it, then
augment both by applying a random rotation between -25 deg and
+25 deg. The sampled rotation value is automatically aligned
between image and keypoints. Note that in python <3.6, augmented
images will always be returned first, independent of the order of
the named input arguments. So
keypoints_aug, images_aug = aug.augment(keypoints=keypoints,
image=image) would not be correct (but in python 3.6+ it would
be).

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.bbs import BoundingBox
>>> aug = iaa.Affine(rotate=(-25, 25))
>>> images = [np.zeros((64, 64, 3), dtype=np.uint8),
>>> np.zeros((32, 32, 3), dtype=np.uint8)]
>>> keypoints = [[(10, 20), (30, 32)], # KPs on first image
>>> [(22, 10), (12, 14)]] # KPs on second image
>>> bbs = [
>>> [BoundingBox(x1=5, y1=5, x2=50, y2=45)],
>>> [BoundingBox(x1=4, y1=6, x2=10, y2=15),
>>> BoundingBox(x1=8, y1=9, x2=16, y2=30)]
>>>] # one BB on first image, two BBs on second image
>>> batch_aug = aug.augment(
>>> images=images, keypoints=keypoints, bounding_boxes=bbs,
>>> return_batch=True)

Create two images of size 64x64 and 32x32, two sets of
keypoints (each containing two keypoints) and two sets of bounding
boxes (the first containing one bounding box, the second two bounding
boxes). These augmentables are then augmented by applying random
rotations between -25 deg and +25 deg to them. The rotation
values are sampled by image and aligned between all augmentables on
the same image. The method finally returns an instance of
UnnormalizedBatch from which the
augmented data can be retrieved via batch_aug.images_aug,
batch_aug.keypoints_aug, and batch_aug.bounding_boxes_aug.
In python 3.6+, return_batch can be kept at False and the
augmented data can be retrieved as
images_aug, keypoints_aug, bbs_aug = augment(...).

	
augment_batch(self, batch, hooks=None)

	Deprecated. Use augment_batch_() instead. augment_batch() was renamed to augment_batch_() as it changes all *_unaug attributes of batches in-place. Note that augment_batch_() has now a parents parameter. Calls of the style augment_batch(batch, hooks) must be changed to augment_batch(batch, hooks=hooks).

Augment a single batch.

Deprecated since 0.4.0.

	
augment_batch_(self, batch, parents=None, hooks=None)

	Augment a single batch in-place.

Added in 0.4.0.

	Parameters

	
	batch (imgaug.augmentables.batches.Batch or imgaug.augmentables.batches.UnnormalizedBatch or imgaug.augmentables.batch._BatchInAugmentation) – A single batch to augment.

If imgaug.augmentables.batches.UnnormalizedBatch
or imgaug.augmentables.batches.Batch, then the *_aug
attributes may be modified in-place, while the *_unaug
attributes will not be modified.
If imgaug.augmentables.batches._BatchInAugmentation,
then all attributes may be modified in-place.

	parents (None or list of imgaug.augmenters.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as
None. It is set automatically for child augmenters.

	hooks (None or imgaug.HooksImages, optional) – HooksImages object to dynamically interfere with the augmentation
process.

	Returns

	Augmented batch.

	Return type

	imgaug.augmentables.batches.Batch or imgaug.augmentables.batches.UnnormalizedBatch

	
augment_batches(self, batches, hooks=None, background=False)

	Augment multiple batches.

In contrast to other augment_* method, this one yields
batches instead of returning a full list. This is more suited
for most training loops.

This method also also supports augmentation on multiple cpu cores,
activated via the background flag. If the background flag
is activated, an instance of Pool will
be spawned using all available logical CPU cores and an
output_buffer_size of C*10, where C is the number of
logical CPU cores. I.e. a maximum of C*10 batches will be somewhere
in the augmentation pipeline (or waiting to be retrieved by downstream
functions) before this method temporarily stops the loading of new
batches from batches.

	Parameters

	
	batches (imgaug.augmentables.batches.Batch or imgaug.augmentables.batches.UnnormalizedBatch or iterable of imgaug.augmentables.batches.Batch or iterable of imgaug.augmentables.batches.UnnormalizedBatch) – A single batch or a list of batches to augment.

	hooks (None or imgaug.HooksImages, optional) – HooksImages object to dynamically interfere with the augmentation
process.

	background (bool, optional) – Whether to augment the batches in background processes.
If True, hooks can currently not be used as that would require
pickling functions.
Note that multicore augmentation distributes the batches onto
different CPU cores. It does not split the data within batches.
It is therefore not sensible to use background=True to
augment a single batch. Only use it for multiple batches.
Note also that multicore augmentation needs some time to start. It
is therefore not recommended to use it for very few batches.

	Yields

	imgaug.augmentables.batches.Batch or imgaug.augmentables.batches.UnnormalizedBatch or iterable of imgaug.augmentables.batches.Batch or iterable of imgaug.augmentables.batches.UnnormalizedBatch – Augmented batches.

	
augment_bounding_boxes(self, bounding_boxes_on_images, parents=None, hooks=None)

	Augment a batch of bounding boxes.

This is the corresponding function to
Augmenter.augment_images(), just for bounding boxes.
Usually you will want to call Augmenter.augment_images() with
a list of images, e.g. augment_images([A, B, C]) and then
augment_bounding_boxes() with the corresponding list of bounding
boxes on these images, e.g.
augment_bounding_boxes([Abb, Bbb, Cbb]), where Abb are the
bounding boxes on image A.

Make sure to first convert the augmenter(s) to deterministic states
before augmenting images and their corresponding bounding boxes,
e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.bbs import BoundingBox
>>> from imgaug.augmentables.bbs import BoundingBoxesOnImage
>>> A = B = C = np.ones((10, 10), dtype=np.uint8)
>>> Abb = Bbb = Cbb = BoundingBoxesOnImage([
>>> BoundingBox(1, 1, 9, 9)], (10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> bbs_aug = seq_det.augment_bounding_boxes([Abb, Bbb, Cbb])

Otherwise, different random values will be sampled for the image
and bounding box augmentations, resulting in different augmentations
(e.g. images might be rotated by 30deg and bounding boxes by
-10deg). Also make sure to call Augmenter.to_deterministic()
again for each new batch, otherwise you would augment all batches in
the same way.

Note that there is also Augmenter.augment(), which automatically
handles the random state alignment.

	Parameters

	
	bounding_boxes_on_images (imgaug.augmentables.bbs.BoundingBoxesOnImage or list of imgaug.augmentables.bbs.BoundingBoxesOnImage) – The bounding boxes to augment.
Either a single instance of
BoundingBoxesOnImage or a list of
such instances, with each one of them containing the bounding
boxes of a single image.

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as
None. It is set automatically for child augmenters.

	hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object to dynamically
interfere with the augmentation process.

	Returns

	Augmented bounding boxes.

	Return type

	imgaug.augmentables.bbs.BoundingBoxesOnImage or list of imgaug.augmentables.bbs.BoundingBoxesOnImage

	
augment_heatmaps(self, heatmaps, parents=None, hooks=None)

	Augment a batch of heatmaps.

	Parameters

	
	heatmaps (imgaug.augmentables.heatmaps.HeatmapsOnImage or list of imgaug.augmentables.heatmaps.HeatmapsOnImage) – Heatmap(s) to augment. Either a single heatmap or a list of
heatmaps.

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as
None.
It is set automatically for child augmenters.

	hooks (None or imaug.imgaug.HooksHeatmaps, optional) – HooksHeatmaps object to dynamically
interfere with the augmentation process.

	Returns

	Corresponding augmented heatmap(s).

	Return type

	imgaug.augmentables.heatmaps.HeatmapsOnImage or list of imgaug.augmentables.heatmaps.HeatmapsOnImage

	
augment_image(self, image, hooks=None)

	Augment a single image.

	Parameters

	
	image ((H,W,C) ndarray or (H,W) ndarray) – The image to augment.
Channel-axis is optional, but expected to be the last axis if
present. In most cases, this array should be of dtype uint8,
which is supported by all augmenters. Support for other dtypes
varies by augmenter – see the respective augmenter-specific
documentation for more details.

	hooks (None or imgaug.HooksImages, optional) – HooksImages object to dynamically interfere with the augmentation
process.

	Returns

	The corresponding augmented image.

	Return type

	ndarray

	
augment_images(self, images, parents=None, hooks=None)

	Augment a batch of images.

	Parameters

	
	images ((N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W) ndarray) – Images to augment.
The input can be a list of numpy arrays or a single array. Each
array is expected to have shape (H, W, C) or (H, W),
where H is the height, W is the width and C are the
channels. The number of channels may differ between images.
If a list is provided, the height, width and channels may differ
between images within the provided batch.
In most cases, the image array(s) should be of dtype uint8,
which is supported by all augmenters. Support for other dtypes
varies by augmenter – see the respective augmenter-specific
documentation for more details.

	parents (None or list of imgaug.augmenters.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as
None. It is set automatically for child augmenters.

	hooks (None or imgaug.imgaug.HooksImages, optional) – HooksImages object to dynamically
interfere with the augmentation process.

	Returns

	Corresponding augmented images.
If the input was an ndarray, the output is also an ndarray,
unless the used augmentations have led to different output image
sizes (as can happen in e.g. cropping).

	Return type

	ndarray or list

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> aug = iaa.GaussianBlur((0.0, 3.0))
>>> # create empty example images
>>> images = np.zeros((2, 64, 64, 3), dtype=np.uint8)
>>> images_aug = aug.augment_images(images)

Create 2 empty (i.e. black) example numpy images and apply
gaussian blurring to them.

	
augment_keypoints(self, keypoints_on_images, parents=None, hooks=None)

	Augment a batch of keypoints/landmarks.

This is the corresponding function to Augmenter.augment_images(),
just for keypoints/landmarks (i.e. points on images).
Usually you will want to call Augmenter.augment_images() with
a list of images, e.g. augment_images([A, B, C]) and then
augment_keypoints() with the corresponding list of keypoints on
these images, e.g. augment_keypoints([Ak, Bk, Ck]), where Ak
are the keypoints on image A.

Make sure to first convert the augmenter(s) to deterministic states
before augmenting images and their corresponding keypoints,
e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.kps import Keypoint
>>> from imgaug.augmentables.kps import KeypointsOnImage
>>> A = B = C = np.zeros((10, 10), dtype=np.uint8)
>>> Ak = Bk = Ck = KeypointsOnImage([Keypoint(2, 2)], (10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> kps_aug = seq_det.augment_keypoints([Ak, Bk, Ck])

Otherwise, different random values will be sampled for the image
and keypoint augmentations, resulting in different augmentations (e.g.
images might be rotated by 30deg and keypoints by -10deg).
Also make sure to call Augmenter.to_deterministic() again for
each new batch, otherwise you would augment all batches in the same
way.

Note that there is also Augmenter.augment(), which automatically
handles the random state alignment.

	Parameters

	
	keypoints_on_images (imgaug.augmentables.kps.KeypointsOnImage or list of imgaug.augmentables.kps.KeypointsOnImage) – The keypoints/landmarks to augment.
Either a single instance of
KeypointsOnImage or a list of
such instances. Each instance must contain the keypoints of a
single image.

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as
None. It is set automatically for child augmenters.

	hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object to dynamically
interfere with the augmentation process.

	Returns

	Augmented keypoints.

	Return type

	imgaug.augmentables.kps.KeypointsOnImage or list of imgaug.augmentables.kps.KeypointsOnImage

	
augment_line_strings(self, line_strings_on_images, parents=None, hooks=None)

	Augment a batch of line strings.

This is the corresponding function to
Augmenter.augment_images`(), just for line strings.
Usually you will want to call Augmenter.augment_images() with
a list of images, e.g. augment_images([A, B, C]) and then
augment_line_strings() with the corresponding list of line
strings on these images, e.g.
augment_line_strings([A_line, B_line, C_line]), where A_line
are the line strings on image A.

Make sure to first convert the augmenter(s) to deterministic states
before augmenting images and their corresponding line strings,
e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.lines import LineString
>>> from imgaug.augmentables.lines import LineStringsOnImage
>>> A = B = C = np.ones((10, 10), dtype=np.uint8)
>>> A_line = B_line = C_line = LineStringsOnImage(
>>> [LineString([(0, 0), (1, 0), (1, 1), (0, 1)])],
>>> shape=(10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> lines_aug = seq_det.augment_line_strings([A_line, B_line, C_line])

Otherwise, different random values will be sampled for the image
and line string augmentations, resulting in different augmentations
(e.g. images might be rotated by 30deg and line strings by
-10deg). Also make sure to call to_deterministic() again for
each new batch, otherwise you would augment all batches in the same
way.

Note that there is also Augmenter.augment(), which automatically
handles the random state alignment.

	Parameters

	
	line_strings_on_images (imgaug.augmentables.lines.LineStringsOnImage or list of imgaug.augmentables.lines.LineStringsOnImage) – The line strings to augment.
Either a single instance of
LineStringsOnImage or a list of
such instances, with each one of them containing the line strings
of a single image.

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as None.
It is set automatically for child augmenters.

	hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object to dynamically
interfere with the augmentation process.

	Returns

	Augmented line strings.

	Return type

	imgaug.augmentables.lines.LineStringsOnImage or list of imgaug.augmentables.lines.LineStringsOnImage

	
augment_polygons(self, polygons_on_images, parents=None, hooks=None)

	Augment a batch of polygons.

This is the corresponding function to Augmenter.augment_images(),
just for polygons.
Usually you will want to call Augmenter.augment_images`() with
a list of images, e.g. augment_images([A, B, C]) and then
augment_polygons() with the corresponding list of polygons on these
images, e.g. augment_polygons([A_poly, B_poly, C_poly]), where
A_poly are the polygons on image A.

Make sure to first convert the augmenter(s) to deterministic states
before augmenting images and their corresponding polygons,
e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.polys import Polygon, PolygonsOnImage
>>> A = B = C = np.ones((10, 10), dtype=np.uint8)
>>> Apoly = Bpoly = Cpoly = PolygonsOnImage(
>>> [Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])],
>>> shape=(10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> polys_aug = seq_det.augment_polygons([Apoly, Bpoly, Cpoly])

Otherwise, different random values will be sampled for the image
and polygon augmentations, resulting in different augmentations
(e.g. images might be rotated by 30deg and polygons by
-10deg). Also make sure to call to_deterministic() again for
each new batch, otherwise you would augment all batches in the same
way.

Note that there is also Augmenter.augment(), which automatically
handles the random state alignment.

	Parameters

	
	polygons_on_images (imgaug.augmentables.polys.PolygonsOnImage or list of imgaug.augmentables.polys.PolygonsOnImage) – The polygons to augment.
Either a single instance of
PolygonsOnImage or a list of
such instances, with each one of them containing the polygons of
a single image.

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as
None. It is set automatically for child augmenters.

	hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object to dynamically
interfere with the augmentation process.

	Returns

	Augmented polygons.

	Return type

	imgaug.augmentables.polys.PolygonsOnImage or list of imgaug.augmentables.polys.PolygonsOnImage

	
augment_segmentation_maps(self, segmaps, parents=None, hooks=None)

	Augment a batch of segmentation maps.

	Parameters

	
	segmaps (imgaug.augmentables.segmaps.SegmentationMapsOnImage or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – Segmentation map(s) to augment. Either a single segmentation map
or a list of segmentation maps.

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent augmenters that have previously been called before the
call to this function. Usually you can leave this parameter as
None. It is set automatically for child augmenters.

	hooks (None or imgaug.HooksHeatmaps, optional) – HooksHeatmaps object to dynamically
interfere with the augmentation process.

	Returns

	Corresponding augmented segmentation map(s).

	Return type

	imgaug.augmentables.segmaps.SegmentationMapsOnImage or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage

	
copy(self)

	Create a shallow copy of this Augmenter instance.

	Returns

	Shallow copy of this Augmenter instance.

	Return type

	imgaug.augmenters.meta.Augmenter

	
copy_random_state(self, source, recursive=True, matching='position', matching_tolerant=True, copy_determinism=False)

	Copy the RNGs from a source augmenter sequence.

	Parameters

	
	source (imgaug.augmenters.meta.Augmenter) – See copy_random_state_().

	recursive (bool, optional) – See copy_random_state_().

	matching ({‘position’, ‘name’}, optional) – See copy_random_state_().

	matching_tolerant (bool, optional) – See copy_random_state_().

	copy_determinism (bool, optional) – See copy_random_state_().

	Returns

	Copy of the augmenter itself (with copied RNGs).

	Return type

	imgaug.augmenters.meta.Augmenter

	
copy_random_state_(self, source, recursive=True, matching='position', matching_tolerant=True, copy_determinism=False)

	Copy the RNGs from a source augmenter sequence (in-place).

Note

The source augmenters are not allowed to use the global RNG.
Call
localize_random_state_()
once on the source to localize all random states.

	Parameters

	
	source (imgaug.augmenters.meta.Augmenter) – The source augmenter(s) from where to copy the RNG(s).
The source may have children (e.g. the source can be a
Sequential).

	recursive (bool, optional) – Whether to copy the RNGs of the source augmenter and
all of its children (True) or just the source
augmenter (False).

	matching ({‘position’, ‘name’}, optional) – Defines the matching mode to use during recursive copy.
This is used to associate source augmenters with target augmenters.
If position then the target and source sequences of augmenters
are turned into flattened lists and are associated based on
their list indices. If name then the target and source
augmenters are matched based on their names (i.e.
augmenter.name).

	matching_tolerant (bool, optional) – Whether to use tolerant matching between source and target
augmenters. If set to False: Name matching will raise an
exception for any target augmenter which’s name does not appear
among the source augmenters. Position matching will raise an
exception if source and target augmenter have an unequal number
of children.

	copy_determinism (bool, optional) – Whether to copy the deterministic attributes from source to
target augmenters too.

	Returns

	The augmenter itself.

	Return type

	imgaug.augmenters.meta.Augmenter

	
deepcopy(self)

	Create a deep copy of this Augmenter instance.

	Returns

	Deep copy of this Augmenter instance.

	Return type

	imgaug.augmenters.meta.Augmenter

	
draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

This method applies this augmenter to the provided images and returns
a grid image of the results. Each cell in the grid contains a single
augmented version of an input image.

If multiple input images are provided, the row count is multiplied by
the number of images and each image gets its own row.
E.g. for images = [A, B], rows=2, cols=3:

A A A
B B B
A A A
B B B

for images = [A], rows=2, cols=3:

A A A
A A A

	Parameters

	
	images ((N,H,W,3) ndarray or (H,W,3) ndarray or (H,W) ndarray or list of (H,W,3) ndarray or list of (H,W) ndarray) – List of images to augment and draw in the grid.
If a list, then each element is expected to have shape (H, W)
or (H, W, 3). If a single array, then it is expected to have
shape (N, H, W, 3) or (H, W, 3) or (H, W).

	rows (int) – Number of rows in the grid.
If N input images are given, this value will automatically be
multiplied by N to create rows for each image.

	cols (int) – Number of columns in the grid.

	Returns

	The generated grid image with augmented versions of the input
images. Here, Hg and Wg reference the output size of the
grid, and not the sizes of the input images.

	Return type

	(Hg, Wg, 3) ndarray

	
find_augmenters(self, func, parents=None, flat=True)

	Find augmenters that match a condition.

This function will compare this augmenter and all of its children
with a condition. The condition is a lambda function.

	Parameters

	
	func (callable) – A function that receives a
Augmenter instance and a list of
parent Augmenter instances and
must return True, if that augmenter is valid match or
False otherwise.

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – List of parent augmenters.
Intended for nested calls and can usually be left as None.

	flat (bool, optional) – Whether to return the result as a flat list (True)
or a nested list (False). In the latter case, the nesting
matches each augmenters position among the children.

	Returns

	Nested list if flat was set to False.
Flat list if flat was set to True.

	Return type

	list of imgaug.augmenters.meta.Augmenter

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Fliplr(0.5, name="fliplr"),
>>> iaa.Flipud(0.5, name="flipud")
>>>])
>>> print(aug.find_augmenters(lambda a, parents: a.name == "fliplr"))

Return the first child augmenter (Fliplr instance).

	
find_augmenters_by_name(self, name, regex=False, flat=True)

	Find augmenter(s) by name.

	Parameters

	
	name (str) – Name of the augmenter(s) to search for.

	regex (bool, optional) – Whether name parameter is a regular expression.

	flat (bool, optional) – See find_augmenters().

	Returns

	augmenters – Nested list if flat was set to False.
Flat list if flat was set to True.

	Return type

	list of imgaug.augmenters.meta.Augmenter

	
find_augmenters_by_names(self, names, regex=False, flat=True)

	Find augmenter(s) by names.

	Parameters

	
	names (list of str) – Names of the augmenter(s) to search for.

	regex (bool, optional) – Whether names is a list of regular expressions.
If it is, an augmenter is considered a match if at least one
of these expressions is a match.

	flat (boolean, optional) – See find_augmenters().

	Returns

	augmenters – Nested list if flat was set to False.
Flat list if flat was set to True.

	Return type

	list of imgaug.augmenters.meta.Augmenter

	
get_all_children(self, flat=False)

	Get all children of this augmenter as a list.

If the augmenter has no children, the returned list is empty.

	Parameters

	flat (bool) – If set to True, the returned list will be flat.

	Returns

	The children as a nested or flat list.

	Return type

	list of imgaug.augmenters.meta.Augmenter

	
get_children_lists(self)

	Get a list of lists of children of this augmenter.

For most augmenters, the result will be a single empty list.
For augmenters with children it will often be a list with one
sublist containing all children. In some cases the augmenter will
contain multiple distinct lists of children, e.g. an if-list and an
else-list. This will lead to a result consisting of a single list
with multiple sublists, each representing the respective sublist of
children.

E.g. for an if/else-augmenter that executes the children A1,
A2 if a condition is met and otherwise executes the children
B1, B2, B3 the result will be
[[A1, A2], [B1, B2, B3]].

IMPORTANT: While the topmost list may be newly created, each of the
sublist must be editable inplace resulting in a changed children list
of the augmenter. E.g. if an Augmenter
IfElse(condition, [A1, A2], [B1, B2, B3]) returns
[[A1, A2], [B1, B2, B3]]
for a call to
get_children_lists() and
A2 is removed inplace from [A1, A2], then the children lists
of IfElse(...) must also change to [A1], [B1, B2, B3]. This
is used in
remove_augmenters_().

	Returns

	One or more lists of child augmenter.
Can also be a single empty list.

	Return type

	list of list of imgaug.augmenters.meta.Augmenter

	
get_parameters(self)

	Get the parameters of this augmenter.

	Returns

	List of parameters of arbitrary types (usually child class
of StochasticParameter, but not
guaranteed to be).

	Return type

	list

	
localize_random_state(self, recursive=True)

	Assign augmenter-specific RNGs to this augmenter and its children.

See Augmenter.localize_random_state_() for more details.

	Parameters

	recursive (bool, optional) – See
localize_random_state_().

	Returns

	Copy of the augmenter and its children, with localized RNGs.

	Return type

	imgaug.augmenters.meta.Augmenter

	
localize_random_state_(self, recursive=True)

	Assign augmenter-specific RNGs to this augmenter and its children.

This method iterates over this augmenter and all of its children and
replaces any pointer to the global RNG with a new local (i.e.
augmenter-specific) RNG.

A random number generator (RNG) is used for the sampling of random
values.
The global random number generator exists exactly once throughout
the library and is shared by many augmenters.
A local RNG (usually) exists within exactly one augmenter and is
only used by that augmenter.

Usually there is no need to change global into local RNGs.
The only noteworthy exceptions are

	Whenever you want to use determinism (so that the global RNG is
not accidentally reverted).

	Whenever you want to copy RNGs from one augmenter to
another. (Copying the global RNG would usually not be useful.
Copying the global RNG from augmenter A to B, then executing A
and then B would result in B’s (global) RNG’s state having
already changed because of A’s sampling. So the samples of
A and B would differ.)

The case of determinism is handled automatically by
to_deterministic().
Only when you copy RNGs (via
copy_random_state()),
you need to call this function first.

	Parameters

	recursive (bool, optional) – Whether to localize the RNGs of the augmenter’s children too.

	Returns

	Returns itself (with localized RNGs).

	Return type

	imgaug.augmenters.meta.Augmenter

	
pool(self, processes=None, maxtasksperchild=None, seed=None)

	Create a pool used for multicore augmentation.

	Parameters

	
	processes (None or int, optional) – Same as in __init__().
The number of background workers. If None, the number of the
machine’s CPU cores will be used (this counts hyperthreads as CPU
cores). If this is set to a negative value p, then
P - abs(p) will be used, where P is the number of CPU
cores. E.g. -1 would use all cores except one (this is useful
to e.g. reserve one core to feed batches to the GPU).

	maxtasksperchild (None or int, optional) – Same as for __init__().
The number of tasks done per worker process before the process
is killed and restarted. If None, worker processes will not
be automatically restarted.

	seed (None or int, optional) – Same as for __init__().
The seed to use for child processes. If None, a random seed
will be used.

	Returns

	Pool for multicore augmentation.

	Return type

	imgaug.multicore.Pool

Examples

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.batches import Batch
>>>
>>> aug = iaa.Add(1)
>>> images = np.zeros((16, 128, 128, 3), dtype=np.uint8)
>>> batches = [Batch(images=np.copy(images)) for _ in range(100)]
>>> with aug.pool(processes=-1, seed=2) as pool:
>>> batches_aug = pool.map_batches(batches, chunksize=8)
>>> print(np.sum(batches_aug[0].images_aug[0]))
49152

Create 100 batches of empty images. Each batch contains
16 images of size 128x128. The batches are then augmented on
all CPU cores except one (processes=-1). After augmentation, the
sum of pixel values from the first augmented image is printed.

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.batches import Batch
>>>
>>> aug = iaa.Add(1)
>>> images = np.zeros((16, 128, 128, 3), dtype=np.uint8)
>>> def generate_batches():
>>> for _ in range(100):
>>> yield Batch(images=np.copy(images))
>>>
>>> with aug.pool(processes=-1, seed=2) as pool:
>>> batches_aug = pool.imap_batches(generate_batches(), chunksize=8)
>>> batch_aug = next(batches_aug)
>>> print(np.sum(batch_aug.images_aug[0]))
49152

Same as above. This time, a generator is used to generate batches
of images. Again, the first augmented image’s sum of pixels is printed.

	
remove_augmenters(self, func, copy=True, identity_if_topmost=True, noop_if_topmost=None)

	Remove this augmenter or children that match a condition.

	Parameters

	
	func (callable) – Condition to match per augmenter.
The function must expect the augmenter itself and a list of parent
augmenters and returns True if that augmenter is supposed to
be removed, or False otherwise.
E.g. lambda a, parents: a.name == "fliplr" and len(parents) == 1
removes an augmenter with name fliplr if it is the direct child
of the augmenter upon which remove_augmenters() was initially
called.

	copy (bool, optional) – Whether to copy this augmenter and all if its children before
removing. If False, removal is performed in-place.

	identity_if_topmost (bool, optional) – If True and the condition (lambda function) leads to the
removal of the topmost augmenter (the one this function is called
on initially), then that topmost augmenter will be replaced by an
instance of Noop (i.e. an
augmenter that doesn’t change its inputs). If False, None
will be returned in these cases.
This can only be False if copy is set to True.

	noop_if_topmost (bool, optional) – Deprecated since 0.4.0.

	Returns

	This augmenter after the removal was performed.
None is returned if the condition was matched for the
topmost augmenter, copy was set to True and noop_if_topmost
was set to False.

	Return type

	imgaug.augmenters.meta.Augmenter or None

Examples

>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5, name="fliplr"),
>>> iaa.Flipud(0.5, name="flipud"),
>>>])
>>> seq = seq.remove_augmenters(lambda a, parents: a.name == "fliplr")

This removes the augmenter Fliplr from the Sequential
object’s children.

	
remove_augmenters_(self, func, parents=None)

	Remove in-place children of this augmenter that match a condition.

This is functionally identical to
remove_augmenters() with
copy=False, except that it does not affect the topmost augmenter
(the one on which this function is initially called on).

Added in 0.4.0.

	Parameters

	
	func (callable) – See remove_augmenters().

	parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – List of parent Augmenter instances
that lead to this augmenter. If None, an empty list will be
used. This parameter can usually be left empty and will be set
automatically for children.

Examples

>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5, name="fliplr"),
>>> iaa.Flipud(0.5, name="flipud"),
>>>])
>>> seq.remove_augmenters_(lambda a, parents: a.name == "fliplr")

This removes the augmenter Fliplr from the Sequential
object’s children.

	
remove_augmenters_inplace(self, func, parents=None)

	Deprecated. Use remove_augmenters_ instead.

Old name for remove_augmenters_().

Deprecated since 0.4.0.

	
reseed(self, random_state=None, deterministic_too=False)

	Deprecated. Use imgaug.augmenters.meta.Augmenter.seed_ instead.

Old name of seed_().

Deprecated since 0.4.0.

	
seed_(self, entropy=None, deterministic_too=False)

	Seed this augmenter and all of its children.

This method assigns a new random number generator to the
augmenter and all of its children (if it has any). The new random
number generator is derived from the provided seed or RNG – or from
the global random number generator if None was provided.
Note that as child RNGs are derived, they do not all use the same
seed.

If this augmenter or any child augmenter had a random number generator
that pointed to the global random state, it will automatically be
replaced with a local random state. This is similar to what
localize_random_state()
does.

This method is useful when augmentations are run in the
background (i.e. on multiple cores).
It should be called before sending this
Augmenter instance to a
background worker or once within each worker with different seeds
(i.e., if N workers are used, the function should be called
N times). Otherwise, all background workers will
use the same seeds and therefore apply the same augmentations.
Note that Augmenter.augment_batches() and Augmenter.pool()
already do this automatically.

Added in 0.4.0.

	Parameters

	
	entropy (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – A seed or random number generator that is used to derive new
random number generators for this augmenter and its children.
If an int is provided, it will be interpreted as a seed.
If None is provided, the global random number generator will
be used.

	deterministic_too (bool, optional) – Whether to also change the seed of an augmenter A, if A
is deterministic. This is the case both when this augmenter
object is A or one of its children is A.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Crop(px=(0, 10)),
>>> iaa.Crop(px=(0, 10))
>>>])
>>> aug.seed_(1)

Seed an augmentation sequence containing two crop operations. Even
though the same seed was used, the two operations will still sample
different pixel amounts to crop as the child-specific seed is merely
derived from the provided seed.

	
show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

This calls draw_grid() and
simply shows the results. See that method for details.

	Parameters

	
	images ((N,H,W,3) ndarray or (H,W,3) ndarray or (H,W) ndarray or list of (H,W,3) ndarray or list of (H,W) ndarray) – List of images to augment and draw in the grid.
If a list, then each element is expected to have shape (H, W)
or (H, W, 3). If a single array, then it is expected to have
shape (N, H, W, 3) or (H, W, 3) or (H, W).

	rows (int) – Number of rows in the grid.
If N input images are given, this value will automatically be
multiplied by N to create rows for each image.

	cols (int) – Number of columns in the grid.

	
to_deterministic(self, n=None)

	Convert this augmenter from a stochastic to a deterministic one.

A stochastic augmenter samples pseudo-random values for each parameter,
image and batch.
A deterministic augmenter also samples new values for each parameter
and image, but not batch. Instead, for consecutive batches it will
sample the same values (provided the number of images and their sizes
don’t change).
From a technical perspective this means that a deterministic augmenter
starts each batch’s augmentation with a random number generator in
the same state (i.e. same seed), instead of advancing that state from
batch to batch.

Using determinism is useful to (a) get the same augmentations for
two or more image batches (e.g. for stereo cameras), (b) to augment
images and corresponding data on them (e.g. segmentation maps or
bounding boxes) in the same way.

	Parameters

	n (None or int, optional) – Number of deterministic augmenters to return.
If None then only one Augmenter
instance will be returned.
If 1 or higher, a list containing n
Augmenter instances will be
returned.

	Returns

	A single Augmenter object if n was None,
otherwise a list of Augmenter objects (even if n was 1).

	Return type

	imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter

	
class imgaug.augmenters.meta.ChannelShuffle(p=1.0, channels=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Randomize the order of channels in input images.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	p (float or imgaug.parameters.StochasticParameter, optional) – Probability of shuffling channels in any given image.
May be a fixed probability as a float, or a
StochasticParameter that returns 0 s
and 1 s.

	channels (None or imgaug.ALL or list of int, optional) – Which channels are allowed to be shuffled with each other.
If this is None or imgaug.ALL, then all channels may be
shuffled. If it is a list of int s,
then only the channels with indices in that list may be shuffled.
(Values start at 0. All channel indices in the list must exist in
each image.)

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ChannelShuffle(0.35)

Shuffle all channels of 35% of all images.

>>> aug = iaa.ChannelShuffle(0.35, channels=[0, 1])

Shuffle only channels 0 and 1 of 35% of all images. As the new
channel orders 0, 1 and 1, 0 are both valid outcomes of the
shuffling, it means that for 0.35 * 0.5 = 0.175 or 17.5% of all
images the order of channels 0 and 1 is inverted.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.ClipCBAsToImagePlanes(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Clip coordinate-based augmentables to areas within the image plane.

This augmenter inspects all coordinate-based augmentables (e.g.
bounding boxes, line strings) within a given batch and from each of them
parts that are outside of the image plane. Parts within the image plane
will be retained. This may e.g. shrink down bounding boxes. For keypoints,
it removes any single points outside of the image plane. Any augmentable
that is completely outside of the image plane will be removed.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; fully tested

	uint32: yes; fully tested

	uint64: yes; fully tested

	int8: yes; fully tested

	int16: yes; fully tested

	int32: yes; fully tested

	int64: yes; fully tested

	float16: yes; fully tested

	float32: yes; fully tested

	float64: yes; fully tested

	float128: yes; fully tested

	bool: yes; fully tested

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Affine(translate_px={"x": (-100, 100)}),
>>> iaa.ClipCBAsToImagePlanes()
>>>])

Translate input data on the x-axis by -100 to 100 pixels,
then cut all coordinate-based augmentables (e.g. bounding boxes) down
to areas that are within the image planes of their corresponding images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.Identity(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter that does not change the input data.

This augmenter is useful e.g. during validation/testing as it allows
to re-use the training code without actually performing any augmentation.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Identity()

Create an augmenter that does not change inputs.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.Lambda(func_images=None, func_heatmaps=None, func_segmentation_maps=None, func_keypoints=None, func_bounding_boxes='keypoints', func_polygons='keypoints', func_line_strings='keypoints', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter that calls a lambda function for each input batch.

This is useful to add missing functions to a list of augmenters.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	func_images (None or callable, optional) – The function to call for each batch of images.
It must follow the form:

function(images, random_state, parents, hooks)

and return the changed images (may be transformed in-place).
This is essentially the interface of
_augment_images().
If this is None instead of a function, the images will not be
altered.

	func_heatmaps (None or callable, optional) – The function to call for each batch of heatmaps.
It must follow the form:

function(heatmaps, random_state, parents, hooks)

and return the changed heatmaps (may be transformed in-place).
This is essentially the interface of
_augment_heatmaps().
If this is None instead of a function, the heatmaps will not be
altered.

	func_segmentation_maps (None or callable, optional) – The function to call for each batch of segmentation maps.
It must follow the form:

function(segmaps, random_state, parents, hooks)

and return the changed segmaps (may be transformed in-place).
This is essentially the interface of
_augment_segmentation_maps().
If this is None instead of a function, the segmentatio maps will
not be altered.

	func_keypoints (None or callable, optional) – The function to call for each batch of keypoints.
It must follow the form:

function(keypoints_on_images, random_state, parents, hooks)

and return the changed keypoints (may be transformed in-place).
This is essentially the interface of
_augment_keypoints().
If this is None instead of a function, the keypoints will not be
altered.

	func_bounding_boxes (“keypoints” or None or callable, optional) – The function to call for each batch of bounding boxes.
It must follow the form:

function(bounding_boxes_on_images, random_state, parents, hooks)

and return the changed bounding boxes (may be transformed in-place).
This is essentially the interface of
_augment_bounding_boxes().
If this is None instead of a function, the bounding boxes will not
be altered.
If this is the string "keypoints" instead of a function, the
bounding boxes will automatically be augmented by transforming their
corner vertices to keypoints and calling func_keypoints.

Added in 0.4.0.

	func_polygons (“keypoints” or None or callable, optional) – The function to call for each batch of polygons.
It must follow the form:

function(polygons_on_images, random_state, parents, hooks)

and return the changed polygons (may be transformed in-place).
This is essentially the interface of
_augment_polygons().
If this is None instead of a function, the polygons will not
be altered.
If this is the string "keypoints" instead of a function, the
polygons will automatically be augmented by transforming their
corner vertices to keypoints and calling func_keypoints.

	func_line_strings (“keypoints” or None or callable, optional) – The function to call for each batch of line strings.
It must follow the form:

function(line_strings_on_images, random_state, parents, hooks)

and return the changed line strings (may be transformed in-place).
This is essentially the interface of
_augment_line_strings().
If this is None instead of a function, the line strings will not
be altered.
If this is the string "keypoints" instead of a function, the
line strings will automatically be augmented by transforming their
corner vertices to keypoints and calling func_keypoints.

Added in 0.4.0.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>>
>>> def func_images(images, random_state, parents, hooks):
>>> images[:, ::2, :, :] = 0
>>> return images
>>>
>>> aug = iaa.Lambda(
>>> func_images=func_images
>>>)

Replace every second row in input images with black pixels. Leave
other data (e.g. heatmaps, keypoints) unchanged.

>>> def func_images(images, random_state, parents, hooks):
>>> images[:, ::2, :, :] = 0
>>> return images
>>>
>>> def func_heatmaps(heatmaps, random_state, parents, hooks):
>>> for heatmaps_i in heatmaps:
>>> heatmaps.arr_0to1[::2, :, :] = 0
>>> return heatmaps
>>>
>>> def func_keypoints(keypoints_on_images, random_state, parents, hooks):
>>> return keypoints_on_images
>>>
>>> aug = iaa.Lambda(
>>> func_images=func_images,
>>> func_heatmaps=func_heatmaps,
>>> func_keypoints=func_keypoints
>>>)

Replace every second row in images with black pixels, set every second
row in heatmaps to zero and leave other data (e.g. keypoints)
unchanged.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.Noop(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Identity

Alias for augmenter Identity.

It is recommended to now use Identity. Noop might be
deprecated in the future.

Supported dtypes:

See Identity.

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Noop()

Create an augmenter that does not change inputs.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.meta.OneOf(children, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.SomeOf

Augmenter that always executes exactly one of its children.

Supported dtypes:

See imgaug.augmenters.meta.SomeOf.

	Parameters

	
	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter) – The choices of augmenters to apply.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> images = [np.ones((10, 10), dtype=np.uint8)] # dummy example images
>>> seq = iaa.OneOf([
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0)
>>>])
>>> images_aug = seq.augment_images(images)

Flip each image either horizontally or vertically.

>>> images = [np.ones((10, 10), dtype=np.uint8)] # dummy example images
>>> seq = iaa.OneOf([
>>> iaa.Fliplr(1.0),
>>> iaa.Sequential([
>>> iaa.GaussianBlur(1.0),
>>> iaa.Dropout(0.05),
>>> iaa.AdditiveGaussianNoise(0.1*255)
>>>]),
>>> iaa.Noop()
>>>])
>>> images_aug = seq.augment_images(images)

Either flip each image horizontally, or add blur+dropout+noise or do
nothing.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	append(self, object, /)

	Append object to the end of the list.

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	clear(self, /)

	Remove all items from list.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	count(self, value, /)

	Return number of occurrences of value.

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	extend(self, iterable, /)

	Extend list by appending elements from the iterable.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	index(self, value[, start, stop])

	Return first index of value.

	insert(self, index, object, /)

	Insert object before index.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	pop(self[, index])

	Remove and return item at index (default last).

	remove(self, value, /)

	Remove first occurrence of value.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	reverse(self, /)

	Reverse IN PLACE.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	sort(self, /, *[, key, reverse])

	Stable sort IN PLACE.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.meta.RemoveCBAsByOutOfImageFraction(fraction, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Remove coordinate-based augmentables exceeding an out of image fraction.

This augmenter inspects all coordinate-based augmentables (e.g.
bounding boxes, line strings) within a given batch and removes any such
augmentable which’s out of image fraction is exactly a given value or
greater than that. The out of image fraction denotes the fraction of the
augmentable’s area that is outside of the image, e.g. for a bounding box
that has half of its area outside of the image it would be 0.5.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; fully tested

	uint32: yes; fully tested

	uint64: yes; fully tested

	int8: yes; fully tested

	int16: yes; fully tested

	int32: yes; fully tested

	int64: yes; fully tested

	float16: yes; fully tested

	float32: yes; fully tested

	float64: yes; fully tested

	float128: yes; fully tested

	bool: yes; fully tested

	Parameters

	
	fraction (number) – Remove any augmentable for which fraction_{actual} >= fraction,
where fraction_{actual} denotes the estimated out of image
fraction.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Affine(translate_px={"x": (-100, 100)}),
>>> iaa.RemoveCBAsByOutOfImageFraction(0.5)
>>>])

Translate all inputs by -100 to 100 pixels on the x-axis, then
remove any coordinate-based augmentable (e.g. bounding boxes) which has
at least 50% of its area outside of the image plane.

>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> image = ia.quokka_square((100, 100))
>>> bb = ia.BoundingBox(x1=50-25, y1=0, x2=50+25, y2=100)
>>> bbsoi = ia.BoundingBoxesOnImage([bb], shape=image.shape)
>>> aug_without = iaa.Affine(translate_px={"x": 51})
>>> aug_with = iaa.Sequential([
>>> iaa.Affine(translate_px={"x": 51}),
>>> iaa.RemoveCBAsByOutOfImageFraction(0.5)
>>>])
>>>
>>> image_without, bbsoi_without = aug_without(
>>> image=image, bounding_boxes=bbsoi)
>>> image_with, bbsoi_with = aug_with(
>>> image=image, bounding_boxes=bbsoi)
>>>
>>> assert len(bbsoi_without.bounding_boxes) == 1
>>> assert len(bbsoi_with.bounding_boxes) == 0

Create a bounding box on an example image, then translate the image so that
50% of the bounding box’s area is outside of the image and compare
the effects and using RemoveCBAsByOutOfImageFraction with not using it.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.Sequential(children=None, random_order=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter, list

List augmenter containing child augmenters to apply to inputs.

This augmenter is simply a list of other augmenters. To augment an image
or any other data, it iterates over its children and applies each one
of them independently to the data. (This also means that the second
applied augmenter will already receive augmented input data and augment
it further.)

This augmenter offers the option to apply its children in random order
using the random_order parameter. This should often be activated as
it greatly increases the space of possible augmentations.

Note

You are not forced to use Sequential
in order to use other augmenters. Each augmenter can be used on its
own, e.g the following defines an augmenter for horizontal flips and
then augments a single image:

>>> import numpy as np
>>> import imgaug.augmenters as iaa
>>> image = np.zeros((32, 32, 3), dtype=np.uint8)
>>> aug = iaa.Fliplr(0.5)
>>> image_aug = aug.augment_image(image)

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – The augmenters to apply to images.

	random_order (bool, optional) – Whether to apply the child augmenters in random order.
If True, the order will be randomly sampled once per batch.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import numpy as np
>>> import imgaug.augmenters as iaa
>>> imgs = [np.random.rand(10, 10)]
>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5),
>>> iaa.Flipud(0.5)
>>>])
>>> imgs_aug = seq.augment_images(imgs)

Create a Sequential that always first
applies a horizontal flip augmenter and then a vertical flip augmenter.
Each of these two augmenters has a 50% probability of actually
flipping the image.

>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5),
>>> iaa.Flipud(0.5)
>>>], random_order=True)
>>> imgs_aug = seq.augment_images(imgs)

Create a Sequential that sometimes first
applies a horizontal flip augmenter (followed by a vertical flip
augmenter) and sometimes first a vertical flip augmenter (followed by a
horizontal flip augmenter). Again, each of them has a 50% probability
of actually flipping the image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	append(self, object, /)

	Append object to the end of the list.

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	clear(self, /)

	Remove all items from list.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	count(self, value, /)

	Return number of occurrences of value.

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	extend(self, iterable, /)

	Extend list by appending elements from the iterable.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	index(self, value[, start, stop])

	Return first index of value.

	insert(self, index, object, /)

	Insert object before index.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	pop(self[, index])

	Remove and return item at index (default last).

	remove(self, value, /)

	Remove first occurrence of value.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	reverse(self, /)

	Reverse IN PLACE.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	sort(self, /, *[, key, reverse])

	Stable sort IN PLACE.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	Parameters

	imgaug.augmenters.meta.Augmenter – The augmenter to add.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.SomeOf(n=None, children=None, random_order=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter, list

List augmenter that applies only some of its children to inputs.

This augmenter is similar to Sequential,
but may apply only a fixed or random subset of its child augmenters to
inputs. E.g. the augmenter could be initialized with a list of 20 child
augmenters and then apply 5 randomly chosen child augmenters to images.

The subset of augmenters to apply (and their order) is sampled once
per image. If random_order is True, the order will be sampled once
per batch (similar to Sequential).

This augmenter currently does not support replacing (i.e. picking the same
child multiple times) due to implementation difficulties in connection
with deterministic augmenters.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	n (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or None, optional) –

Count of augmenters to apply.

	If int, then exactly n of the child augmenters are applied
to every image.

	If tuple of two int s (a, b), then a random value will
be uniformly sampled per image from the discrete interval
[a..b] and denote the number of child augmenters to pick
and apply. b may be set to None, which is then equivalent
to (a..C) with C denoting the number of children that
the augmenter has.

	If StochasticParameter, then N numbers will be sampled
for N images. The parameter is expected to be discrete.

	If None, then the total number of available children will be
used (i.e. all children will be applied).

	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – The augmenters to apply to images.
If this is a list of augmenters, it will be converted to a
Sequential.

	random_order (boolean, optional) – Whether to apply the child augmenters in random order.
If True, the order will be randomly sampled once per batch.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> imgs = [np.random.rand(10, 10)]
>>> seq = iaa.SomeOf(1, [
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0)
>>>])
>>> imgs_aug = seq.augment_images(imgs)

Apply either Fliplr or Flipud to images.

>>> seq = iaa.SomeOf((1, 3), [
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0),
>>> iaa.GaussianBlur(1.0)
>>>])
>>> imgs_aug = seq.augment_images(imgs)

Apply one to three of the listed augmenters (Fliplr, Flipud,
GaussianBlur) to images. They are always applied in the
provided order, i.e. first Fliplr, second Flipud, third
GaussianBlur.

>>> seq = iaa.SomeOf((1, None), [
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0),
>>> iaa.GaussianBlur(1.0)
>>>], random_order=True)
>>> imgs_aug = seq.augment_images(imgs)

Apply one to all of the listed augmenters (Fliplr, Flipud,
GaussianBlur) to images. They are applied in random order, i.e.
sometimes GaussianBlur first, followed by Fliplr, sometimes
Fliplr followed by Flipud followed by Blur etc.
The order is sampled once per batch.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	append(self, object, /)

	Append object to the end of the list.

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	clear(self, /)

	Remove all items from list.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	count(self, value, /)

	Return number of occurrences of value.

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	extend(self, iterable, /)

	Extend list by appending elements from the iterable.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	index(self, value[, start, stop])

	Return first index of value.

	insert(self, index, object, /)

	Insert object before index.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	pop(self[, index])

	Remove and return item at index (default last).

	remove(self, value, /)

	Remove first occurrence of value.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	reverse(self, /)

	Reverse IN PLACE.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	sort(self, /, *[, key, reverse])

	Stable sort IN PLACE.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	Parameters

	augmenter (imgaug.augmenters.meta.Augmenter) – The augmenter to add.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.Sometimes(p=0.5, then_list=None, else_list=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenter(s) with a probability of p.

Let C be one or more child augmenters given to
Sometimes.
Let p be the fraction of images (or other data) to augment.
Let I be the input images (or other data).
Let N be the number of input images (or other entities).
Then (on average) p*N images of I will be augmented using C.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	p (float or imgaug.parameters.StochasticParameter, optional) – Sets the probability with which the given augmenters will be applied to
input images/data. E.g. a value of 0.5 will result in 50% of
all input images (or other augmentables) being augmented.

	then_list (None or imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) to apply to p% percent of all images.
If this is a list of augmenters, it will be converted to a
Sequential.

	else_list (None or imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter, optional) – Augmenter(s) to apply to (1-p) percent of all images.
These augmenters will be applied only when the ones in then_list
are not applied (either-or-relationship).
If this is a list of augmenters, it will be converted to a
Sequential.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sometimes(0.5, iaa.GaussianBlur(0.3))

Apply GaussianBlur to 50% of all input images.

>>> aug = iaa.Sometimes(0.5, iaa.GaussianBlur(0.3), iaa.Fliplr(1.0))

Apply GaussianBlur to 50% of all input images. Apply Fliplr
to the other 50% of all input images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.meta.WithChannels(channels=None, children=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenters to specific channels.

Let C be one or more child augmenters given to this augmenter.
Let H be a list of channels.
Let I be the input images.
Then this augmenter will pick the channels H from each image
in I (resulting in new images) and apply C to them.
The result of the augmentation will be merged back into the original
images.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	channels (None or int or list of int, optional) – Sets the channels to be extracted from each image.
If None, all channels will be used. Note that this is not
stochastic - the extracted channels are always the same ones.

	children (imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to images, after the channels
are extracted.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithChannels([0], iaa.Add(10))

Assuming input images are RGB, then this augmenter will add 10 only to
the first channel, i.e. it will make images appear more red.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
imgaug.augmenters.meta.clip_augmented_image(image, min_value, max_value)

	Deprecated. Use imgaug.dtypes.clip_ instead.

Clip image.

	
imgaug.augmenters.meta.clip_augmented_image_(image, min_value, max_value)

	Deprecated. Use imgaug.dtypes.clip_ instead.

Clip image in-place.

	
imgaug.augmenters.meta.clip_augmented_images(images, min_value, max_value)

	Deprecated. Use imgaug.dtypes.clip_ instead.

Clip images.

	
imgaug.augmenters.meta.clip_augmented_images_(images, min_value, max_value)

	Deprecated. Use imgaug.dtypes.clip_ instead.

Clip images in-place.

	
imgaug.augmenters.meta.copy_arrays(arrays)

	Copy the arrays of a single input array or list of input arrays.

	
imgaug.augmenters.meta.estimate_max_number_of_channels(images)

	Compute the maximum number of image channels among a list of images.

	
imgaug.augmenters.meta.handle_children_list(lst, augmenter_name, lst_name, default='sequential')

	Normalize an augmenter list provided by a user.

	
imgaug.augmenters.meta.invert_reduce_to_nonempty(objs, ids, objs_reduced)

	Inverse of reduce_to_nonempty().

	
imgaug.augmenters.meta.reduce_to_nonempty(objs)

	Remove from a list all objects that don’t follow obj.empty==True.

	
imgaug.augmenters.meta.shuffle_channels(image, random_state, channels=None)

	Randomize the order of (color) channels in an image.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; indirectly tested (1)

	uint32: yes; indirectly tested (1)

	uint64: yes; indirectly tested (1)

	int8: yes; indirectly tested (1)

	int16: yes; indirectly tested (1)

	int32: yes; indirectly tested (1)

	int64: yes; indirectly tested (1)

	float16: yes; indirectly tested (1)

	float32: yes; indirectly tested (1)

	float64: yes; indirectly tested (1)

	float128: yes; indirectly tested (1)

	bool: yes; indirectly tested (1)

	
	Indirectly tested via ChannelShuffle.

	Parameters

	
	image ((H,W,[C]) ndarray) – Image of any dtype for which to shuffle the channels.

	random_state (imgaug.random.RNG) – The random state to use for this shuffling operation.

	channels (None or imgaug.ALL or list of int, optional) – Which channels are allowed to be shuffled with each other.
If this is None or imgaug.ALL, then all channels may be
shuffled. If it is a list of int s,
then only the channels with indices in that list may be shuffled.
(Values start at 0. All channel indices in the list must exist in
the image.)

	Returns

	The input image with shuffled channels.

	Return type

	ndarray

imgaug.augmenters.pillike

Augmenters that have identical outputs to well-known PIL functions.

The like in pillike indicates that the augmenters in this module
have identical outputs and mostly identical inputs to corresponding PIL
functions, but do not have to wrap these functions internally. They may
use internally different (e.g. faster) techniques to produce these outputs.

Some of the augmenters in this module may also exist in other modules
under similar name. These other augmenters may currently have the same
outputs as the corresponding PIL functions, but that is not guaranteed
for the future. Use the augmenters in this module if identical outputs
to PIL are required.

List of augmenters:

	Solarize

	Posterize

	Equalize

	Autocontrast

	EnhanceColor

	EnhanceContrast

	EnhanceBrightness

	EnhanceSharpness

	FilterBlur

	FilterSmooth

	FilterSmoothMore

	FilterEdgeEnhance

	FilterEdgeEnhanceMore

	FilterFindEdges

	FilterContour

	FilterEmboss

	FilterSharpen

	FilterDetail

	Affine

Standard usage of these augmenters follows roughly the schema:

import numpy as np
import imgaug.augmenters as iaa

aug = iaa.pillike.Affine(translate_px={"x": (-5, 5)})
image = np.full((32, 32, 3), 255, dtype=np.uint8)

images_aug = aug(images=[image, image, image])

Added in 0.4.0.

	
class imgaug.augmenters.pillike.Affine(scale=1.0, translate_percent=None, translate_px=None, rotate=0.0, shear=0.0, fillcolor=0, center=(0.5, 0.5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.geometric.Affine

Apply PIL-like affine transformations to images.

This augmenter has identical outputs to
PIL.Image.transform with parameter method=PIL.Image.AFFINE.

Warning

This augmenter can currently only transform image-data.
Batches containing heatmaps, segmentation maps and
coordinate-based augmentables will be rejected with an error.
Use Affine if you have to
transform such inputs.

Note

This augmenter uses the image center as the transformation center.
This has to be explicitly enforced in PIL using corresponding
translation matrices. Without such translation, PIL uses the image
top left corner as the transformation center. To mirror that
behaviour, use center=(0.0, 0.0).

Added in 0.4.0.

Supported dtypes:

See warp_affine().

	Parameters

	
	scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter, “y”: number/tuple/list/StochasticParameter}, optional) – See Affine.

	translate_percent (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter, “y”: number/tuple/list/StochasticParameter}, optional) – See Affine.

	translate_px (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, optional) – See Affine.

	rotate (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Affine.

	shear (number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, optional) – See Affine.

	fillcolor (number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional) – See parameter cval in Affine.

	center ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – The center point of the affine transformation, given as relative
xy-coordinates.
Set this to (0.0, 0.0) or left-top to use the top left image
corner as the transformation center.
Set this to (0.5, 0.5) or center-center to use the image
center as the transformation center.
See also paramerer position in
PadToFixedSize for details
about valid datatypes of this parameter.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.Affine(scale={"x": (0.8, 1.2), "y": (0.5, 1.5)})

Create an augmenter that applies affine scaling (zoom in/out) to images.
Along the x-axis they are scaled to 80-120% of their size, along
the y-axis to 50-150% (both values randomly and uniformly chosen per
image).

>>> aug = iaa.pillike.Affine(translate_px={"x": 0, "y": [-10, 10]},
>>> fillcolor=128)

Create an augmenter that translates images along the y-axis by either
-10px or 10px. Newly created pixels are always filled with
the value 128 (along all channels).

>>> aug = iaa.pillike.Affine(rotate=(-20, 20), fillcolor=(0, 256))

Rotate an image by -20 to 20 degress and fill up all newly
created pixels with a random RGB color.

See the similar augmenter Affine
for more examples.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.pillike.Autocontrast(cutoff=(0, 20), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust contrast by cutting off p% of lowest/highest histogram values.

This augmenter has identical outputs to PIL.ImageOps.autocontrast.

See autocontrast() for more details.

Added in 0.4.0.

Supported dtypes:

See autocontrast().

	Parameters

	
	cutoff (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Percentage of values to cut off from the low and high end of each
image’s histogram, before stretching it to [0, 255].

	If int: The value will be used for all images.

	If tuple (a, b): A value will be uniformly sampled from
the discrete interval [a..b] per image.

	If list: A random value will be sampled from the list
per image.

	If StochasticParameter: A value will be sampled from that
parameter per image.

	per_channel (bool or float, optional) – Whether to use the same value for all channels (False) or to
sample a new value for each channel (True). If this value is a
float p, then for p percent of all images per_channel will
be treated as True, otherwise as False.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.Autocontrast()

Modify the contrast of images by cutting off the 0 to 20% lowest
and highest values from the histogram, then stretching it to full length.

>>> aug = iaa.pillike.Autocontrast((10, 20), per_channel=True)

Modify the contrast of images by cutting off the 10 to 20% lowest
and highest values from the histogram, then stretching it to full length.
The cutoff value is sampled per channel instead of per image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.EnhanceBrightness(factor=(0.5, 1.5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._EnhanceBase

Change the brightness of images.

This augmenter has identical outputs to
PIL.ImageEnhance.Brightness.

Added in 0.4.0.

Supported dtypes:

See enhance_brightness().

	Parameters

	
	factor (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Brightness of the image. Values below 1.0 decrease the brightness,
leading to a black image around 0.0. Values above 1.0 increase
the brightness. Sane values are roughly in [0.5, 1.5].

	If number: The value will be used for all images.

	If tuple (a, b): A value will be uniformly sampled per
image from the interval [a, b).

	If list: A random value will be picked from the list per
image.

	If StochasticParameter: Per batch of size N, the
parameter will be queried once to return (N,) samples.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceBrightness()

Create an augmenter that worsens the brightness of an image by a random
factor.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.EnhanceColor(factor=(0.0, 3.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._EnhanceBase

Convert images to grayscale.

This augmenter has identical outputs to PIL.ImageEnhance.Color.

Added in 0.4.0.

Supported dtypes:

See enhance_color().

	Parameters

	
	factor (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Colorfulness of the output image. Values close to 0.0 lead
to grayscale images, values above 1.0 increase the strength of
colors. Sane values are roughly in [0.0, 3.0].

	If number: The value will be used for all images.

	If tuple (a, b): A value will be uniformly sampled per
image from the interval [a, b).

	If list: A random value will be picked from the list per
image.

	If StochasticParameter: Per batch of size N, the
parameter will be queried once to return (N,) samples.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceColor()

Create an augmenter to remove a random fraction of color from
input images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.EnhanceContrast(factor=(0.5, 1.5), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._EnhanceBase

Change the contrast of images.

This augmenter has identical outputs to PIL.ImageEnhance.Contrast.

Added in 0.4.0.

Supported dtypes:

See enhance_contrast().

	Parameters

	
	factor (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Strength of contrast in the image. Values below 1.0 decrease the
contrast, leading to a gray image around 0.0. Values
above 1.0 increase the contrast. Sane values are roughly in
[0.5, 1.5].

	If number: The value will be used for all images.

	If tuple (a, b): A value will be uniformly sampled per
image from the interval [a, b).

	If list: A random value will be picked from the list per
image.

	If StochasticParameter: Per batch of size N, the
parameter will be queried once to return (N,) samples.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceContrast()

Create an augmenter that worsens the contrast of an image by a random
factor.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.EnhanceSharpness(factor=(0.0, 2.0), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._EnhanceBase

Change the sharpness of images.

This augmenter has identical outputs to
PIL.ImageEnhance.Sharpness.

Added in 0.4.0.

Supported dtypes:

See enhance_sharpness().

	Parameters

	
	factor (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Sharpness of the image. Values below 1.0 decrease the sharpness,
values above 1.0 increase it. Sane values are roughly in
[0.0, 2.0].

	If number: The value will be used for all images.

	If tuple (a, b): A value will be uniformly sampled per
image from the interval [a, b).

	If list: A random value will be picked from the list per
image.

	If StochasticParameter: Per batch of size N, the
parameter will be queried once to return (N,) samples.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceSharpness()

Create an augmenter that randomly decreases or increases the sharpness
of an image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.Equalize(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Equalize the image histogram.

This augmenter has identical outputs to PIL.ImageOps.equalize.

Added in 0.4.0.

Supported dtypes:

See equalize_().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.Equalize()

Equalize the histograms of all input images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.pillike.FilterBlur(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a blur filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel PIL.ImageFilter.BLUR.

Added in 0.4.0.

Supported dtypes:

See filter_blur().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterBlur()

Create an augmenter that applies a blur filter kernel to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterContour(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a contour detection filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel PIL.ImageFilter.CONTOUR.

Added in 0.4.0.

Supported dtypes:

See filter_contour().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterContour()

Create an augmenter that applies a contour detection filter kernel to
images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterDetail(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a detail enhancement filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel PIL.ImageFilter.DETAIL.

Added in 0.4.0.

Supported dtypes:

See filter_detail().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterDetail()

Create an augmenter that applies a detail enhancement filter kernel to
images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterEdgeEnhance(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply an edge enhance filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel
PIL.ImageFilter.EDGE_ENHANCE.

Added in 0.4.0.

Supported dtypes:

See filter_edge_enhance().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterEdgeEnhance()

Create an augmenter that applies a edge enhancement filter kernel to
images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterEdgeEnhanceMore(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a strong edge enhancement filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel
PIL.ImageFilter.EDGE_ENHANCE_MORE.

Added in 0.4.0.

Supported dtypes:

See filter_edge_enhance_more().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterEdgeEnhanceMore()

Create an augmenter that applies a strong edge enhancement filter kernel
to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterEmboss(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply an emboss filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel PIL.ImageFilter.EMBOSS.

Added in 0.4.0.

Supported dtypes:

See filter_emboss().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterEmboss()

Create an augmenter that applies an emboss filter kernel to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterFindEdges(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a edge detection kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel
PIL.ImageFilter.FIND_EDGES.

Added in 0.4.0.

Supported dtypes:

See filter_find_edges().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterFindEdges()

Create an augmenter that applies an edge detection filter kernel to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterSharpen(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a sharpening filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel PIL.ImageFilter.SHARPEN.

Added in 0.4.0.

Supported dtypes:

See filter_sharpen().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterSharpen()

Create an augmenter that applies a sharpening filter kernel to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterSmooth(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a smoothening filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel PIL.ImageFilter.SMOOTH.

Added in 0.4.0.

Supported dtypes:

See filter_smooth().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterSmooth()

Create an augmenter that applies a smoothening filter kernel to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.FilterSmoothMore(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pillike._FilterBase

Apply a strong smoothening filter kernel to images.

This augmenter has identical outputs to
calling PIL.Image.filter with kernel PIL.ImageFilter.BLUR.

Added in 0.4.0.

Supported dtypes:

See filter_smooth_more().

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterSmoothMore()

Create an augmenter that applies a strong smoothening filter kernel to
images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.Posterize(nb_bits=(1, 8), from_colorspace='RGB', to_colorspace=None, max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.color.Posterize

Augmenter with identical outputs to PIL’s posterize() function.

This augmenter quantizes each array component to N bits.

This class is currently an alias for
Posterize, which again is an alias
for UniformColorQuantizationToNBits,
i.e. all three classes are right now guarantueed to have the same
outputs as PIL’s function.

Added in 0.4.0.

Supported dtypes:

See Posterize.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pillike.Solarize(p=1.0, threshold=128, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.arithmetic.Invert

Augmenter with identical outputs to PIL’s solarize() function.

This augmenter inverts all pixel values above a threshold.

The outputs are identical to PIL’s solarize().

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and max_value=None).

	Parameters

	
	p (float or imgaug.parameters.StochasticParameter, optional) – See Invert.

	threshold (None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See Invert.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Solarize(0.5, threshold=(32, 128))

Invert the colors in 50 percent of all images for pixels with a
value between 32 and 128 or more. The threshold is sampled once
per image. The thresholding operation happens per channel.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
imgaug.augmenters.pillike.autocontrast(image, cutoff=0, ignore=None)

	Maximize (normalize) image contrast.

This function calculates a histogram of the input image, removes
cutoff percent of the lightest and darkest pixels from the histogram,
and remaps the image so that the darkest pixel becomes black (0), and
the lightest becomes white (255).

This function has identical outputs to PIL.ImageOps.autocontrast.
The speed is almost identical.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – The image for which to enhance the contrast.

	cutoff (number) – How many percent to cut off at the low and high end of the
histogram. E.g. 20 will cut off the lowest and highest 20%
of values. Expected value range is [0, 100].

	ignore (None or int or iterable of int) – Intensity values to ignore, i.e. to treat as background. If None,
no pixels will be ignored. Otherwise exactly the given intensity
value(s) will be ignored.

	Returns

	Contrast-enhanced image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.enhance_brightness(image, factor)

	Change the brightness of images.

This function has identical outputs to
PIL.ImageEnhance.Brightness.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – The image to modify.

	factor (number) – Brightness of the image. Values below 1.0 decrease the brightness,
leading to a black image around 0.0. Values above 1.0 increase
the brightness. Sane values are roughly in [0.5, 1.5].

	Returns

	Brightness-modified image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.enhance_color(image, factor)

	Change the strength of colors in an image.

This function has identical outputs to
PIL.ImageEnhance.Color.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – The image to modify.

	factor (number) – Colorfulness of the output image. Values close to 0.0 lead
to grayscale images, values above 1.0 increase the strength of
colors. Sane values are roughly in [0.0, 3.0].

	Returns

	Color-modified image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.enhance_contrast(image, factor)

	Change the contrast of an image.

This function has identical outputs to
PIL.ImageEnhance.Contrast.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – The image to modify.

	factor (number) – Strength of contrast in the image. Values below 1.0 decrease the
contrast, leading to a gray image around 0.0. Values
above 1.0 increase the contrast. Sane values are roughly in
[0.5, 1.5].

	Returns

	Contrast-modified image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.enhance_sharpness(image, factor)

	Change the sharpness of an image.

This function has identical outputs to
PIL.ImageEnhance.Sharpness.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – The image to modify.

	factor (number) – Sharpness of the image. Values below 1.0 decrease the sharpness,
values above 1.0 increase it. Sane values are roughly in
[0.0, 2.0].

	Returns

	Sharpness-modified image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.equalize(image, mask=None)

	Equalize the image histogram.

See equalize_() for details.

This function is identical in inputs and outputs to
PIL.ImageOps.equalize.

Added in 0.4.0.

Supported dtypes:

See equalize_().

	Parameters

	
	image (ndarray) – uint8 (H,W,[C]) image to equalize.

	mask (None or ndarray, optional) – An optional mask. If given, only the pixels selected by the mask are
included in the analysis.

	Returns

	Equalized image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.equalize_(image, mask=None)

	Equalize the image histogram in-place.

This function applies a non-linear mapping to the input image, in order
to create a uniform distribution of grayscale values in the output image.

This function has identical outputs to PIL.ImageOps.equalize.
It does however work in-place.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – uint8 (H,W,[C]) image to equalize.

	mask (None or ndarray, optional) – An optional mask. If given, only the pixels selected by the mask are
included in the analysis.

	Returns

	Equalized image. Might have been modified in-place.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_blur(image)

	Apply a blur filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.BLUR kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Blurred image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_contour(image)

	Apply a contour filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.CONTOUR kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Image with pronounced contours.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_detail(image)

	Apply a detail enhancement filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.DETAIL kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Image with enhanced details.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_edge_enhance(image)

	Apply an edge enhancement filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.EDGE_ENHANCE kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Image with enhanced edges.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_edge_enhance_more(image)

	Apply a stronger edge enhancement filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.EDGE_ENHANCE_MORE
kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Smoothened image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_emboss(image)

	Apply an emboss filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.EMBOSS kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Embossed image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_find_edges(image)

	Apply an edge detection filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.FIND_EDGES kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Image with detected edges.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_sharpen(image)

	Apply a sharpening filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.SHARPEN kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Sharpened image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_smooth(image)

	Apply a smoothness filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.SMOOTH kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Smoothened image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.filter_smooth_more(image)

	Apply a strong smoothness filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.SMOOTH_MORE kernel.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	image (ndarray) – The image to modify.

	Returns

	Smoothened image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.posterize(image, bits)

	Reduce the number of bits for each color channel.

This function has identical outputs to PIL.ImageOps.posterize.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits().

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).

	bits (int) – The number of bits to keep per component.
Values in the interval [1, 8] are valid.

	Returns

	Posterized image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.posterize_(image, bits)

	Reduce the number of bits for each color channel in-place.

This function has identical outputs to PIL.ImageOps.posterize.
It does however work in-place.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits_().

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).

	bits (int) – The number of bits to keep per component.
Values in the interval [1, 8] are valid.

	Returns

	Posterized image.
This can be the same array as input in image, modified in-place.

	Return type

	ndarray

	
imgaug.augmenters.pillike.solarize(image, threshold=128)

	Invert all array components above a threshold.

This function has identical outputs to PIL.ImageOps.solarize.

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and max_value=None).

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).

	threshold (int, optional) – A threshold to use in order to invert only numbers above or below
the threshold.

	Returns

	Inverted image.

	Return type

	ndarray

	
imgaug.augmenters.pillike.solarize_(image, threshold=128)

	Invert all array components above a threshold in-place.

This function has identical outputs to PIL.ImageOps.solarize.
It does however work in-place.

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and max_value=None).

	Parameters

	
	image (ndarray) – Image array of shape (H,W,[C]).
The array might be modified in-place.

	threshold (int, optional) – A threshold to use in order to invert only numbers above or below
the threshold.

	Returns

	Inverted image.
This can be the same array as input in image, modified in-place.

	Return type

	ndarray

	
imgaug.augmenters.pillike.warp_affine(image, scale_x=1.0, scale_y=1.0, translate_x_px=0, translate_y_px=0, rotate_deg=0, shear_x_deg=0, shear_y_deg=0, fillcolor=None, center=(0.5, 0.5))

	Apply an affine transformation to an image.

This function has identical outputs to
PIL.Image.transform with method=PIL.Image.AFFINE.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; fully tested

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	Parameters

	
	image (ndarray) – The image to modify. Expected to be uint8 with shape (H,W)
or (H,W,C) with C being 3 or 4.

	scale_x (number, optional) – Affine scale factor along the x-axis, where 1.0 denotes an
identity transform and 2.0 is a strong zoom-in effect.

	scale_y (number, optional) – Affine scale factor along the y-axis, where 1.0 denotes an
identity transform and 2.0 is a strong zoom-in effect.

	translate_x_px (number, optional) – Affine translation along the x-axis in pixels.
Positive values translate the image towards the right.

	translate_y_px (number, optional) – Affine translation along the y-axis in pixels.
Positive values translate the image towards the bottom.

	rotate_deg (number, optional) – Affine rotation in degrees around the top left of the image.

	shear_x_deg (number, optional) – Affine shearing in degrees along the x-axis with center point
being the top-left of the image.

	shear_y_deg (number, optional) – Affine shearing in degrees along the y-axis with center point
being the top-left of the image.

	fillcolor (None or int or tuple of int, optional) – Color tuple or intensity value to use when filling up newly
created pixels. None fills with zeros. int will only fill
the 0 th channel with that intensity value and all other channels
with 0 (this is the default behaviour of PIL, use a tuple to
fill all channels).

	center (tuple of number, optional) – Center xy-coordinate of the affine transformation, given as relative
values, i.e. (0.0, 0.0) sets the transformation center to the
top-left image corner, (1.0, 0.0) sets it to the the top-right
image corner and (0.5, 0.5) sets it to the image center.
The transformation center is relevant e.g. for rotations (“rotate
around this center point”). PIL uses the image top-left corner
as the transformation center if no centerization is included in the
affine transformation matrix.

	Returns

	Image after affine transformation.

	Return type

	ndarray

imgaug.augmenters.pooling

Augmenters that apply pooling operations to images.

List of augmenters:

	AveragePooling

	MaxPooling

	MinPooling

	MedianPooling

	
class imgaug.augmenters.pooling.AveragePooling(kernel_size=(1, 5), keep_size=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply average pooling to images.

This augmenter pools images with kernel sizes H x W by averaging the
pixel values within these windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

Note that this augmenter is very similar to AverageBlur.
AverageBlur applies averaging within windows of given kernel size
without striding, while AveragePooling applies striding corresponding
to the kernel size, with optional upscaling afterwards. The upscaling
is configured to create “pixelated”/”blocky” images by default.

Note

During heatmap or segmentation map augmentation, the respective
arrays are not changed, only the shapes of the underlying images
are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

See avg_pool().

	Variables

	
	kernel_size (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or tuple of imgaug.parameters.StochasticParameter, optional) – The kernel size of the pooling operation.

	If an int, then that value will be used for all images for both
kernel height and width.

	If a tuple (a, b), then a value from the discrete range
[a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image and used for both kernel height and width.

	If a StochasticParameter, then a value will be sampled per image
from that parameter per image and used for both kernel height and
width.

	If a tuple of tuple of int given as ((a, b), (c, d)), then two
values will be sampled independently from the discrete ranges
[a..b] and [c..d] per image and used as the kernel height
and width.

	If a tuple of lists of int, then two values will be sampled
independently per image, one from the first list and one from the
second, and used as the kernel height and width.

	If a tuple of StochasticParameter, then two values will be sampled
indepdently per image, one from the first parameter and one from the
second, and used as the kernel height and width.

	keep_size (bool, optional) – After pooling, the result image will usually have a different
height/width compared to the original input image. If this
parameter is set to True, then the pooled image will be resized
to the input image’s size, i.e. the augmenter’s output shape is always
identical to the input shape.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AveragePooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

>>> aug = iaa.AveragePooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution.

>>> aug = iaa.AveragePooling([2, 8])

Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8.

>>> aug = iaa.AveragePooling((1, 7))

Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

>>> aug = iaa.AveragePooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pooling.MaxPooling(kernel_size=(1, 5), keep_size=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply max pooling to images.

This augmenter pools images with kernel sizes H x W by taking the
maximum pixel value over windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

The maximum within each pixel window is always taken channelwise..

Note

During heatmap or segmentation map augmentation, the respective
arrays are not changed, only the shapes of the underlying images
are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

See max_pool().

	Variables

	
	kernel_size (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or tuple of imgaug.parameters.StochasticParameter, optional) – The kernel size of the pooling operation.

	If an int, then that value will be used for all images for both
kernel height and width.

	If a tuple (a, b), then a value from the discrete range
[a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image and used for both kernel height and width.

	If a StochasticParameter, then a value will be sampled per image
from that parameter per image and used for both kernel height and
width.

	If a tuple of tuple of int given as ((a, b), (c, d)), then two
values will be sampled independently from the discrete ranges
[a..b] and [c..d] per image and used as the kernel height
and width.

	If a tuple of lists of int, then two values will be sampled
independently per image, one from the first list and one from the
second, and used as the kernel height and width.

	If a tuple of StochasticParameter, then two values will be sampled
indepdently per image, one from the first parameter and one from the
second, and used as the kernel height and width.

	keep_size (bool, optional) – After pooling, the result image will usually have a different
height/width compared to the original input image. If this
parameter is set to True, then the pooled image will be resized
to the input image’s size, i.e. the augmenter’s output shape is always
identical to the input shape.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MaxPooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

>>> aug = iaa.MaxPooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution.

>>> aug = iaa.MaxPooling([2, 8])

Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8.

>>> aug = iaa.MaxPooling((1, 7))

Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

>>> aug = iaa.MaxPooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pooling.MedianPooling(kernel_size=(1, 5), keep_size=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply median pooling to images.

This augmenter pools images with kernel sizes H x W by taking the
median pixel value over windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

The median within each pixel window is always taken channelwise.

Note

During heatmap or segmentation map augmentation, the respective
arrays are not changed, only the shapes of the underlying images
are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

See median_pool().

	Variables

	
	kernel_size (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or tuple of imgaug.parameters.StochasticParameter, optional) – The kernel size of the pooling operation.

	If an int, then that value will be used for all images for both
kernel height and width.

	If a tuple (a, b), then a value from the discrete range
[a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image and used for both kernel height and width.

	If a StochasticParameter, then a value will be sampled per image
from that parameter per image and used for both kernel height and
width.

	If a tuple of tuple of int given as ((a, b), (c, d)), then two
values will be sampled independently from the discrete ranges
[a..b] and [c..d] per image and used as the kernel height
and width.

	If a tuple of lists of int, then two values will be sampled
independently per image, one from the first list and one from the
second, and used as the kernel height and width.

	If a tuple of StochasticParameter, then two values will be sampled
indepdently per image, one from the first parameter and one from the
second, and used as the kernel height and width.

	keep_size (bool, optional) – After pooling, the result image will usually have a different
height/width compared to the original input image. If this
parameter is set to True, then the pooled image will be resized
to the input image’s size, i.e. the augmenter’s output shape is always
identical to the input shape.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MedianPooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

>>> aug = iaa.MedianPooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution.

>>> aug = iaa.MedianPooling([2, 8])

Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8.

>>> aug = iaa.MedianPooling((1, 7))

Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

>>> aug = iaa.MedianPooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.pooling.MinPooling(kernel_size=(1, 5), keep_size=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply minimum pooling to images.

This augmenter pools images with kernel sizes H x W by taking the
minimum pixel value over windows. For e.g. 2 x 2 this halves the image
size. Optionally, the augmenter will automatically re-upscale the image
to the input size (by default this is activated).

The minimum within each pixel window is always taken channelwise.

Note

During heatmap or segmentation map augmentation, the respective
arrays are not changed, only the shapes of the underlying images
are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

See min_pool().

	Variables

	
	kernel_size (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or tuple of imgaug.parameters.StochasticParameter, optional) – The kernel size of the pooling operation.

	If an int, then that value will be used for all images for both
kernel height and width.

	If a tuple (a, b), then a value from the discrete range
[a..b] will be sampled per image.

	If a list, then a random value will be sampled from that list per
image and used for both kernel height and width.

	If a StochasticParameter, then a value will be sampled per image
from that parameter per image and used for both kernel height and
width.

	If a tuple of tuple of int given as ((a, b), (c, d)), then two
values will be sampled independently from the discrete ranges
[a..b] and [c..d] per image and used as the kernel height
and width.

	If a tuple of lists of int, then two values will be sampled
independently per image, one from the first list and one from the
second, and used as the kernel height and width.

	If a tuple of StochasticParameter, then two values will be sampled
indepdently per image, one from the first parameter and one from the
second, and used as the kernel height and width.

	keep_size (bool, optional) – After pooling, the result image will usually have a different
height/width compared to the original input image. If this
parameter is set to True, then the pooled image will be resized
to the input image’s size, i.e. the augmenter’s output shape is always
identical to the input shape.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MinPooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

>>> aug = iaa.MinPooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2
and does not resize back to the input image size, i.e. the resulting
images have half the resolution.

>>> aug = iaa.MinPooling([2, 8])

Create an augmenter that always pools either with a kernel size
of 2 x 2 or 8 x 8.

>>> aug = iaa.MinPooling((1, 7))

Create an augmenter that always pools with a kernel size of
1 x 1 (does nothing) to 7 x 7. The kernel sizes are always
symmetric.

>>> aug = iaa.MinPooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of
H x W where H and W are both sampled independently from the
range [1..7]. E.g. resulting kernel sizes could be 3 x 7
or 5 x 1.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

imgaug.augmenters.segmentation

Augmenters that apply changes to images based on segmentation methods.

List of augmenters:

	Superpixels

	Voronoi

	UniformVoronoi

	RegularGridVoronoi

	RelativeRegularGridVoronoi

	
class imgaug.augmenters.segmentation.DropoutPointsSampler(other_points_sampler, p_drop)

	Bases: imgaug.augmenters.segmentation.IPointsSampler

Remove a defined fraction of sampled points.

	Parameters

	
	other_points_sampler (IPointsSampler) – Another point sampler that is queried to generate a list of points.
The dropout operation will be applied to that list.

	p_drop (number or tuple of number or imgaug.parameters.StochasticParameter) – The probability that a coordinate will be removed from the list
of all sampled coordinates. A value of 1.0 would mean that (on
average) 100 percent of all coordinates will be dropped,
while 0.0 denotes 0 percent. Note that this sampler will
always ensure that at least one coordinate is left after the dropout
operation, i.e. even 1.0 will only drop all except one
coordinate.

	If a float, then that value will be used for all images.

	If a tuple (a, b), then a value p will be sampled
from the interval [a, b] per image.

	If a StochasticParameter, then this parameter will be used to
determine per coordinate whether it should be kept (sampled
value of >0.5) or shouldn’t be kept (sampled value of
<=0.5). If you instead want to provide the probability as
a stochastic parameter, you can usually do
imgaug.parameters.Binomial(1-p) to convert parameter p to
a 0/1 representation.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.DropoutPointsSampler(
>>> iaa.RegularGridPointsSampler(10, 20),
>>> 0.2)

Create a point sampler that first generates points following a regular
grid of 10 rows and 20 columns, then randomly drops 20 percent
of these points.

Methods

	sample_points(self, images, random_state)

	Generate coordinates of points on images.

	
sample_points(self, images, random_state)

	Generate coordinates of points on images.

	Parameters

	
	images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to
have three dimensions.
If this is an array, it must be four-dimensional and the first
axis is expected to denote the image index. For RGB images
the array would hence have to be of shape (N, H, W, 3).

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – A random state to use for any probabilistic function required
during the point sampling.
See RNG() for details.

	Returns

	An (N,2) float32 array containing (x,y) subpixel
coordinates, all of which being within the intervals
[0.0, width] and [0.0, height].

	Return type

	ndarray

	
class imgaug.augmenters.segmentation.IPointsSampler

	Bases: object

Interface for all point samplers.

Point samplers return coordinate arrays of shape Nx2.
These coordinates can be used in other augmenters, see e.g.
Voronoi.

Methods

	sample_points(self, images, random_state)

	Generate coordinates of points on images.

	
sample_points(self, images, random_state)

	Generate coordinates of points on images.

	Parameters

	
	images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to
have three dimensions.
If this is an array, it must be four-dimensional and the first
axis is expected to denote the image index. For RGB images
the array would hence have to be of shape (N, H, W, 3).

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – A random state to use for any probabilistic function required
during the point sampling.
See RNG() for details.

	Returns

	An (N,2) float32 array containing (x,y) subpixel
coordinates, all of which being within the intervals
[0.0, width] and [0.0, height].

	Return type

	ndarray

	
class imgaug.augmenters.segmentation.RegularGridPointsSampler(n_rows, n_cols)

	Bases: imgaug.augmenters.segmentation.IPointsSampler

Sampler that generates a regular grid of coordinates on an image.

‘Regular grid’ here means that on each axis all coordinates have the
same distance from each other. Note that the distance may change between
axis.

	Parameters

	
	n_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of rows of coordinates to place on each image, i.e. the number
of coordinates on the y-axis. Note that for each image, the sampled
value is clipped to the interval [1..H], where H is the image
height.

	If a single int, then that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	n_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of columns of coordinates to place on each image, i.e. the
number of coordinates on the x-axis. Note that for each image, the
sampled value is clipped to the interval [1..W], where W is
the image width.

	If a single int, then that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.RegularGridPointsSampler(
>>> n_rows=(5, 20),
>>> n_cols=50)

Create a point sampler that generates regular grids of points. These grids
contain r points on the y-axis, where r is sampled
uniformly from the discrete interval [5..20] per image.
On the x-axis, the grids always contain 50 points.

Methods

	sample_points(self, images, random_state)

	Generate coordinates of points on images.

	
sample_points(self, images, random_state)

	Generate coordinates of points on images.

	Parameters

	
	images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to
have three dimensions.
If this is an array, it must be four-dimensional and the first
axis is expected to denote the image index. For RGB images
the array would hence have to be of shape (N, H, W, 3).

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – A random state to use for any probabilistic function required
during the point sampling.
See RNG() for details.

	Returns

	An (N,2) float32 array containing (x,y) subpixel
coordinates, all of which being within the intervals
[0.0, width] and [0.0, height].

	Return type

	ndarray

	
class imgaug.augmenters.segmentation.RegularGridVoronoi(n_rows=(10, 30), n_cols=(10, 30), p_drop_points=(0.0, 0.5), p_replace=(0.5, 1.0), max_size=128, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.segmentation.Voronoi

Sample Voronoi cells from regular grids and color-average them.

This augmenter is a shortcut for the combination of
Voronoi,
RegularGridPointsSampler and
DropoutPointsSampler. Hence, it
generates a regular grid with R rows and C columns of coordinates
on each image. Then, it drops p percent of the R*C coordinates
to randomize the grid. Each image pixel then belongs to the voronoi
cell with the closest coordinate.

Supported dtypes:

See Voronoi.

	Parameters

	
	n_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of rows of coordinates to place on each image, i.e. the number
of coordinates on the y-axis. Note that for each image, the sampled
value is clipped to the interval [1..H], where H is the image
height.

	If a single int, then that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	n_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Number of columns of coordinates to place on each image, i.e. the
number of coordinates on the x-axis. Note that for each image, the
sampled value is clipped to the interval [1..W], where W is
the image width.

	If a single int, then that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	p_drop_points (number or tuple of number or imgaug.parameters.StochasticParameter, optional) – The probability that a coordinate will be removed from the list
of all sampled coordinates. A value of 1.0 would mean that (on
average) 100 percent of all coordinates will be dropped,
while 0.0 denotes 0 percent. Note that this sampler will
always ensure that at least one coordinate is left after the dropout
operation, i.e. even 1.0 will only drop all except one
coordinate.

	If a float, then that value will be used for all images.

	If a tuple (a, b), then a value p will be sampled
from the interval [a, b] per image.

	If a StochasticParameter, then this parameter will be used to
determine per coordinate whether it should be kept (sampled
value of >0.5) or shouldn’t be kept (sampled value of
<=0.5). If you instead want to provide the probability as
a stochastic parameter, you can usually do
imgaug.parameters.Binomial(1-p) to convert parameter p to
a 0/1 representation.

	p_replace (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Defines for any segment the probability that the pixels within that
segment are replaced by their average color (otherwise, the pixels
are not changed).
Examples:

	A probability of 0.0 would mean, that the pixels in no
segment are replaced by their average color (image is not
changed at all).

	A probability of 0.5 would mean, that around half of all
segments are replaced by their average color.

	A probability of 1.0 would mean, that all segments are
replaced by their average color (resulting in a voronoi
image).

Behaviour based on chosen datatypes for this parameter:

	If a number, then that number will always be used.

	If tuple (a, b), then a random probability will be
sampled from the interval [a, b] per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, it is expected to return
values between 0.0 and 1.0 and will be queried for each
individual segment to determine whether it is supposed to
be averaged (>0.5) or not (<=0.5).
Recommended to be some form of Binomial(...).

	max_size (int or None, optional) – Maximum image size at which the augmentation is performed.
If the width or height of an image exceeds this value, it will be
downscaled before the augmentation so that the longest side
matches max_size.
This is done to speed up the process. The final output image has the
same size as the input image. Note that in case p_replace is below
1.0, the down-/upscaling will affect the not-replaced pixels too.
Use None to apply no down-/upscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RegularGridVoronoi(10, 20)

Place a regular grid of 10x20 (height x width) coordinates on
each image. Randomly drop on average 20 percent of these points
to create a less regular pattern. Then use the remaining coordinates
to group the image pixels into voronoi cells and average the colors
within them. The process is performed at an image size not exceeding
128 px on any side (default). If necessary, the downscaling is
performed using linear interpolation (default).

>>> aug = iaa.RegularGridVoronoi(
>>> (10, 30), 20, p_drop_points=0.0, p_replace=0.9, max_size=None)

Same as above, generates a grid with randomly 10 to 30 rows,
drops none of the generates points, replaces only 90 percent of
the voronoi cells with their average color (the pixels of the remaining
10 percent are not changed) and performs the transformation
at the original image size (max_size=None).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.segmentation.RelativeRegularGridPointsSampler(n_rows_frac, n_cols_frac)

	Bases: imgaug.augmenters.segmentation.IPointsSampler

Regular grid coordinate sampler; places more points on larger images.

This is similar to RegularGridPointsSampler, but the number of rows
and columns is given as fractions of each image’s height and width.
Hence, more coordinates are generated for larger images.

	Parameters

	
	n_rows_frac (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Relative number of coordinates to place on the y-axis. For a value
y and image height H the number of actually placed coordinates
(i.e. computed rows) is given by int(round(y*H)).
Note that for each image, the number of coordinates is clipped to the
interval [1,H], where H is the image height.

	If a single number, then that value will always be used.

	If a tuple (a, b), then a value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	n_cols_frac (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Relative number of coordinates to place on the x-axis. For a value
x and image height W the number of actually placed coordinates
(i.e. computed columns) is given by int(round(x*W)).
Note that for each image, the number of coordinates is clipped to the
interval [1,W], where W is the image width.

	If a single number, then that value will always be used.

	If a tuple (a, b), then a value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.RelativeRegularGridPointsSampler(
>>> n_rows_frac=(0.01, 0.1),
>>> n_cols_frac=0.2)

Create a point sampler that generates regular grids of points. These grids
contain round(y*H) points on the y-axis, where y is sampled
uniformly from the interval [0.01, 0.1] per image and H is the
image height. On the x-axis, the grids always contain 0.2*W points,
where W is the image width.

Methods

	sample_points(self, images, random_state)

	Generate coordinates of points on images.

	
sample_points(self, images, random_state)

	Generate coordinates of points on images.

	Parameters

	
	images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to
have three dimensions.
If this is an array, it must be four-dimensional and the first
axis is expected to denote the image index. For RGB images
the array would hence have to be of shape (N, H, W, 3).

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – A random state to use for any probabilistic function required
during the point sampling.
See RNG() for details.

	Returns

	An (N,2) float32 array containing (x,y) subpixel
coordinates, all of which being within the intervals
[0.0, width] and [0.0, height].

	Return type

	ndarray

	
class imgaug.augmenters.segmentation.RelativeRegularGridVoronoi(n_rows_frac=(0.05, 0.15), n_cols_frac=(0.05, 0.15), p_drop_points=(0.0, 0.5), p_replace=(0.5, 1.0), max_size=None, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.segmentation.Voronoi

Sample Voronoi cells from image-dependent grids and color-average them.

This augmenter is a shortcut for the combination of
Voronoi,
RegularGridPointsSampler and
DropoutPointsSampler. Hence, it
generates a regular grid with R rows and C columns of coordinates
on each image. Then, it drops p percent of the R*C coordinates
to randomize the grid. Each image pixel then belongs to the voronoi
cell with the closest coordinate.

Note

In contrast to the other voronoi augmenters, this one uses
None as the default value for max_size, i.e. the color averaging
is always performed at full resolution. This enables the augmenter to
make use of the additional points on larger images. It does
however slow down the augmentation process.

Supported dtypes:

See Voronoi.

	Parameters

	
	n_rows_frac (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Relative number of coordinates to place on the y-axis. For a value
y and image height H the number of actually placed coordinates
(i.e. computed rows) is given by int(round(y*H)).
Note that for each image, the number of coordinates is clipped to the
interval [1,H], where H is the image height.

	If a single number, then that value will always be used.

	If a tuple (a, b), then a value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	n_cols_frac (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Relative number of coordinates to place on the x-axis. For a value
x and image height W the number of actually placed coordinates
(i.e. computed columns) is given by int(round(x*W)).
Note that for each image, the number of coordinates is clipped to the
interval [1,W], where W is the image width.

	If a single number, then that value will always be used.

	If a tuple (a, b), then a value from the interval
[a, b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	p_drop_points (number or tuple of number or imgaug.parameters.StochasticParameter, optional) – The probability that a coordinate will be removed from the list
of all sampled coordinates. A value of 1.0 would mean that (on
average) 100 percent of all coordinates will be dropped,
while 0.0 denotes 0 percent. Note that this sampler will
always ensure that at least one coordinate is left after the dropout
operation, i.e. even 1.0 will only drop all except one
coordinate.

	If a float, then that value will be used for all images.

	If a tuple (a, b), then a value p will be sampled
from the interval [a, b] per image.

	If a StochasticParameter, then this parameter will be used to
determine per coordinate whether it should be kept (sampled
value of >0.5) or shouldn’t be kept (sampled value of
<=0.5). If you instead want to provide the probability as
a stochastic parameter, you can usually do
imgaug.parameters.Binomial(1-p) to convert parameter p to
a 0/1 representation.

	p_replace (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Defines for any segment the probability that the pixels within that
segment are replaced by their average color (otherwise, the pixels
are not changed).
Examples:

	A probability of 0.0 would mean, that the pixels in no
segment are replaced by their average color (image is not
changed at all).

	A probability of 0.5 would mean, that around half of all
segments are replaced by their average color.

	A probability of 1.0 would mean, that all segments are
replaced by their average color (resulting in a voronoi
image).

Behaviour based on chosen datatypes for this parameter:

	If a number, then that number will always be used.

	If tuple (a, b), then a random probability will be
sampled from the interval [a, b] per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, it is expected to return
values between 0.0 and 1.0 and will be queried for each
individual segment to determine whether it is supposed to
be averaged (>0.5) or not (<=0.5).
Recommended to be some form of Binomial(...).

	max_size (int or None, optional) – Maximum image size at which the augmentation is performed.
If the width or height of an image exceeds this value, it will be
downscaled before the augmentation so that the longest side
matches max_size.
This is done to speed up the process. The final output image has the
same size as the input image. Note that in case p_replace is below
1.0, the down-/upscaling will affect the not-replaced pixels too.
Use None to apply no down-/upscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RelativeRegularGridVoronoi(0.1, 0.25)

Place a regular grid of R x C coordinates on each image, where
R is the number of rows and computed as R=0.1*H with H being
the height of the input image. C is the number of columns and
analogously estimated from the image width W as C=0.25*W.
Larger images will lead to larger R and C values.
On average, 20 percent of these grid coordinates are randomly
dropped to create a less regular pattern. Then, the remaining coordinates
are used to group the image pixels into voronoi cells and the colors
within them are averaged.

>>> aug = iaa.RelativeRegularGridVoronoi(
>>> (0.03, 0.1), 0.1, p_drop_points=0.0, p_replace=0.9, max_size=512)

Same as above, generates a grid with randomly R=r*H rows, where
r is sampled uniformly from the interval [0.03, 0.1] and
C=0.1*W rows. No points are dropped. The augmenter replaces only
90 percent of the voronoi cells with their average color (the pixels
of the remaining 10 percent are not changed). Images larger than
512 px are temporarily downscaled (before sampling the grid points)
so that no side exceeds 512 px. This improves performance, but
degrades the quality of the resulting image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.segmentation.SubsamplingPointsSampler(other_points_sampler, n_points_max)

	Bases: imgaug.augmenters.segmentation.IPointsSampler

Ensure that the number of sampled points is below a maximum.

This point sampler will sample points from another sampler and
then – in case more points were generated than an allowed maximum –
will randomly pick n_points_max of these.

	Parameters

	
	other_points_sampler (IPointsSampler) – Another point sampler that is queried to generate a list of points.
The dropout operation will be applied to that list.

	n_points_max (int) – Maximum number of allowed points. If other_points_sampler generates
more points than this maximum, a random subset of size n_points_max
will be selected.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.SubsamplingPointsSampler(
>>> iaa.RelativeRegularGridPointsSampler(0.1, 0.2),
>>> 50
>>>)

Create a points sampler that places y*H points on the y-axis (with
y being 0.1 and H being an image’s height) and x*W on
the x-axis (analogous). Then, if that number of placed points exceeds
50 (can easily happen for larger images), a random subset of 50
points will be picked and returned.

Methods

	sample_points(self, images, random_state)

	Generate coordinates of points on images.

	
sample_points(self, images, random_state)

	Generate coordinates of points on images.

	Parameters

	
	images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to
have three dimensions.
If this is an array, it must be four-dimensional and the first
axis is expected to denote the image index. For RGB images
the array would hence have to be of shape (N, H, W, 3).

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – A random state to use for any probabilistic function required
during the point sampling.
See RNG() for details.

	Returns

	An (N,2) float32 array containing (x,y) subpixel
coordinates, all of which being within the intervals
[0.0, width] and [0.0, height].

	Return type

	ndarray

	
class imgaug.augmenters.segmentation.Superpixels(p_replace=(0.5, 1.0), n_segments=(50, 120), max_size=128, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Transform images parially/completely to their superpixel representation.

This implementation uses skimage’s version of the SLIC algorithm.

Note

This augmenter is fairly slow. See Performance.

Supported dtypes:

if (image size <= max_size):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: limited (1)

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: limited (1)

	float16: no (2)

	float32: no (2)

	float64: no (3)

	float128: no (2)

	bool: yes; tested

	
	Superpixel mean intensity replacement requires computing
these means as float64 s. This can cause inaccuracies for
large integer values.

	
	Error in scikit-image.

	
	Loss of resolution in scikit-image.

if (image size > max_size):

	minimum of (

	imgaug.augmenters.segmentation.Superpixels(image size <= max_size),
_ensure_image_max_size()

)

	Parameters

	
	p_replace (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Defines for any segment the probability that the pixels within that
segment are replaced by their average color (otherwise, the pixels
are not changed).
Examples:

	A probability of 0.0 would mean, that the pixels in no
segment are replaced by their average color (image is not
changed at all).

	A probability of 0.5 would mean, that around half of all
segments are replaced by their average color.

	A probability of 1.0 would mean, that all segments are
replaced by their average color (resulting in a voronoi
image).

Behaviour based on chosen datatypes for this parameter:

	If a number, then that number will always be used.

	If tuple (a, b), then a random probability will be
sampled from the interval [a, b] per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, it is expected to return
values between 0.0 and 1.0 and will be queried for each
individual segment to determine whether it is supposed to
be averaged (>0.5) or not (<=0.5).
Recommended to be some form of Binomial(...).

	n_segments (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) – Rough target number of how many superpixels to generate (the algorithm
may deviate from this number). Lower value will lead to coarser
superpixels. Higher values are computationally more intensive and
will hence lead to a slowdown.

	If a single int, then that value will always be used as the
number of segments.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	max_size (int or None, optional) – Maximum image size at which the augmentation is performed.
If the width or height of an image exceeds this value, it will be
downscaled before the augmentation so that the longest side
matches max_size.
This is done to speed up the process. The final output image has the
same size as the input image. Note that in case p_replace is below
1.0, the down-/upscaling will affect the not-replaced pixels too.
Use None to apply no down-/upscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Superpixels(p_replace=1.0, n_segments=64)

Generate around 64 superpixels per image and replace all of them with
their average color (standard superpixel image).

>>> aug = iaa.Superpixels(p_replace=0.5, n_segments=64)

Generate around 64 superpixels per image and replace half of them
with their average color, while the other half are left unchanged (i.e.
they still show the input image’s content).

>>> aug = iaa.Superpixels(p_replace=(0.25, 1.0), n_segments=(16, 128))

Generate between 16 and 128 superpixels per image and replace
25 to 100 percent of them with their average color.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.segmentation.UniformPointsSampler(n_points)

	Bases: imgaug.augmenters.segmentation.IPointsSampler

Sample points uniformly on images.

This point sampler generates n_points points per image. The x- and
y-coordinates are both sampled from uniform distributions matching the
respective image width and height.

	Parameters

	n_points (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Number of points to sample on each image.

	If a single int, then that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.UniformPointsSampler(500)

Create a point sampler that generates an array of 500 random points for
each input image. The x- and y-coordinates of each point are sampled
from uniform distributions.

Methods

	sample_points(self, images, random_state)

	Generate coordinates of points on images.

	
sample_points(self, images, random_state)

	Generate coordinates of points on images.

	Parameters

	
	images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to
have three dimensions.
If this is an array, it must be four-dimensional and the first
axis is expected to denote the image index. For RGB images
the array would hence have to be of shape (N, H, W, 3).

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState) – A random state to use for any probabilistic function required
during the point sampling.
See RNG() for details.

	Returns

	An (N,2) float32 array containing (x,y) subpixel
coordinates, all of which being within the intervals
[0.0, width] and [0.0, height].

	Return type

	ndarray

	
class imgaug.augmenters.segmentation.UniformVoronoi(n_points=(50, 500), p_replace=(0.5, 1.0), max_size=128, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.segmentation.Voronoi

Uniformly sample Voronoi cells on images and average colors within them.

This augmenter is a shortcut for the combination of
Voronoi with
UniformPointsSampler. Hence, it
generates a fixed amount of N random coordinates of voronoi cells on
each image. The cell coordinates are sampled uniformly using the image
height and width as maxima.

Supported dtypes:

See Voronoi.

	Parameters

	
	n_points (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Number of points to sample on each image.

	If a single int, then that value will always be used.

	If a tuple (a, b), then a value from the discrete
interval [a..b] will be sampled per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then that parameter will be
queried to draw one value per image.

	p_replace (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Defines for any segment the probability that the pixels within that
segment are replaced by their average color (otherwise, the pixels
are not changed).
Examples:

	A probability of 0.0 would mean, that the pixels in no
segment are replaced by their average color (image is not
changed at all).

	A probability of 0.5 would mean, that around half of all
segments are replaced by their average color.

	A probability of 1.0 would mean, that all segments are
replaced by their average color (resulting in a voronoi
image).

Behaviour based on chosen datatypes for this parameter:

	If a number, then that number will always be used.

	If tuple (a, b), then a random probability will be
sampled from the interval [a, b] per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, it is expected to return
values between 0.0 and 1.0 and will be queried for each
individual segment to determine whether it is supposed to
be averaged (>0.5) or not (<=0.5).
Recommended to be some form of Binomial(...).

	max_size (int or None, optional) – Maximum image size at which the augmentation is performed.
If the width or height of an image exceeds this value, it will be
downscaled before the augmentation so that the longest side
matches max_size.
This is done to speed up the process. The final output image has the
same size as the input image. Note that in case p_replace is below
1.0, the down-/upscaling will affect the not-replaced pixels too.
Use None to apply no down-/upscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.UniformVoronoi((100, 500))

Sample for each image uniformly the number of voronoi cells N from the
interval [100, 500]. Then generate N coordinates by sampling
uniformly the x-coordinates from [0, W] and the y-coordinates from
[0, H], where H is the image height and W the image width.
Then use these coordinates to group the image pixels into voronoi
cells and average the colors within them. The process is performed at an
image size not exceeding 128 px on any side (default). If necessary,
the downscaling is performed using linear interpolation (default).

>>> aug = iaa.UniformVoronoi(250, p_replace=0.9, max_size=None)

Same as above, but always samples N=250 cells, replaces only
90 percent of them with their average color (the pixels of the
remaining 10 percent are not changed) and performs the transformation
at the original image size (max_size=None).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.segmentation.Voronoi(points_sampler, p_replace=1.0, max_size=128, interpolation='linear', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Average colors of an image within Voronoi cells.

This augmenter performs the following steps:

	Query points_sampler to sample random coordinates of cell
centers. On the image.

	Estimate for each pixel to which voronoi cell (i.e. segment)
it belongs. Each pixel belongs to the cell with the closest center
coordinate (euclidean distance).

	Compute for each cell the average color of the pixels within it.

	Replace the pixels of p_replace percent of all cells by their
average color. Do not change the pixels of (1 - p_replace)
percent of all cells. (The percentages are average values over
many images. Some images may get more/less cells replaced by
their average color.)

This code is very loosely based on
https://codegolf.stackexchange.com/questions/50299/draw-an-image-as-a-voronoi-map/50345#50345

Supported dtypes:

if (image size <= max_size):

	uint8: yes; fully tested

	uint16: no; not tested

	uint32: no; not tested

	uint64: no; not tested

	int8: no; not tested

	int16: no; not tested

	int32: no; not tested

	int64: no; not tested

	float16: no; not tested

	float32: no; not tested

	float64: no; not tested

	float128: no; not tested

	bool: no; not tested

if (image size > max_size):

	minimum of (

	imgaug.augmenters.segmentation.Voronoi(image size <= max_size),
_ensure_image_max_size()

)

	Parameters

	
	points_sampler (IPointsSampler) – A points sampler which will be queried per image to generate the
coordinates of the centers of voronoi cells.

	p_replace (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Defines for any segment the probability that the pixels within that
segment are replaced by their average color (otherwise, the pixels
are not changed).
Examples:

	A probability of 0.0 would mean, that the pixels in no
segment are replaced by their average color (image is not
changed at all).

	A probability of 0.5 would mean, that around half of all
segments are replaced by their average color.

	A probability of 1.0 would mean, that all segments are
replaced by their average color (resulting in a voronoi
image).

Behaviour based on chosen datatypes for this parameter:

	If a number, then that number will always be used.

	If tuple (a, b), then a random probability will be
sampled from the interval [a, b] per image.

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, it is expected to return
values between 0.0 and 1.0 and will be queried for each
individual segment to determine whether it is supposed to
be averaged (>0.5) or not (<=0.5).
Recommended to be some form of Binomial(...).

	max_size (int or None, optional) – Maximum image size at which the augmentation is performed.
If the width or height of an image exceeds this value, it will be
downscaled before the augmentation so that the longest side
matches max_size.
This is done to speed up the process. The final output image has the
same size as the input image. Note that in case p_replace is below
1.0, the down-/upscaling will affect the not-replaced pixels too.
Use None to apply no down-/upscaling.

	interpolation (int or str, optional) – Interpolation method to use during downscaling when max_size is
exceeded. Valid methods are the same as in
imresize_single_image().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> points_sampler = iaa.RegularGridPointsSampler(n_cols=20, n_rows=40)
>>> aug = iaa.Voronoi(points_sampler)

Create an augmenter that places a 20x40 (HxW) grid of cells on
the image and replaces all pixels within each cell by the cell’s average
color. The process is performed at an image size not exceeding 128 px
on any side (default). If necessary, the downscaling is performed using
linear interpolation (default).

>>> points_sampler = iaa.DropoutPointsSampler(
>>> iaa.RelativeRegularGridPointsSampler(
>>> n_cols_frac=(0.05, 0.2),
>>> n_rows_frac=0.1),
>>> 0.2)
>>> aug = iaa.Voronoi(points_sampler, p_replace=0.9, max_size=None)

Create a voronoi augmenter that generates a grid of cells dynamically
adapted to the image size. Larger images get more cells. On the x-axis,
the distance between two cells is w * W pixels, where W is the
width of the image and w is always 0.1. On the y-axis,
the distance between two cells is h * H pixels, where H is the
height of the image and h is sampled uniformly from the interval
[0.05, 0.2]. To make the voronoi pattern less regular, about 20
percent of the cell coordinates are randomly dropped (i.e. the remaining
cells grow in size). In contrast to the first example, the image is not
resized (if it was, the sampling would happen after the resizing,
which would affect W and H). Not all voronoi cells are replaced
by their average color, only around 90 percent of them. The
remaining 10 percent’s pixels remain unchanged.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
imgaug.augmenters.segmentation.segment_voronoi(image, cell_coordinates, replace_mask=None)

	Average colors within voronoi cells of an image.

	Parameters

	
	image (ndarray) – The image to convert to a voronoi image. May be HxW or
HxWxC. Note that for RGBA images the alpha channel
will currently also by averaged.

	cell_coordinates (ndarray) – A Nx2 float array containing the center coordinates of voronoi
cells on the image. Values are expected to be in the interval
[0.0, height-1.0] for the y-axis (x-axis analogous).
If this array contains no coordinate, the image will not be
changed.

	replace_mask (None or ndarray, optional) – Boolean mask of the same length as cell_coordinates, denoting
for each cell whether its pixels are supposed to be replaced
by the cell’s average color (True) or left untouched (False).
If this is set to None, all cells will be replaced.

	Returns

	Voronoi image.

	Return type

	ndarray

imgaug.augmenters.size

Augmenters that somehow change the size of the images.

List of augmenters:

	Resize

	CropAndPad

	Crop

	Pad

	PadToFixedSize

	CenterPadToFixedSize

	CropToFixedSize

	CenterCropToFixedSize

	CropToMultiplesOf

	CenterCropToMultiplesOf

	PadToMultiplesOf

	CenterPadToMultiplesOf

	CropToPowersOf

	CenterCropToPowersOf

	PadToPowersOf

	CenterPadToPowersOf

	CropToAspectRatio

	CenterCropToAspectRatio

	PadToAspectRatio

	CenterPadToAspectRatio

	CropToSquare

	CenterCropToSquare

	PadToSquare

	CenterPadToSquare

	KeepSizeByResize

	
class imgaug.augmenters.size.CenterCropToAspectRatio(aspect_ratio, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToAspectRatio

Crop images equally on all sides until they reach an aspect ratio.

This is the same as CropToAspectRatio, but
uses position="center" by default, which spreads the crop amounts
equally over all image sides, while
CropToAspectRatio by default spreads
them randomly.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	aspect_ratio (number) – See CropToAspectRatio.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterCropToAspectRatio(2.0)

Create an augmenter that crops each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterCropToFixedSize(width, height, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToFixedSize

Take a crop from the center of each image.

This is an alias for CropToFixedSize with
position="center".

Note

If images already have a width and/or height below the provided
width and/or height then this augmenter will do nothing for the
respective axis. Hence, resulting images can be smaller than the
provided axis sizes.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	width (int or None) – See CropToFixedSize.__init__().

	height (int or None) – See CropToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> crop = iaa.CenterCropToFixedSize(height=20, width=10)

Create an augmenter that takes 20x10 sized crops from the center of
images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterCropToMultiplesOf(width_multiple, height_multiple, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToMultiplesOf

Crop images equally on all sides until H/W are multiples of given values.

This is the same as CropToMultiplesOf,
but uses position="center" by default, which spreads the crop amounts
equally over all image sides, while
CropToMultiplesOf by default spreads
them randomly.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	width_multiple (int or None) – See CropToMultiplesOf.__init__().

	height_multiple (int or None) – See CropToMultiplesOf.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterCropToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that crops images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterCropToPowersOf(width_base, height_base, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToPowersOf

Crop images equally on all sides until H/W is a power of a base.

This is the same as CropToPowersOf, but
uses position="center" by default, which spreads the crop amounts
equally over all image sides, while
CropToPowersOf by default spreads them
randomly.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	width_base (int or None) – See CropToPowersOf.__init__().

	height_base (int or None) – See CropToPowersOf.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToPowersOf(height_base=3, width_base=2)

Create an augmenter that crops each image down to powers of 3 along
the y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e.
2, 4, 8, 16, …).
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterCropToSquare(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToSquare

Crop images equally on all sides until their height/width are identical.

In contrast to CropToSquare, this
augmenter always tries to spread the columns/rows to remove equally over
both sides of the respective axis to be cropped.
CropToAspectRatio by default spreads the
croppings randomly.

This augmenter is identical to CropToSquare
with position="center", and thereby the same as
CropToAspectRatio with
aspect_ratio=1.0, position="center".

Images with axis sizes of 0 will not be altered.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterCropToSquare()

Create an augmenter that crops each image until its square, i.e. height
and width match.
The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterPadToAspectRatio(aspect_ratio, pad_mode='constant', pad_cval=0, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToAspectRatio

Pad images equally on all sides until H/W matches an aspect ratio.

This is the same as PadToAspectRatio, but
uses position="center" by default, which spreads the pad amounts
equally over all image sides, while
PadToAspectRatio by default spreads them
randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	aspect_ratio (number) – See PadToAspectRatio.__init__().

	name (None or str, optional) – See __init__().

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	deterministic (bool, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToAspectRatio(2.0)

Create am augmenter that pads each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterPadToFixedSize(width, height, pad_mode='constant', pad_cval=0, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToFixedSize

Pad images equally on all sides up to given minimum heights/widths.

This is an alias for PadToFixedSize
with position="center". It spreads the pad amounts equally over
all image sides, while PadToFixedSize
by defaults spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	width (int or None) – See PadToFixedSize.__init__().

	height (int or None) – See PadToFixedSize.__init__().

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See PadToFixedSize.__init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See PadToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToFixedSize(height=20, width=30)

Create an augmenter that pads images up to 20x30, with the padded
rows added equally on the top and bottom (analogous for the padded
columns).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterPadToMultiplesOf(width_multiple, height_multiple, pad_mode='constant', pad_cval=0, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToMultiplesOf

Pad images equally on all sides until H/W are multiples of given values.

This is the same as PadToMultiplesOf, but
uses position="center" by default, which spreads the pad amounts
equally over all image sides, while
PadToMultiplesOf by default spreads them
randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	width_multiple (int or None) – See PadToMultiplesOf.__init__().

	height_multiple (int or None) – See PadToMultiplesOf.__init__().

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that pads images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterPadToPowersOf(width_base, height_base, pad_mode='constant', pad_cval=0, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToPowersOf

Pad images equally on all sides until H/W is a power of a base.

This is the same as PadToPowersOf, but uses
position="center" by default, which spreads the pad amounts equally
over all image sides, while PadToPowersOf
by default spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	width_base (int or None) – See PadToPowersOf.__init__().

	height_base (int or None) – See PadToPowersOf.__init__().

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToPowersOf(height_base=5, width_base=2)

Create an augmenter that pads each image to powers of 3 along the
y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e. 2,
4, 8, 16, …).
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CenterPadToSquare(pad_mode='constant', pad_cval=0, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToSquare

Pad images equally on all sides until their height & width are identical.

This is the same as PadToSquare, but uses
position="center" by default, which spreads the pad amounts equally
over all image sides, while PadToSquare
by default spreads them randomly. This augmenter is thus also identical to
PadToAspectRatio with
aspect_ratio=1.0, position="center".

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	name (None or str, optional) – See __init__().

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	deterministic (bool, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToSquare()

Create an augmenter that pads each image until its square, i.e. height
and width match.
The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.Crop(px=None, percent=None, keep_size=True, sample_independently=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropAndPad

Crop images, i.e. remove columns/rows of pixels at the sides of images.

This augmenter allows to extract smaller-sized subimages from given
full-sized input images. The number of pixels to cut off may be defined
in absolute values or as fractions of the image sizes.

This augmenter will never crop images below a height or width of 1.

Supported dtypes:

See CropAndPad.

	Parameters

	
	px (None or int or imgaug.parameters.StochasticParameter or tuple, optional) – The number of pixels to crop on each side of the image.
Expected value range is [0, inf).
Either this or the parameter percent may be set, not both at the same
time.

	If None, then pixel-based cropping will not be used.

	If int, then that exact number of pixels will always be
cropped.

	If StochasticParameter, then that parameter will be used for
each image. Four samples will be drawn per image (top, right,
bottom, left), unless sample_independently is set to False,
as then only one value will be sampled per image and used for
all sides.

	If a tuple of two int s with values a and b,
then each side will be cropped by a random amount sampled
uniformly per image and side from the inteval [a, b]. If
however sample_independently is set to False, only one
value will be sampled per image and used for all sides.

	If a tuple of four entries, then the entries represent top,
right, bottom, left. Each entry may be a single int (always
crop by exactly that value), a tuple of two int s
a and b (crop by an amount within [a, b]), a
list of int s (crop by a random value that is
contained in the list) or a StochasticParameter (sample
the amount to crop from that parameter).

	percent (None or int or float or imgaug.parameters.StochasticParameter or tuple, optional) – The number of pixels to crop
on each side of the image given as a fraction of the image
height/width. E.g. if this is set to 0.1, the augmenter will
always crop 10% of the image’s height at both the top and the
bottom (both 10% each), as well as 10% of the width at the
right and left.
Expected value range is [0.0, 1.0).
Either this or the parameter px may be set, not both
at the same time.

	If None, then fraction-based cropping will not be
used.

	If number, then that fraction will always be cropped.

	If StochasticParameter, then that parameter will be used for
each image. Four samples will be drawn per image (top, right,
bottom, left). If however sample_independently is set to
False, only one value will be sampled per image and used for
all sides.

	If a tuple of two float s with values a and b,
then each side will be cropped by a random fraction
sampled uniformly per image and side from the interval
[a, b]. If however sample_independently is set to
False, only one value will be sampled per image and used for
all sides.

	If a tuple of four entries, then the entries represent top,
right, bottom, left. Each entry may be a single float
(always crop by exactly that fraction), a tuple of
two float s a and b (crop by a fraction from
[a, b]), a list of float s (crop by a random
value that is contained in the list) or a StochasticParameter
(sample the percentage to crop from that parameter).

	keep_size (bool, optional) – After cropping, the result image will usually have a
different height/width compared to the original input image. If this
parameter is set to True, then the cropped image will be
resized to the input image’s size, i.e. the augmenter’s output shape
is always identical to the input shape.

	sample_independently (bool, optional) – If False and the values for px/percent result in exactly
one probability distribution for all image sides, only one single
value will be sampled from that probability distribution and used for
all sides. I.e. the crop amount then is the same for all sides.
If True, four values will be sampled independently, one per side.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Crop(px=(0, 10))

Crop each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10].

>>> aug = iaa.Crop(px=(0, 10), sample_independently=False)

Crop each side by a random pixel value sampled uniformly once per image
from the discrete interval [0..10]. Each sampled value is used
for all sides of the corresponding image.

>>> aug = iaa.Crop(px=(0, 10), keep_size=False)

Crop each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10]. Afterwards, do not
resize the cropped image back to the input image’s size. This will decrease
the image’s height and width by a maximum of 20 pixels.

>>> aug = iaa.Crop(px=((0, 10), (0, 5), (0, 10), (0, 5)))

Crop the top and bottom by a random pixel value sampled uniformly from the
discrete interval [0..10]. Crop the left and right analogously by
a random value sampled from [0..5]. Each value is always sampled
independently.

>>> aug = iaa.Crop(percent=(0, 0.1))

Crop each side by a random fraction sampled uniformly from the continuous
interval [0.0, 0.10]. The fraction is sampled once per image and
side. E.g. a sampled fraction of 0.1 for the top side would crop by
0.1*H, where H is the height of the input image.

>>> aug = iaa.Crop(
>>> percent=([0.05, 0.1], [0.05, 0.1], [0.05, 0.1], [0.05, 0.1]))

Crops each side by either 5% or 10%. The values are sampled
once per side and image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.CropAndPad(px=None, percent=None, pad_mode='constant', pad_cval=0, keep_size=True, sample_independently=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Crop/pad images by pixel amounts or fractions of image sizes.

Cropping removes pixels at the sides (i.e. extracts a subimage from
a given full image). Padding adds pixels to the sides (e.g. black pixels).

This augmenter will never crop images below a height or width of 1.

Note

This augmenter automatically resizes images back to their original size
after it has augmented them. To deactivate this, add the
parameter keep_size=False.

Supported dtypes:

if (keep_size=False):

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

if (keep_size=True):

	minimum of (

	imgaug.augmenters.size.CropAndPad(keep_size=False),
imresize_many_images()

)

	Parameters

	
	px (None or int or imgaug.parameters.StochasticParameter or tuple, optional) – The number of pixels to crop (negative values) or pad (positive values)
on each side of the image. Either this or the parameter percent may
be set, not both at the same time.

	If None, then pixel-based cropping/padding will not be used.

	If int, then that exact number of pixels will always be
cropped/padded.

	If StochasticParameter, then that parameter will be used for
each image. Four samples will be drawn per image (top, right,
bottom, left), unless sample_independently is set to False,
as then only one value will be sampled per image and used for
all sides.

	If a tuple of two int s with values a and b,
then each side will be cropped/padded by a random amount sampled
uniformly per image and side from the inteval [a, b]. If
however sample_independently is set to False, only one
value will be sampled per image and used for all sides.

	If a tuple of four entries, then the entries represent top,
right, bottom, left. Each entry may be a single int (always
crop/pad by exactly that value), a tuple of two int s
a and b (crop/pad by an amount within [a, b]), a
list of int s (crop/pad by a random value that is
contained in the list) or a StochasticParameter (sample
the amount to crop/pad from that parameter).

	percent (None or number or imgaug.parameters.StochasticParameter or tuple, optional) – The number of pixels to crop (negative values) or pad (positive values)
on each side of the image given as a fraction of the image
height/width. E.g. if this is set to -0.1, the augmenter will
always crop away 10% of the image’s height at both the top and the
bottom (both 10% each), as well as 10% of the width at the
right and left.
Expected value range is (-1.0, inf).
Either this or the parameter px may be set, not both
at the same time.

	If None, then fraction-based cropping/padding will not be
used.

	If number, then that fraction will always be cropped/padded.

	If StochasticParameter, then that parameter will be used for
each image. Four samples will be drawn per image (top, right,
bottom, left). If however sample_independently is set to
False, only one value will be sampled per image and used for
all sides.

	If a tuple of two float s with values a and b,
then each side will be cropped/padded by a random fraction
sampled uniformly per image and side from the interval
[a, b]. If however sample_independently is set to
False, only one value will be sampled per image and used for
all sides.

	If a tuple of four entries, then the entries represent top,
right, bottom, left. Each entry may be a single float
(always crop/pad by exactly that percent value), a tuple of
two float s a and b (crop/pad by a fraction from
[a, b]), a list of float s (crop/pad by a random
value that is contained in the list) or a StochasticParameter
(sample the percentage to crop/pad from that parameter).

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – Padding mode to use. The available modes match the numpy padding modes,
i.e. constant, edge, linear_ramp, maximum, median,
minimum, reflect, symmetric, wrap. The modes
constant and linear_ramp use extra values, which are provided
by pad_cval when necessary. See pad() for
more details.

	If imgaug.ALL, then a random mode from all available modes
will be sampled per image.

	If a str, it will be used as the pad mode for all images.

	If a list of str, a random one of these will be sampled
per image and used as the mode.

	If StochasticParameter, a random mode will be sampled from
this parameter per image.

	pad_cval (number or tuple of number list of number or imgaug.parameters.StochasticParameter, optional) – The constant value to use if the pad mode is constant or the end
value to use if the mode is linear_ramp.
See pad() for more details.

	If number, then that value will be used.

	If a tuple of two number s and at least one of them is
a float, then a random number will be uniformly sampled per
image from the continuous interval [a, b] and used as the
value. If both number s are int s, the interval is
discrete.

	If a list of number, then a random value will be chosen
from the elements of the list and used as the value.

	If StochasticParameter, a random value will be sampled from
that parameter per image.

	keep_size (bool, optional) – After cropping and padding, the result image will usually have a
different height/width compared to the original input image. If this
parameter is set to True, then the cropped/padded image will be
resized to the input image’s size, i.e. the augmenter’s output shape
is always identical to the input shape.

	sample_independently (bool, optional) – If False and the values for px/percent result in exactly
one probability distribution for all image sides, only one single
value will be sampled from that probability distribution and used for
all sides. I.e. the crop/pad amount then is the same for all sides.
If True, four values will be sampled independently, one per side.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropAndPad(px=(-10, 0))

Crop each side by a random pixel value sampled uniformly per image and
side from the discrete interval [-10..0].

>>> aug = iaa.CropAndPad(px=(0, 10))

Pad each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10]. The padding happens by
zero-padding, i.e. it adds black pixels (default setting).

>>> aug = iaa.CropAndPad(px=(0, 10), pad_mode="edge")

Pad each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10]. The padding uses the
edge mode from numpy’s pad function, i.e. the pixel colors around
the image sides are repeated.

>>> aug = iaa.CropAndPad(px=(0, 10), pad_mode=["constant", "edge"])

Similar to the previous example, but uses zero-padding (constant) for
half of the images and edge padding for the other half.

>>> aug = iaa.CropAndPad(px=(0, 10), pad_mode=ia.ALL, pad_cval=(0, 255))

Similar to the previous example, but uses any available padding mode.
In case the padding mode ends up being constant or linear_ramp,
and random intensity is uniformly sampled (once per image) from the
discrete interval [0..255] and used as the intensity of the new
pixels.

>>> aug = iaa.CropAndPad(px=(0, 10), sample_independently=False)

Pad each side by a random pixel value sampled uniformly once per image
from the discrete interval [0..10]. Each sampled value is used
for all sides of the corresponding image.

>>> aug = iaa.CropAndPad(px=(0, 10), keep_size=False)

Pad each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10]. Afterwards, do not
resize the padded image back to the input image’s size. This will increase
the image’s height and width by a maximum of 20 pixels.

>>> aug = iaa.CropAndPad(px=((0, 10), (0, 5), (0, 10), (0, 5)))

Pad the top and bottom by a random pixel value sampled uniformly from the
discrete interval [0..10]. Pad the left and right analogously by
a random value sampled from [0..5]. Each value is always sampled
independently.

>>> aug = iaa.CropAndPad(percent=(0, 0.1))

Pad each side by a random fraction sampled uniformly from the continuous
interval [0.0, 0.10]. The fraction is sampled once per image and
side. E.g. a sampled fraction of 0.1 for the top side would pad by
0.1*H, where H is the height of the input image.

>>> aug = iaa.CropAndPad(
>>> percent=([0.05, 0.1], [0.05, 0.1], [0.05, 0.1], [0.05, 0.1]))

Pads each side by either 5% or 10%. The values are sampled
once per side and image.

>>> aug = iaa.CropAndPad(px=(-10, 10))

Sample uniformly per image and side a value v from the discrete range
[-10..10]. Then either crop (negative sample) or pad (positive sample)
the side by v pixels.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.CropToAspectRatio(aspect_ratio, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToFixedSize

Crop images until their width/height matches an aspect ratio.

This augmenter removes either rows or columns until the image reaches
the desired aspect ratio given in width / height. The cropping
operation is stopped once the desired aspect ratio is reached or the image
side to crop reaches a size of 1. If any side of the image starts
with a size of 0, the image will not be changed.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	aspect_ratio (number) – The desired aspect ratio, given as width/height. E.g. a ratio
of 2.0 denotes an image that is twice as wide as it is high.

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See CropToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToAspectRatio(2.0)

Create an augmenter that crops each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.CropToFixedSize(width, height, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Crop images down to a predefined maximum width and/or height.

If images are already at the maximum width/height or are smaller, they
will not be cropped. Note that this also means that images will not be
padded if they are below the required width/height.

The augmenter randomly decides per image how to distribute the required
cropping amounts over the image axis. E.g. if 2px have to be cropped on
the left or right to reach the required width, the augmenter will
sometimes remove 2px from the left and 0px from the right, sometimes
remove 2px from the right and 0px from the left and sometimes remove 1px
from both sides. Set position to center to prevent that.

Supported dtypes:

	uint8: yes; fully tested

	uint16: yes; tested

	uint32: yes; tested

	uint64: yes; tested

	int8: yes; tested

	int16: yes; tested

	int32: yes; tested

	int64: yes; tested

	float16: yes; tested

	float32: yes; tested

	float64: yes; tested

	float128: yes; tested

	bool: yes; tested

	Parameters

	
	width (int or None) – Crop images down to this maximum width.
If None, image widths will not be altered.

	height (int or None) – Crop images down to this maximum height.
If None, image heights will not be altered.

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – Sets the center point of the cropping, which determines how the
required cropping amounts are distributed to each side. For a
tuple (a, b), both a and b are expected to be in
range [0.0, 1.0] and describe the fraction of cropping applied
to the left/right (low/high values for a) and the fraction
of cropping applied to the top/bottom (low/high values for b).
A cropping position at (0.5, 0.5) would be the center of the
image and distribute the cropping equally over all sides. A cropping
position at (1.0, 0.0) would be the right-top and would apply
100% of the required cropping to the right and top sides of the image.

	If string uniform then the share of cropping is randomly
and uniformly distributed over each side.
Equivalent to (Uniform(0.0, 1.0), Uniform(0.0, 1.0)).

	If string normal then the share of cropping is distributed
based on a normal distribution, leading to a focus on the center
of the images.
Equivalent to
(Clip(Normal(0.5, 0.45/2), 0, 1),
Clip(Normal(0.5, 0.45/2), 0, 1)).

	If string center then center point of the cropping is
identical to the image center.
Equivalent to (0.5, 0.5).

	If a string matching regex
^(left|center|right)-(top|center|bottom)$, e.g.
left-top or center-bottom then sets the center point of
the cropping to the X-Y position matching that description.

	If a tuple of float, then expected to have exactly two entries
between 0.0 and 1.0, which will always be used as the
combination the position matching (x, y) form.

	If a StochasticParameter, then that parameter will be queried
once per call to augment_*() to get Nx2 center positions
in (x, y) form (with N the number of images).

	If a tuple of StochasticParameter, then expected to have
exactly two entries that will both be queried per call to
augment_*(), each for (N,) values, to get the center
positions. First parameter is used for x coordinates,
second for y coordinates.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToFixedSize(width=100, height=100)

For image sides larger than 100 pixels, crop to 100 pixels. Do
nothing for the other sides. The cropping amounts are randomly (and
uniformly) distributed over the sides of the image.

>>> aug = iaa.CropToFixedSize(width=100, height=100, position="center")

For sides larger than 100 pixels, crop to 100 pixels. Do nothing
for the other sides. The cropping amounts are always equally distributed
over the left/right sides of the image (and analogously for top/bottom).

>>> aug = iaa.Sequential([
>>> iaa.PadToFixedSize(width=100, height=100),
>>> iaa.CropToFixedSize(width=100, height=100)
>>>])

Pad images smaller than 100x100 until they reach 100x100.
Analogously, crop images larger than 100x100 until they reach
100x100. The output images therefore have a fixed size of 100x100.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.CropToMultiplesOf(width_multiple, height_multiple, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToFixedSize

Crop images down until their height/width is a multiple of a value.

Note

For a given axis size A and multiple M, if A is in the
interval [0 .. M], the axis will not be changed.
As a result, this augmenter can still produce axis sizes that are
not multiples of the given values.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	width_multiple (int or None) – Multiple for the width. Images will be cropped down until their
width is a multiple of this value.
If None, image widths will not be altered.

	height_multiple (int or None) – Multiple for the height. Images will be cropped down until their
height is a multiple of this value.
If None, image heights will not be altered.

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See CropToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that crops images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.CropToPowersOf(width_base, height_base, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToFixedSize

Crop images until their height/width is a power of a base.

This augmenter removes pixels from an axis with size S leading to the
new size S' until S' = B^E is fulfilled, where B is a
provided base (e.g. 2) and E is an exponent from the discrete
interval [1 .. inf).

Note

This augmenter does nothing for axes with size less than B^1 = B.
If you have images with S < B^1, it is recommended
to combine this augmenter with a padding augmenter that pads each
axis up to B.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	width_base (int or None) – Base for the width. Images will be cropped down until their
width fulfills width' = width_base ^ E with E being any
natural number.
If None, image widths will not be altered.

	height_base (int or None) – Base for the height. Images will be cropped down until their
height fulfills height' = height_base ^ E with E being any
natural number.
If None, image heights will not be altered.

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See CropToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToPowersOf(height_base=3, width_base=2)

Create an augmenter that crops each image down to powers of 3 along
the y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e.
2, 4, 8, 16, …).
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.CropToSquare(position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropToAspectRatio

Crop images until their width and height are identical.

This is identical to CropToAspectRatio
with aspect_ratio=1.0.

Images with axis sizes of 0 will not be altered.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

	Parameters

	
	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See CropToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToSquare()

Create an augmenter that crops each image until its square, i.e. height
and width match.
The rows to be cropped will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.KeepSizeByResize(children, interpolation='cubic', interpolation_heatmaps='SAME_AS_IMAGES', interpolation_segmaps='nearest', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Resize images back to their input sizes after applying child augmenters.

Combining this with e.g. a cropping augmenter as the child will lead to
images being resized back to the input size after the crop operation was
applied. Some augmenters have a keep_size argument that achieves the
same goal (if set to True), though this augmenter offers control over
the interpolation mode and which augmentables to resize (images, heatmaps,
segmentation maps).

Supported dtypes:

See imresize_many_images().

	Parameters

	
	children (Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to apply to images. These augmenters may change
the image size.

	interpolation (KeepSizeByResize.NO_RESIZE or {‘nearest’, ‘linear’, ‘area’, ‘cubic’} or {cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC} or list of str or list of int or StochasticParameter, optional) – The interpolation mode to use when resizing images.
Can take any value that imresize_single_image()
accepts, e.g. cubic.

	If this is KeepSizeByResize.NO_RESIZE then images will not
be resized.

	If this is a single str, it is expected to have one of the
following values: nearest, linear, area, cubic.

	If this is a single integer, it is expected to have a value
identical to one of: cv2.INTER_NEAREST,
cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC.

	If this is a list of str or int, it is expected that
each str/int is one of the above mentioned valid ones.
A random one of these values will be sampled per image.

	If this is a StochasticParameter, it will be queried once per
call to _augment_images() and must return N str s or
int s (matching the above mentioned ones) for N images.

	interpolation_heatmaps (KeepSizeByResize.SAME_AS_IMAGES or KeepSizeByResize.NO_RESIZE or {‘nearest’, ‘linear’, ‘area’, ‘cubic’} or {cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC} or list of str or list of int or StochasticParameter, optional) – The interpolation mode to use when resizing heatmaps.
Meaning and valid values are similar to interpolation. This
parameter may also take the value KeepSizeByResize.SAME_AS_IMAGES,
which will lead to copying the interpolation modes used for the
corresponding images. The value may also be returned on a per-image
basis if interpolation_heatmaps is provided as a
StochasticParameter or may be one possible value if it is
provided as a list of str.

	interpolation_segmaps (KeepSizeByResize.SAME_AS_IMAGES or KeepSizeByResize.NO_RESIZE or {‘nearest’, ‘linear’, ‘area’, ‘cubic’} or {cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC} or list of str or list of int or StochasticParameter, optional) – The interpolation mode to use when resizing segmentation maps.
Similar to interpolation_heatmaps.
Note: For segmentation maps, only NO_RESIZE or nearest
neighbour interpolation (i.e. nearest) make sense in the vast
majority of all cases.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.KeepSizeByResize(
>>> iaa.Crop((20, 40), keep_size=False)
>>>)

Apply random cropping to input images, then resize them back to their
original input sizes. The resizing is done using this augmenter instead
of the corresponding internal resizing operation in Crop.

>>> aug = iaa.KeepSizeByResize(
>>> iaa.Crop((20, 40), keep_size=False),
>>> interpolation="nearest"
>>>)

Same as in the previous example, but images are now always resized using
nearest neighbour interpolation.

>>> aug = iaa.KeepSizeByResize(
>>> iaa.Crop((20, 40), keep_size=False),
>>> interpolation=["nearest", "cubic"],
>>> interpolation_heatmaps=iaa.KeepSizeByResize.SAME_AS_IMAGES,
>>> interpolation_segmaps=iaa.KeepSizeByResize.NO_RESIZE
>>>)

Similar to the previous example, but images are now sometimes resized
using linear interpolation and sometimes using nearest neighbour
interpolation. Heatmaps are resized using the same interpolation as was
used for the corresponding image. Segmentation maps are not resized and
will therefore remain at their size after cropping.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
NO_RESIZE = 'NO_RESIZE'

	

	
SAME_AS_IMAGES = 'SAME_AS_IMAGES'

	

	
get_children_lists(self)

	See get_children_lists().

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.Pad(px=None, percent=None, pad_mode='constant', pad_cval=0, keep_size=True, sample_independently=True, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.CropAndPad

Pad images, i.e. adds columns/rows of pixels to them.

Supported dtypes:

See CropAndPad.

	Parameters

	
	px (None or int or imgaug.parameters.StochasticParameter or tuple, optional) – The number of pixels to pad on each side of the image.
Expected value range is [0, inf).
Either this or the parameter percent may be set, not both at the same
time.

	If None, then pixel-based padding will not be used.

	If int, then that exact number of pixels will always be
padded.

	If StochasticParameter, then that parameter will be used for
each image. Four samples will be drawn per image (top, right,
bottom, left), unless sample_independently is set to False,
as then only one value will be sampled per image and used for
all sides.

	If a tuple of two int s with values a and b,
then each side will be padded by a random amount sampled
uniformly per image and side from the inteval [a, b]. If
however sample_independently is set to False, only one
value will be sampled per image and used for all sides.

	If a tuple of four entries, then the entries represent top,
right, bottom, left. Each entry may be a single int (always
pad by exactly that value), a tuple of two int s
a and b (pad by an amount within [a, b]), a
list of int s (pad by a random value that is
contained in the list) or a StochasticParameter (sample
the amount to pad from that parameter).

	percent (None or int or float or imgaug.parameters.StochasticParameter or tuple, optional) – The number of pixels to pad
on each side of the image given as a fraction of the image
height/width. E.g. if this is set to 0.1, the augmenter will
always pad 10% of the image’s height at both the top and the
bottom (both 10% each), as well as 10% of the width at the
right and left.
Expected value range is [0.0, inf).
Either this or the parameter px may be set, not both
at the same time.

	If None, then fraction-based padding will not be
used.

	If number, then that fraction will always be padded.

	If StochasticParameter, then that parameter will be used for
each image. Four samples will be drawn per image (top, right,
bottom, left). If however sample_independently is set to
False, only one value will be sampled per image and used for
all sides.

	If a tuple of two float s with values a and b,
then each side will be padded by a random fraction
sampled uniformly per image and side from the interval
[a, b]. If however sample_independently is set to
False, only one value will be sampled per image and used for
all sides.

	If a tuple of four entries, then the entries represent top,
right, bottom, left. Each entry may be a single float
(always pad by exactly that fraction), a tuple of
two float s a and b (pad by a fraction from
[a, b]), a list of float s (pad by a random
value that is contained in the list) or a StochasticParameter
(sample the percentage to pad from that parameter).

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – Padding mode to use. The available modes match the numpy padding modes,
i.e. constant, edge, linear_ramp, maximum, median,
minimum, reflect, symmetric, wrap. The modes
constant and linear_ramp use extra values, which are provided
by pad_cval when necessary. See pad() for
more details.

	If imgaug.ALL, then a random mode from all available modes
will be sampled per image.

	If a str, it will be used as the pad mode for all images.

	If a list of str, a random one of these will be sampled
per image and used as the mode.

	If StochasticParameter, a random mode will be sampled from
this parameter per image.

	pad_cval (number or tuple of number list of number or imgaug.parameters.StochasticParameter, optional) – The constant value to use if the pad mode is constant or the end
value to use if the mode is linear_ramp.
See pad() for more details.

	If number, then that value will be used.

	If a tuple of two number s and at least one of them is
a float, then a random number will be uniformly sampled per
image from the continuous interval [a, b] and used as the
value. If both number s are int s, the interval is
discrete.

	If a list of number, then a random value will be chosen
from the elements of the list and used as the value.

	If StochasticParameter, a random value will be sampled from
that parameter per image.

	keep_size (bool, optional) – After padding, the result image will usually have a
different height/width compared to the original input image. If this
parameter is set to True, then the padded image will be
resized to the input image’s size, i.e. the augmenter’s output shape
is always identical to the input shape.

	sample_independently (bool, optional) – If False and the values for px/percent result in exactly
one probability distribution for all image sides, only one single
value will be sampled from that probability distribution and used for
all sides. I.e. the pad amount then is the same for all sides.
If True, four values will be sampled independently, one per side.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Pad(px=(0, 10))

Pad each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10]. The padding happens by
zero-padding, i.e. it adds black pixels (default setting).

>>> aug = iaa.Pad(px=(0, 10), pad_mode="edge")

Pad each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10]. The padding uses the
edge mode from numpy’s pad function, i.e. the pixel colors around
the image sides are repeated.

>>> aug = iaa.Pad(px=(0, 10), pad_mode=["constant", "edge"])

Similar to the previous example, but uses zero-padding (constant) for
half of the images and edge padding for the other half.

>>> aug = iaa.Pad(px=(0, 10), pad_mode=ia.ALL, pad_cval=(0, 255))

Similar to the previous example, but uses any available padding mode.
In case the padding mode ends up being constant or linear_ramp,
and random intensity is uniformly sampled (once per image) from the
discrete interval [0..255] and used as the intensity of the new
pixels.

>>> aug = iaa.Pad(px=(0, 10), sample_independently=False)

Pad each side by a random pixel value sampled uniformly once per image
from the discrete interval [0..10]. Each sampled value is used
for all sides of the corresponding image.

>>> aug = iaa.Pad(px=(0, 10), keep_size=False)

Pad each side by a random pixel value sampled uniformly per image and
side from the discrete interval [0..10]. Afterwards, do not
resize the padded image back to the input image’s size. This will increase
the image’s height and width by a maximum of 20 pixels.

>>> aug = iaa.Pad(px=((0, 10), (0, 5), (0, 10), (0, 5)))

Pad the top and bottom by a random pixel value sampled uniformly from the
discrete interval [0..10]. Pad the left and right analogously by
a random value sampled from [0..5]. Each value is always sampled
independently.

>>> aug = iaa.Pad(percent=(0, 0.1))

Pad each side by a random fraction sampled uniformly from the continuous
interval [0.0, 0.10]. The fraction is sampled once per image and
side. E.g. a sampled fraction of 0.1 for the top side would pad by
0.1*H, where H is the height of the input image.

>>> aug = iaa.Pad(
>>> percent=([0.05, 0.1], [0.05, 0.1], [0.05, 0.1], [0.05, 0.1]))

Pads each side by either 5% or 10%. The values are sampled
once per side and image.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.PadToAspectRatio(aspect_ratio, pad_mode='constant', pad_cval=0, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToFixedSize

Pad images until their width/height matches an aspect ratio.

This augmenter adds either rows or columns until the image reaches
the desired aspect ratio given in width / height.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	aspect_ratio (number) – The desired aspect ratio, given as width/height. E.g. a ratio
of 2.0 denotes an image that is twice as wide as it is high.

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See PadToFixedSize.__init__().

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToAspectRatio(2.0)

Create an augmenter that pads each image until its aspect ratio is as
close as possible to 2.0 (i.e. two times as many pixels along the
x-axis than the y-axis).
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.PadToFixedSize(width, height, pad_mode='constant', pad_cval=0, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Pad images to a predefined minimum width and/or height.

If images are already at the minimum width/height or are larger, they will
not be padded. Note that this also means that images will not be cropped if
they exceed the required width/height.

The augmenter randomly decides per image how to distribute the required
padding amounts over the image axis. E.g. if 2px have to be padded on the
left or right to reach the required width, the augmenter will sometimes
add 2px to the left and 0px to the right, sometimes add 2px to the right
and 0px to the left and sometimes add 1px to both sides. Set position
to center to prevent that.

Supported dtypes:

See pad().

	Parameters

	
	width (int or None) – Pad images up to this minimum width.
If None, image widths will not be altered.

	height (int or None) – Pad images up to this minimum height.
If None, image heights will not be altered.

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – Sets the center point of the padding, which determines how the
required padding amounts are distributed to each side. For a tuple
(a, b), both a and b are expected to be in range
[0.0, 1.0] and describe the fraction of padding applied to the
left/right (low/high values for a) and the fraction of padding
applied to the top/bottom (low/high values for b). A padding
position at (0.5, 0.5) would be the center of the image and
distribute the padding equally to all sides. A padding position at
(0.0, 1.0) would be the left-bottom and would apply 100% of the
required padding to the bottom and left sides of the image so that
the bottom left corner becomes more and more the new image
center (depending on how much is padded).

	If string uniform then the share of padding is randomly and
uniformly distributed over each side.
Equivalent to (Uniform(0.0, 1.0), Uniform(0.0, 1.0)).

	If string normal then the share of padding is distributed
based on a normal distribution, leading to a focus on the
center of the images.
Equivalent to
(Clip(Normal(0.5, 0.45/2), 0, 1),
Clip(Normal(0.5, 0.45/2), 0, 1)).

	If string center then center point of the padding is
identical to the image center.
Equivalent to (0.5, 0.5).

	If a string matching regex
^(left|center|right)-(top|center|bottom)$, e.g. left-top
or center-bottom then sets the center point of the padding
to the X-Y position matching that description.

	If a tuple of float, then expected to have exactly two entries
between 0.0 and 1.0, which will always be used as the
combination the position matching (x, y) form.

	If a StochasticParameter, then that parameter will be queried
once per call to augment_*() to get Nx2 center positions
in (x, y) form (with N the number of images).

	If a tuple of StochasticParameter, then expected to have
exactly two entries that will both be queried per call to
augment_*(), each for (N,) values, to get the center
positions. First parameter is used for x coordinates,
second for y coordinates.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToFixedSize(width=100, height=100)

For image sides smaller than 100 pixels, pad to 100 pixels. Do
nothing for the other edges. The padding is randomly (uniformly)
distributed over the sides, so that e.g. sometimes most of the required
padding is applied to the left, sometimes to the right (analogous
top/bottom).

>>> aug = iaa.PadToFixedSize(width=100, height=100, position="center")

For image sides smaller than 100 pixels, pad to 100 pixels. Do
nothing for the other image sides. The padding is always equally
distributed over the left/right and top/bottom sides.

>>> aug = iaa.PadToFixedSize(width=100, height=100, pad_mode=ia.ALL)

For image sides smaller than 100 pixels, pad to 100 pixels and
use any possible padding mode for that. Do nothing for the other image
sides. The padding is always equally distributed over the left/right and
top/bottom sides.

>>> aug = iaa.Sequential([
>>> iaa.PadToFixedSize(width=100, height=100),
>>> iaa.CropToFixedSize(width=100, height=100)
>>>])

Pad images smaller than 100x100 until they reach 100x100.
Analogously, crop images larger than 100x100 until they reach
100x100. The output images therefore have a fixed size of 100x100.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.PadToMultiplesOf(width_multiple, height_multiple, pad_mode='constant', pad_cval=0, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToFixedSize

Pad images until their height/width is a multiple of a value.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	width_multiple (int or None) – Multiple for the width. Images will be padded until their
width is a multiple of this value.
If None, image widths will not be altered.

	height_multiple (int or None) – Multiple for the height. Images will be padded until their
height is a multiple of this value.
If None, image heights will not be altered.

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See PadToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that pads images to multiples of 10 along
the y-axis (i.e. 10, 20, 30, …) and to multiples of 6 along the
x-axis (i.e. 6, 12, 18, …).
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.PadToPowersOf(width_base, height_base, pad_mode='constant', pad_cval=0, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToFixedSize

Pad images until their height/width is a power of a base.

This augmenter adds pixels to an axis with size S leading to the
new size S' until S' = B^E is fulfilled, where B is a
provided base (e.g. 2) and E is an exponent from the discrete
interval [1 .. inf).

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	width_base (int or None) – Base for the width. Images will be padded down until their
width fulfills width' = width_base ^ E with E being any
natural number.
If None, image widths will not be altered.

	height_base (int or None) – Base for the height. Images will be padded until their
height fulfills height' = height_base ^ E with E being any
natural number.
If None, image heights will not be altered.

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See PadToFixedSize.__init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToPowersOf(height_base=3, width_base=2)

Create an augmenter that pads each image to powers of 3 along the
y-axis (i.e. 3, 9, 27, …) and powers of 2 along the x-axis (i.e. 2,
4, 8, 16, …).
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.size.PadToSquare(pad_mode='constant', pad_cval=0, position='uniform', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.size.PadToAspectRatio

Pad images until their height and width are identical.

This augmenter is identical to
PadToAspectRatio with aspect_ratio=1.0.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

	Parameters

	
	position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float or StochasticParameter or tuple of StochasticParameter, optional) – See PadToFixedSize.__init__().

	pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, optional) – See __init__().

	pad_cval (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – See __init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToSquare()

Create an augmenter that pads each image until its square, i.e. height
and width match.
The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.size.Resize(size, interpolation='cubic', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Augmenter that resizes images to specified heights and widths.

Supported dtypes:

See imresize_many_images().

	Parameters

	
	size (‘keep’ or int or float or tuple of int or tuple of float or list of int or list of float or imgaug.parameters.StochasticParameter or dict) –

The new size of the images.

	If this has the string value keep, the original height and
width values will be kept (image is not resized).

	If this is an int, this value will always be used as the new
height and width of the images.

	If this is a float v, then per image the image’s height
H and width W will be changed to H*v and W*v.

	If this is a tuple, it is expected to have two entries
(a, b). If at least one of these are float s, a value
will be sampled from range [a, b] and used as the float
value to resize the image (see above). If both are int s, a
value will be sampled from the discrete range [a..b] and
used as the integer value to resize the image (see above).

	If this is a list, a random value from the list will be
picked to resize the image. All values in the list must be
int s or float s (no mixture is possible).

	If this is a StochasticParameter, then this parameter will
first be queried once per image. The resulting value will be used
for both height and width.

	If this is a dict, it may contain the keys height and
width or the keys shorter-side and longer-side. Each
key may have the same datatypes as above and describes the
scaling on x and y-axis or the shorter and longer axis,
respectively. Both axis are sampled independently. Additionally,
one of the keys may have the value keep-aspect-ratio, which
means that the respective side of the image will be resized so
that the original aspect ratio is kept. This is useful when only
resizing one image size by a pixel value (e.g. resize images to
a height of 64 pixels and resize the width so that the
overall aspect ratio is maintained).

	interpolation (imgaug.ALL or int or str or list of int or list of str or imgaug.parameters.StochasticParameter, optional) –

Interpolation to use.

	If imgaug.ALL, then a random interpolation from nearest,
linear, area or cubic will be picked (per image).

	If int, then this interpolation will always be used.
Expected to be any of the following:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA,
cv2.INTER_CUBIC

	If string, then this interpolation will always be used.
Expected to be any of the following:
nearest, linear, area, cubic

	If list of int / str, then a random one of the values
will be picked per image as the interpolation.

	If a StochasticParameter, then this parameter will be
queried per image and is expected to return an int or
str.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Resize(32)

Resize all images to 32x32 pixels.

>>> aug = iaa.Resize(0.5)

Resize all images to 50 percent of their original size.

>>> aug = iaa.Resize((16, 22))

Resize all images to a random height and width within the discrete
interval [16..22] (uniformly sampled per image).

>>> aug = iaa.Resize((0.5, 0.75))

Resize all any input image so that its height (H) and width (W)
become H*v and W*v, where v is uniformly sampled from the
interval [0.5, 0.75].

>>> aug = iaa.Resize([16, 32, 64])

Resize all images either to 16x16, 32x32 or 64x64 pixels.

>>> aug = iaa.Resize({"height": 32})

Resize all images to a height of 32 pixels and keeps the original
width.

>>> aug = iaa.Resize({"height": 32, "width": 48})

Resize all images to a height of 32 pixels and a width of 48.

>>> aug = iaa.Resize({"height": 32, "width": "keep-aspect-ratio"})

Resize all images to a height of 32 pixels and resizes the
x-axis (width) so that the aspect ratio is maintained.

>>> aug = iaa.Resize(
>>> {"shorter-side": 224, "longer-side": "keep-aspect-ratio"})

Resize all images to a height/width of 224 pixels, depending on which
axis is shorter and resize the other axis so that the aspect ratio is
maintained.

>>> aug = iaa.Resize({"height": (0.5, 0.75), "width": [16, 32, 64]})

Resize all images to a height of H*v, where H is the original
height and v is a random value sampled from the interval
[0.5, 0.75]. The width/x-axis of each image is resized to either
16 or 32 or 64 pixels.

>>> aug = iaa.Resize(32, interpolation=["linear", "cubic"])

Resize all images to 32x32 pixels. Randomly use either linear
or cubic interpolation.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
imgaug.augmenters.size.Scale(*args, **kwargs)

	Deprecated. Use Resize instead. Resize has the exactly same interface as Scale.

Augmenter that resizes images to specified heights and widths.

	
imgaug.augmenters.size.compute_croppings_to_reach_aspect_ratio(arr, aspect_ratio)

	Compute crop amounts required to fulfill an aspect ratio.

“Crop amounts” here denotes the number of pixels that have to be removed
from each side to fulfill the desired constraint.

The aspect ratio is given as ratio = width / height.
Depending on which dimension is smaller (height or width), only the
corresponding sides (top/bottom or left/right) will be cropped.

The axis-wise padding amounts are always distributed equally over the
sides of the respective axis (i.e. left and right, top and bottom). For
odd pixel amounts, one pixel will be left over after the equal
distribution and could be added to either side of the axis. This function
will always add such a left over pixel to the bottom (y-axis) or
right (x-axis) side.

If an aspect ratio cannot be reached exactly, this function will return
rather one pixel too few than one pixel too many.

Added in 0.4.0.

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple for which to compute crop amounts.

	aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

	Returns

	Required cropping amounts to reach the target aspect ratio, given as a
tuple of the form (top, right, bottom, left).

	Return type

	tuple of int

	
imgaug.augmenters.size.compute_croppings_to_reach_multiples_of(arr, height_multiple, width_multiple)

	Compute croppings to reach multiples of given heights/widths.

See compute_paddings_for_aspect_ratio() for an
explanation of how the required cropping amounts are distributed per
image axis.

Added in 0.4.0.

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple for which to compute crop amounts.

	height_multiple (None or int) – The desired multiple of the height. The computed croppings will
reflect a crop operation that decreases the y axis size until it is
a multiple of this value.

	width_multiple (None or int) – The desired multiple of the width. The computed croppings amount will
reflect a crop operation that decreases the x axis size until it is
a multiple of this value.

	Returns

	Required cropping amounts to reach multiples of the provided values,
given as a tuple of the form (top, right, bottom, left).

	Return type

	tuple of int

	
imgaug.augmenters.size.compute_croppings_to_reach_powers_of(arr, height_base, width_base, allow_zero_exponent=False)

	Compute croppings to reach powers of given base values.

For given axis size S, cropped size S' (S' <= S) and base B
this function computes croppings that fulfill S' = B^E, where E
is any exponent from the discrete interval [0 .. inf).

See compute_paddings_for_aspect_ratio() for an
explanation of how the required cropping amounts are distributed per
image axis.

Note

For axes where S == 0, this function alwayws returns zeros as
croppings.

For axes where 1 <= S < B see parameter allow_zero_exponent.

Added in 0.4.0.

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple for which to compute crop amounts.

	height_base (None or int) – The desired base of the height.

	width_base (None or int) – The desired base of the width.

	allow_zero_exponent (bool) – Whether E=0 in S'=B^E is a valid value. If True, axes
with size 1 <= S < B will be cropped to size B^0=1.
If False, axes with sizes S < B will not be changed.

	Returns

	Required cropping amounts to fulfill S' = B^E given as a
tuple of the form (top, right, bottom, left).

	Return type

	tuple of int

	
imgaug.augmenters.size.compute_paddings_to_reach_aspect_ratio(arr, aspect_ratio)

	Compute pad amounts required to fulfill an aspect ratio.

“Pad amounts” here denotes the number of pixels that have to be added to
each side to fulfill the desired constraint.

The aspect ratio is given as ratio = width / height.
Depending on which dimension is smaller (height or width), only the
corresponding sides (top/bottom or left/right) will be padded.

The axis-wise padding amounts are always distributed equally over the
sides of the respective axis (i.e. left and right, top and bottom). For
odd pixel amounts, one pixel will be left over after the equal
distribution and could be added to either side of the axis. This function
will always add such a left over pixel to the bottom (y-axis) or
right (x-axis) side.

Added in 0.4.0. (Previously named
imgaug.imgaug.compute_paddings_to_reach_aspect_ratio().)

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple for which to compute pad amounts.

	aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

	Returns

	Required padding amounts to reach the target aspect ratio, given as a
tuple of the form (top, right, bottom, left).

	Return type

	tuple of int

	
imgaug.augmenters.size.compute_paddings_to_reach_multiples_of(arr, height_multiple, width_multiple)

	Compute pad amounts until img height/width are multiples of given values.

See compute_paddings_for_aspect_ratio() for an
explanation of how the required padding amounts are distributed per
image axis.

Added in 0.4.0. (Previously named
imgaug.imgaug.compute_paddings_to_reach_multiples_of().)

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple for which to compute pad amounts.

	height_multiple (None or int) – The desired multiple of the height. The computed padding amount will
reflect a padding that increases the y axis size until it is a multiple
of this value.

	width_multiple (None or int) – The desired multiple of the width. The computed padding amount will
reflect a padding that increases the x axis size until it is a multiple
of this value.

	Returns

	Required padding amounts to reach multiples of the provided values,
given as a tuple of the form (top, right, bottom, left).

	Return type

	tuple of int

	
imgaug.augmenters.size.compute_paddings_to_reach_powers_of(arr, height_base, width_base, allow_zero_exponent=False)

	Compute paddings to reach powers of given base values.

For given axis size S, padded size S' (S' >= S) and base B
this function computes paddings that fulfill S' = B^E, where E
is any exponent from the discrete interval [0 .. inf).

See compute_paddings_for_aspect_ratio() for an
explanation of how the required padding amounts are distributed per
image axis.

Added in 0.4.0. (Previously named
imgaug.imgaug.compute_paddings_to_reach_exponents_of().)

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple for which to compute pad amounts.

	height_base (None or int) – The desired base of the height.

	width_base (None or int) – The desired base of the width.

	allow_zero_exponent (bool, optional) – Whether E=0 in S'=B^E is a valid value. If True, axes
with size 0 or 1 will be padded up to size B^0=1 and
axes with size 1 < S <= B will be padded up to B^1=B.
If False, the minimum output axis size is always at least B.

	Returns

	Required padding amounts to fulfill S' = B^E given as a
tuple of the form (top, right, bottom, left).

	Return type

	tuple of int

	
imgaug.augmenters.size.pad(arr, top=0, right=0, bottom=0, left=0, mode='constant', cval=0)

	Pad an image-like array on its top/right/bottom/left side.

This function is a wrapper around numpy.pad().

Added in 0.4.0. (Previously named imgaug.imgaug.pad().)

Supported dtypes:

	uint8: yes; fully tested (1)

	uint16: yes; fully tested (1)

	uint32: yes; fully tested (2) (3)

	uint64: yes; fully tested (2) (3)

	int8: yes; fully tested (1)

	int16: yes; fully tested (1)

	int32: yes; fully tested (1)

	int64: yes; fully tested (2) (3)

	float16: yes; fully tested (2) (3)

	float32: yes; fully tested (1)

	float64: yes; fully tested (1)

	float128: yes; fully tested (2) (3)

	bool: yes; tested (2) (3)

	
	Uses cv2 if mode is one of: "constant", "edge",
"reflect", "symmetric". Otherwise uses numpy.

	
	Uses numpy.

	
	Rejected by cv2.

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pad.

	top (int, optional) – Amount of pixels to add to the top side of the image.
Must be 0 or greater.

	right (int, optional) – Amount of pixels to add to the right side of the image.
Must be 0 or greater.

	bottom (int, optional) – Amount of pixels to add to the bottom side of the image.
Must be 0 or greater.

	left (int, optional) – Amount of pixels to add to the left side of the image.
Must be 0 or greater.

	mode (str, optional) – Padding mode to use. See numpy.pad() for details.
In case of mode constant, the parameter cval will be used as
the constant_values parameter to numpy.pad().
In case of mode linear_ramp, the parameter cval will be used as
the end_values parameter to numpy.pad().

	cval (number or iterable of number, optional) – Value to use for padding if mode is constant.
See numpy.pad() for details. The cval is expected to match the
input array’s dtype and value range. If an iterable is used, it is
expected to contain one value per channel. The number of values
and number of channels are expected to match.

	Returns

	Padded array with height H'=H+top+bottom and width
W'=W+left+right.

	Return type

	(H’,W’) ndarray or (H’,W’,C) ndarray

	
imgaug.augmenters.size.pad_to_aspect_ratio(arr, aspect_ratio, mode='constant', cval=0, return_pad_amounts=False)

	Pad an image array on its sides so that it matches a target aspect ratio.

See compute_paddings_for_aspect_ratio() for an
explanation of how the required padding amounts are distributed per
image axis.

Added in 0.4.0. (Previously named imgaug.imgaug.pad_to_aspect_ratio().)

Supported dtypes:

See pad().

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pad.

	aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

	mode (str, optional) – Padding mode to use. See pad() for details.

	cval (number, optional) – Value to use for padding if mode is constant.
See numpy.pad() for details.

	return_pad_amounts (bool, optional) – If False, then only the padded image will be returned. If
True, a tuple with two entries will be returned, where the
first entry is the padded image and the second entry are the amounts
by which each image side was padded. These amounts are again a
tuple of the form (top, right, bottom, left), with each value
being an int.

	Returns

	
	(H’,W’) ndarray or (H’,W’,C) ndarray – Padded image as (H',W') or (H',W',C) ndarray, fulfilling the
given aspect_ratio.

	tuple of int – Amounts by which the image was padded on each side, given as a
tuple (top, right, bottom, left).
This tuple is only returned if return_pad_amounts was set to
True.

	
imgaug.augmenters.size.pad_to_multiples_of(arr, height_multiple, width_multiple, mode='constant', cval=0, return_pad_amounts=False)

	Pad an image array until its side lengths are multiples of given values.

See compute_paddings_for_aspect_ratio() for an
explanation of how the required padding amounts are distributed per
image axis.

Added in 0.4.0. (Previously named imgaug.imgaug.pad_to_multiples_of().)

Supported dtypes:

See pad().

	Parameters

	
	arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pad.

	height_multiple (None or int) – The desired multiple of the height. The computed padding amount will
reflect a padding that increases the y axis size until it is a multiple
of this value.

	width_multiple (None or int) – The desired multiple of the width. The computed padding amount will
reflect a padding that increases the x axis size until it is a multiple
of this value.

	mode (str, optional) – Padding mode to use. See pad() for details.

	cval (number, optional) – Value to use for padding if mode is constant.
See numpy.pad() for details.

	return_pad_amounts (bool, optional) – If False, then only the padded image will be returned. If
True, a tuple with two entries will be returned, where the
first entry is the padded image and the second entry are the amounts
by which each image side was padded. These amounts are again a
tuple of the form (top, right, bottom, left), with each value
being an integer.

	Returns

	
	(H’,W’) ndarray or (H’,W’,C) ndarray – Padded image as (H',W') or (H',W',C) ndarray.

	tuple of int – Amounts by which the image was padded on each side, given as a
tuple (top, right, bottom, left).
This tuple is only returned if return_pad_amounts was set to
True.

imgaug.augmenters.weather

Augmenters that create weather effects.

List of augmenters:

	FastSnowyLandscape

	CloudLayer

	Clouds

	Fog

	SnowflakesLayer

	Snowflakes

	RainLayer

	Rain

	
class imgaug.augmenters.weather.CloudLayer(intensity_mean, intensity_freq_exponent, intensity_coarse_scale, alpha_min, alpha_multiplier, alpha_size_px_max, alpha_freq_exponent, sparsity, density_multiplier, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Add a single layer of clouds to an image.

Supported dtypes:

	uint8: yes; indirectly tested (1)

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: yes; not tested

	float32: yes; not tested

	float64: yes; not tested

	float128: yes; not tested (2)

	bool: no

	
	Indirectly tested via tests for Clouds` and Fog

	
	Note that random values are usually sampled as int64 or
float64, which float128 images would exceed. Note also
that random values might have to upscaled, which is done
via imresize_many_images() and has its own
limited dtype support (includes however floats up to 64bit).

	Parameters

	
	intensity_mean (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Mean intensity of the clouds (i.e. mean color).
Recommended to be in the interval [190, 255].

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly
sampled per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	intensity_freq_exponent (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Exponent of the frequency noise used to add fine intensity to the
mean intensity.
Recommended to be in the interval [-2.5, -1.5].
See __init__() for details.

	intensity_coarse_scale (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Standard deviation of the gaussian distribution used to add more
localized intensity to the mean intensity. Sampled in low resolution
space, i.e. affects final intensity on a coarse level.
Recommended to be in the interval (0, 10].

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	alpha_min (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Minimum alpha when blending cloud noise with the image.
High values will lead to clouds being “everywhere”.
Recommended to usually be at around 0.0 for clouds and >0 for
fog.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	alpha_multiplier (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Multiplier for the sampled alpha values. High values will lead to
denser clouds wherever they are visible.
Recommended to be in the interval [0.3, 1.0].
Note that this parameter currently overlaps with density_multiplier,
which is applied a bit later to the alpha mask.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	alpha_size_px_max (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Controls the image size at which the alpha mask is sampled.
Lower values will lead to coarser alpha masks and hence larger
clouds (and empty areas).
See __init__() for details.

	alpha_freq_exponent (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Exponent of the frequency noise used to sample the alpha mask.
Similarly to alpha_size_max_px, lower values will lead to coarser
alpha patterns.
Recommended to be in the interval [-4.0, -1.5].
See __init__() for details.

	sparsity (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Exponent applied late to the alpha mask. Lower values will lead to
coarser cloud patterns, higher values to finer patterns.
Recommended to be somewhere around 1.0.
Do not deviate far from that value, otherwise the alpha mask might
get weird patterns with sudden fall-offs to zero that look very
unnatural.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	density_multiplier (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Late multiplier for the alpha mask, similar to alpha_multiplier.
Set this higher to get “denser” clouds wherever they are visible.
Recommended to be around [0.5, 1.5].

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	draw_on_image

	

	generate_maps

	

	
draw_on_image(self, image, random_state)

	

	
generate_maps(self, image, random_state)

	

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.weather.Clouds(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.SomeOf

Add clouds to images.

This is a wrapper around CloudLayer.
It executes 1 to 2 layers per image, leading to varying densities and
frequency patterns of clouds.

This augmenter seems to be fairly robust w.r.t. the image size. Tested
with 96x128, 192x256 and 960x1280.

Supported dtypes:

	uint8: yes; tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	Parameters of this augmenter are optimized for the value range
of uint8. While other dtypes may be accepted, they will lead
to images augmented in ways inappropriate for the respective
dtype.

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Clouds()

Create an augmenter that adds clouds to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	append(self, object, /)

	Append object to the end of the list.

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	clear(self, /)

	Remove all items from list.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	count(self, value, /)

	Return number of occurrences of value.

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	extend(self, iterable, /)

	Extend list by appending elements from the iterable.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	index(self, value[, start, stop])

	Return first index of value.

	insert(self, index, object, /)

	Insert object before index.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	pop(self[, index])

	Remove and return item at index (default last).

	remove(self, value, /)

	Remove first occurrence of value.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	reverse(self, /)

	Reverse IN PLACE.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	sort(self, /, *[, key, reverse])

	Stable sort IN PLACE.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.weather.FastSnowyLandscape(lightness_threshold=(100, 255), lightness_multiplier=(1.0, 4.0), from_colorspace='RGB', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Convert non-snowy landscapes to snowy ones.

This augmenter expects to get an image that roughly shows a landscape.

This augmenter is based on the method proposed in
https://medium.freecodecamp.org/image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f?gi=bca4a13e634c

Supported dtypes:

	uint8: yes; fully tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	This augmenter is based on a colorspace conversion to HLS.
Hence, only RGB uint8 inputs are sensible.

	Parameters

	
	lightness_threshold (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – All pixels with lightness in HLS colorspace that is below this value
will have their lightness increased by lightness_multiplier.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the discrete interval [a..b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	lightness_multiplier (number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional) – Multiplier for pixel’s lightness value in HLS colorspace.
Affects all pixels selected via lightness_threshold.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the discrete interval [a..b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	from_colorspace (str, optional) – The source colorspace of the input images.
See __init__().

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.FastSnowyLandscape(
>>> lightness_threshold=140,
>>> lightness_multiplier=2.5
>>>)

Search for all pixels in the image with a lightness value in HLS
colorspace of less than 140 and increase their lightness by a factor
of 2.5.

>>> aug = iaa.FastSnowyLandscape(
>>> lightness_threshold=[128, 200],
>>> lightness_multiplier=(1.5, 3.5)
>>>)

Search for all pixels in the image with a lightness value in HLS
colorspace of less than 128 or less than 200 (one of these
values is picked per image) and multiply their lightness by a factor
of x with x being sampled from uniform(1.5, 3.5) (once per
image).

>>> aug = iaa.FastSnowyLandscape(
>>> lightness_threshold=(100, 255),
>>> lightness_multiplier=(1.0, 4.0)
>>>)

Similar to the previous example, but the lightness threshold is sampled
from uniform(100, 255) (per image) and the multiplier
from uniform(1.0, 4.0) (per image). This seems to produce good and
varied results.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
get_parameters(self)

	See get_parameters().

	
class imgaug.augmenters.weather.Fog(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.weather.CloudLayer

Add fog to images.

This is a wrapper around CloudLayer.
It executes a single layer per image with a configuration leading to
fairly dense clouds with low-frequency patterns.

This augmenter seems to be fairly robust w.r.t. the image size. Tested
with 96x128, 192x256 and 960x1280.

Supported dtypes:

	uint8: yes; tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	Parameters of this augmenter are optimized for the value range
of uint8. While other dtypes may be accepted, they will lead
to images augmented in ways inappropriate for the respective
dtype.

	Parameters

	
	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Fog()

Create an augmenter that adds fog to images.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	draw_on_image

	

	generate_maps

	

	
class imgaug.augmenters.weather.Rain(nb_iterations=(1, 3), drop_size=(0.01, 0.02), speed=(0.04, 0.2), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.SomeOf

Add falling snowflakes to images.

This is a wrapper around
RainLayer. It executes 1 to 3
layers per image.

Note

This augmenter currently seems to work best for medium-sized images
around 192x256. For smaller images, you may want to increase the
speed value to e.g. (0.1, 0.3), otherwise the drops tend to
look like snowflakes. For larger images, you may want to increase
the drop_size to e.g. (0.10, 0.20).

Added in 0.4.0.

Supported dtypes:

	uint8: yes; tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	Parameters of this augmenter are optimized for the value range
of uint8. While other dtypes may be accepted, they will lead
to images augmented in ways inappropriate for the respective
dtype.

	Parameters

	
	drop_size (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – See RainLayer.

	speed (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – See RainLayer.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Rain(speed=(0.1, 0.3))

Add rain to small images (around 96x128).

>>> aug = iaa.Rain()

Add rain to medium sized images (around 192x256).

>>> aug = iaa.Rain(drop_size=(0.10, 0.20))

Add rain to large images (around 960x1280).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	append(self, object, /)

	Append object to the end of the list.

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	clear(self, /)

	Remove all items from list.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	count(self, value, /)

	Return number of occurrences of value.

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	extend(self, iterable, /)

	Extend list by appending elements from the iterable.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	index(self, value[, start, stop])

	Return first index of value.

	insert(self, index, object, /)

	Insert object before index.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	pop(self[, index])

	Remove and return item at index (default last).

	remove(self, value, /)

	Remove first occurrence of value.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	reverse(self, /)

	Reverse IN PLACE.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	sort(self, /, *[, key, reverse])

	Stable sort IN PLACE.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.weather.RainLayer(density, density_uniformity, drop_size, drop_size_uniformity, angle, speed, blur_sigma_fraction, blur_sigma_limits=(0.5, 3.75), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.weather.SnowflakesLayer

Add a single layer of falling raindrops to images.

Added in 0.4.0.

Supported dtypes:

	uint8: yes; indirectly tested (1)

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	
	indirectly tested via tests for Rain

	Parameters

	
	density (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

	density_uniformity (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

	drop_size (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Same as flake_size in
SnowflakesLayer.

	drop_size_uniformity (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Same as flake_size_uniformity in
SnowflakesLayer.

	angle (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

	speed (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

	blur_sigma_fraction (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

	blur_sigma_limits (tuple of float, optional) – Same as in SnowflakesLayer.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	draw_on_image

	

	
class imgaug.augmenters.weather.Snowflakes(density=(0.005, 0.075), density_uniformity=(0.3, 0.9), flake_size=(0.2, 0.7), flake_size_uniformity=(0.4, 0.8), angle=(-30, 30), speed=(0.007, 0.03), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.SomeOf

Add falling snowflakes to images.

This is a wrapper around
SnowflakesLayer. It executes 1 to 3
layers per image.

Supported dtypes:

	uint8: yes; tested

	uint16: no (1)

	uint32: no (1)

	uint64: no (1)

	int8: no (1)

	int16: no (1)

	int32: no (1)

	int64: no (1)

	float16: no (1)

	float32: no (1)

	float64: no (1)

	float128: no (1)

	bool: no (1)

	
	Parameters of this augmenter are optimized for the value range
of uint8. While other dtypes may be accepted, they will lead
to images augmented in ways inappropriate for the respective
dtype.

	Parameters

	
	density (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Density of the snowflake layer, as a probability of each pixel in
low resolution space to be a snowflake.
Valid values are in the interval [0.0, 1.0].
Recommended to be in the interval [0.01, 0.075].

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	density_uniformity (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Size uniformity of the snowflakes. Higher values denote more
similarly sized snowflakes.
Valid values are in the interval [0.0, 1.0].
Recommended to be around 0.5.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	flake_size (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Size of the snowflakes. This parameter controls the resolution at
which snowflakes are sampled. Higher values mean that the resolution
is closer to the input image’s resolution and hence each sampled
snowflake will be smaller (because of the smaller pixel size).

Valid values are in the interval (0.0, 1.0].
Recommended values:

	On 96x128 a value of (0.1, 0.4) worked well.

	On 192x256 a value of (0.2, 0.7) worked well.

	On 960x1280 a value of (0.7, 0.95) worked well.

Datatype behaviour:

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	flake_size_uniformity (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Controls the size uniformity of the snowflakes. Higher values mean
that the snowflakes are more similarly sized.
Valid values are in the interval [0.0, 1.0].
Recommended to be around 0.5.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	angle (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Angle in degrees of motion blur applied to the snowflakes, where
0.0 is motion blur that points straight upwards.
Recommended to be in the interval [-30, 30].
See also __init__().

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	speed (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Perceived falling speed of the snowflakes. This parameter controls the
motion blur’s kernel size. It follows roughly the form
kernel_size = image_size * speed. Hence, values around 1.0
denote that the motion blur should “stretch” each snowflake over
the whole image.

Valid values are in the interval [0.0, 1.0].
Recommended values:

	On 96x128 a value of (0.01, 0.05) worked well.

	On 192x256 a value of (0.007, 0.03) worked well.

	On 960x1280 a value of (0.001, 0.03) worked well.

Datatype behaviour:

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Snowflakes(flake_size=(0.1, 0.4), speed=(0.01, 0.05))

Add snowflakes to small images (around 96x128).

>>> aug = iaa.Snowflakes(flake_size=(0.2, 0.7), speed=(0.007, 0.03))

Add snowflakes to medium-sized images (around 192x256).

>>> aug = iaa.Snowflakes(flake_size=(0.7, 0.95), speed=(0.001, 0.03))

Add snowflakes to large images (around 960x1280).

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	add(self, augmenter)

	Add an augmenter to the list of child augmenters.

	append(self, object, /)

	Append object to the end of the list.

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	clear(self, /)

	Remove all items from list.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	count(self, value, /)

	Return number of occurrences of value.

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	extend(self, iterable, /)

	Extend list by appending elements from the iterable.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	See get_children_lists().

	get_parameters(self)

	See get_parameters().

	index(self, value[, start, stop])

	Return first index of value.

	insert(self, index, object, /)

	Insert object before index.

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	pop(self[, index])

	Remove and return item at index (default last).

	remove(self, value, /)

	Remove first occurrence of value.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	reverse(self, /)

	Reverse IN PLACE.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	sort(self, /, *[, key, reverse])

	Stable sort IN PLACE.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	
class imgaug.augmenters.weather.SnowflakesLayer(density, density_uniformity, flake_size, flake_size_uniformity, angle, speed, blur_sigma_fraction, blur_sigma_limits=(0.5, 3.75), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

	Bases: imgaug.augmenters.meta.Augmenter

Add a single layer of falling snowflakes to images.

Supported dtypes:

	uint8: yes; indirectly tested (1)

	uint16: no

	uint32: no

	uint64: no

	int8: no

	int16: no

	int32: no

	int64: no

	float16: no

	float32: no

	float64: no

	float128: no

	bool: no

	
	indirectly tested via tests for Snowflakes

	Parameters

	
	density (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Density of the snowflake layer, as a probability of each pixel in
low resolution space to be a snowflake.
Valid values are in the interval [0.0, 1.0].
Recommended to be in the interval [0.01, 0.075].

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	density_uniformity (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Size uniformity of the snowflakes. Higher values denote more
similarly sized snowflakes.
Valid values are in the interval [0.0, 1.0].
Recommended to be around 0.5.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	flake_size (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Size of the snowflakes. This parameter controls the resolution at
which snowflakes are sampled. Higher values mean that the resolution
is closer to the input image’s resolution and hence each sampled
snowflake will be smaller (because of the smaller pixel size).

Valid values are in the interval (0.0, 1.0].
Recommended values:

	On 96x128 a value of (0.1, 0.4) worked well.

	On 192x256 a value of (0.2, 0.7) worked well.

	On 960x1280 a value of (0.7, 0.95) worked well.

Datatype behaviour:

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	flake_size_uniformity (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Controls the size uniformity of the snowflakes. Higher values mean
that the snowflakes are more similarly sized.
Valid values are in the interval [0.0, 1.0].
Recommended to be around 0.5.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	angle (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Angle in degrees of motion blur applied to the snowflakes, where
0.0 is motion blur that points straight upwards.
Recommended to be in the interval [-30, 30].
See also __init__().

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	speed (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Perceived falling speed of the snowflakes. This parameter controls the
motion blur’s kernel size. It follows roughly the form
kernel_size = image_size * speed. Hence, values around 1.0
denote that the motion blur should “stretch” each snowflake over the
whole image.

Valid values are in the interval [0.0, 1.0].
Recommended values:

	On 96x128 a value of (0.01, 0.05) worked well.

	On 192x256 a value of (0.007, 0.03) worked well.

	On 960x1280 a value of (0.001, 0.03) worked well.

Datatype behaviour:

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	blur_sigma_fraction (number or tuple of number or list of number or imgaug.parameters.StochasticParameter) – Standard deviation (as a fraction of the image size) of gaussian blur
applied to the snowflakes.
Valid values are in the interval [0.0, 1.0].
Recommended to be in the interval [0.0001, 0.001]. May still
require tinkering based on image size.

	If a number, then that value will always be used.

	If a tuple (a, b), then a value will be uniformly sampled
per image from the interval [a, b].

	If a list, then a random value will be sampled from that
list per image.

	If a StochasticParameter, then a value will be sampled
per image from that parameter.

	blur_sigma_limits (tuple of float, optional) – Controls allowed min and max values of blur_sigma_fraction
after(!) multiplication with the image size. First value is the
minimum, second value is the maximum. Values outside of that range
will be clipped to be within that range. This prevents extreme
values for very small or large images.

	seed (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – See __init__().

	name (None or str, optional) – See __init__().

	random_state (None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional) – Old name for parameter seed.
Its usage will not yet cause a deprecation warning,
but it is still recommended to use seed now.
Outdated since 0.4.0.

	deterministic (bool, optional) – Deprecated since 0.4.0.
See method to_deterministic() for an alternative and for
details about what the “deterministic mode” actually does.

Methods

	__call__(self, *args, **kwargs)

	Alias for augment().

	augment(self[, return_batch, hooks])

	Augment a batch.

	augment_batch(self, batch[, hooks])

	Deprecated.

	augment_batch_(self, batch[, parents, hooks])

	Augment a single batch in-place.

	augment_batches(self, batches[, hooks, …])

	Augment multiple batches.

	augment_bounding_boxes(self, …[, parents, …])

	Augment a batch of bounding boxes.

	augment_heatmaps(self, heatmaps[, parents, …])

	Augment a batch of heatmaps.

	augment_image(self, image[, hooks])

	Augment a single image.

	augment_images(self, images[, parents, hooks])

	Augment a batch of images.

	augment_keypoints(self, keypoints_on_images)

	Augment a batch of keypoints/landmarks.

	augment_line_strings(self, …[, parents, hooks])

	Augment a batch of line strings.

	augment_polygons(self, polygons_on_images[, …])

	Augment a batch of polygons.

	augment_segmentation_maps(self, segmaps[, …])

	Augment a batch of segmentation maps.

	copy(self)

	Create a shallow copy of this Augmenter instance.

	copy_random_state(self, source[, recursive, …])

	Copy the RNGs from a source augmenter sequence.

	copy_random_state_(self, source[, …])

	Copy the RNGs from a source augmenter sequence (in-place).

	deepcopy(self)

	Create a deep copy of this Augmenter instance.

	draw_grid(self, images, rows, cols)

	Augment images and draw the results as a single grid-like image.

	find_augmenters(self, func[, parents, flat])

	Find augmenters that match a condition.

	find_augmenters_by_name(self, name[, regex, …])

	Find augmenter(s) by name.

	find_augmenters_by_names(self, names[, …])

	Find augmenter(s) by names.

	get_all_children(self[, flat])

	Get all children of this augmenter as a list.

	get_children_lists(self)

	Get a list of lists of children of this augmenter.

	get_parameters(self)

	See get_parameters().

	localize_random_state(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	localize_random_state_(self[, recursive])

	Assign augmenter-specific RNGs to this augmenter and its children.

	pool(self[, processes, maxtasksperchild, seed])

	Create a pool used for multicore augmentation.

	remove_augmenters(self, func[, copy, …])

	Remove this augmenter or children that match a condition.

	remove_augmenters_(self, func[, parents])

	Remove in-place children of this augmenter that match a condition.

	remove_augmenters_inplace(self, func[, parents])

	Deprecated.

	reseed(self[, random_state, deterministic_too])

	Deprecated.

	seed_(self[, entropy, deterministic_too])

	Seed this augmenter and all of its children.

	show_grid(self, images, rows, cols)

	Augment images and plot the results as a single grid-like image.

	to_deterministic(self[, n])

	Convert this augmenter from a stochastic to a deterministic one.

	draw_on_image

	

	
draw_on_image(self, image, random_state)

	

	
get_parameters(self)

	See get_parameters().

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 imgaug	

 	
 	
 imgaug.augmentables.base	

 	
 	
 imgaug.augmentables.batches	

 	
 	
 imgaug.augmentables.bbs	

 	
 	
 imgaug.augmentables.heatmaps	

 	
 	
 imgaug.augmentables.kps	

 	
 	
 imgaug.augmentables.lines	

 	
 	
 imgaug.augmentables.normalization	

 	
 	
 imgaug.augmentables.polys	

 	
 	
 imgaug.augmentables.segmaps	

 	
 	
 imgaug.augmentables.utils	

 	
 	
 imgaug.augmenters.arithmetic	

 	
 	
 imgaug.augmenters.artistic	

 	
 	
 imgaug.augmenters.base	

 	
 	
 imgaug.augmenters.blend	

 	
 	
 imgaug.augmenters.blur	

 	
 	
 imgaug.augmenters.collections	

 	
 	
 imgaug.augmenters.color	

 	
 	
 imgaug.augmenters.contrast	

 	
 	
 imgaug.augmenters.convolutional	

 	
 	
 imgaug.augmenters.debug	

 	
 	
 imgaug.augmenters.edges	

 	
 	
 imgaug.augmenters.flip	

 	
 	
 imgaug.augmenters.geometric	

 	
 	
 imgaug.augmenters.imgcorruptlike	

 	
 	
 imgaug.augmenters.meta	

 	
 	
 imgaug.augmenters.pillike	

 	
 	
 imgaug.augmenters.pooling	

 	
 	
 imgaug.augmenters.segmentation	

 	
 	
 imgaug.augmenters.size	

 	
 	
 imgaug.augmenters.weather	

 	
 	
 imgaug.dtypes	

 	
 	
 imgaug.imgaug	

 	
 	
 imgaug.multicore	

 	
 	
 imgaug.parameters	

 	
 	
 imgaug.random	

 	
 	
 imgaug.validation	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	Absolute (class in imgaug.parameters)

 	Add (class in imgaug.augmenters.arithmetic)

 	(class in imgaug.parameters)

 	add() (imgaug.augmenters.meta.Sequential method)

 	(imgaug.augmenters.meta.SomeOf method)

 	add_elementwise() (in module imgaug.augmenters.arithmetic)

 	add_scalar() (in module imgaug.augmenters.arithmetic)

 	AddElementwise (class in imgaug.augmenters.arithmetic)

 	AdditiveGaussianNoise (class in imgaug.augmenters.arithmetic)

 	AdditiveLaplaceNoise (class in imgaug.augmenters.arithmetic)

 	AdditivePoissonNoise (class in imgaug.augmenters.arithmetic)

 	AddToBrightness (class in imgaug.augmenters.color)

 	AddToHue (class in imgaug.augmenters.color)

 	AddToHueAndSaturation (class in imgaug.augmenters.color)

 	AddToSaturation (class in imgaug.augmenters.color)

 	adjust_contrast_gamma() (in module imgaug.augmenters.contrast)

 	adjust_contrast_linear() (in module imgaug.augmenters.contrast)

 	adjust_contrast_log() (in module imgaug.augmenters.contrast)

 	adjust_contrast_sigmoid() (in module imgaug.augmenters.contrast)

 	advance_() (imgaug.random.RNG method)

 	advance_generator_() (in module imgaug.random)

 	Affine (class in imgaug.augmenters.geometric)

 	(class in imgaug.augmenters.pillike)

 	AffineCv2 (class in imgaug.augmenters.geometric)

 	all_finished() (imgaug.multicore.BackgroundAugmenter method)

 	(imgaug.multicore.BatchLoader method)

 	AllChannelsCLAHE (class in imgaug.augmenters.contrast)

 	AllChannelsHistogramEqualization (class in imgaug.augmenters.contrast)

 	ALLOW_DTYPES_CUSTOM_MINMAX (imgaug.augmenters.arithmetic.Invert attribute)

 	almost_equals() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	Alpha() (in module imgaug.augmenters.blend)

 	AlphaElementwise() (in module imgaug.augmenters.blend)

 	angle_between_vectors() (in module imgaug.imgaug)

 	apply_brightness() (in module imgaug.augmenters.imgcorruptlike)

 	apply_contrast() (in module imgaug.augmenters.imgcorruptlike)

 	apply_defocus_blur() (in module imgaug.augmenters.imgcorruptlike)

 	apply_elastic_transform() (in module imgaug.augmenters.imgcorruptlike)

 	apply_fog() (in module imgaug.augmenters.imgcorruptlike)

 	
 	apply_frost() (in module imgaug.augmenters.imgcorruptlike)

 	apply_gaussian_blur() (in module imgaug.augmenters.imgcorruptlike)

 	apply_gaussian_noise() (in module imgaug.augmenters.imgcorruptlike)

 	apply_glass_blur() (in module imgaug.augmenters.imgcorruptlike)

 	apply_impulse_noise() (in module imgaug.augmenters.imgcorruptlike)

 	apply_jigsaw() (in module imgaug.augmenters.geometric)

 	apply_jigsaw_to_coords() (in module imgaug.augmenters.geometric)

 	apply_jpeg_compression() (in module imgaug.augmenters.imgcorruptlike)

 	apply_lut() (in module imgaug.imgaug)

 	apply_lut_() (in module imgaug.imgaug)

 	apply_motion_blur() (in module imgaug.augmenters.imgcorruptlike)

 	apply_pixelate() (in module imgaug.augmenters.imgcorruptlike)

 	apply_saturate() (in module imgaug.augmenters.imgcorruptlike)

 	apply_shot_noise() (in module imgaug.augmenters.imgcorruptlike)

 	apply_snow() (in module imgaug.augmenters.imgcorruptlike)

 	apply_spatter() (in module imgaug.augmenters.imgcorruptlike)

 	apply_speckle_noise() (in module imgaug.augmenters.imgcorruptlike)

 	apply_zoom_blur() (in module imgaug.augmenters.imgcorruptlike)

 	area (imgaug.augmentables.bbs.BoundingBox attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

 	assert_is_iterable_of() (in module imgaug.validation)

 	AssertLambda (class in imgaug.augmenters.meta)

 	AssertShape (class in imgaug.augmenters.meta)

 	augment() (imgaug.augmenters.meta.Augmenter method)

 	augment_batch() (imgaug.augmenters.meta.Augmenter method)

 	augment_batch_() (imgaug.augmenters.meta.Augmenter method)

 	augment_batches() (imgaug.augmenters.meta.Augmenter method)

 	augment_bounding_boxes() (imgaug.augmenters.meta.Augmenter method)

 	augment_heatmaps() (imgaug.augmenters.meta.Augmenter method)

 	augment_image() (imgaug.augmenters.meta.Augmenter method)

 	augment_images() (imgaug.augmenters.meta.Augmenter method)

 	augment_keypoints() (imgaug.augmenters.meta.Augmenter method)

 	augment_line_strings() (imgaug.augmenters.meta.Augmenter method)

 	augment_polygons() (imgaug.augmenters.meta.Augmenter method)

 	augment_segmentation_maps() (imgaug.augmenters.meta.Augmenter method)

 	Augmenter (class in imgaug.augmenters.meta)

 	Autocontrast (class in imgaug.augmenters.pillike)

 	autocontrast() (in module imgaug.augmenters.pillike)

 	AverageBlur (class in imgaug.augmenters.blur)

 	AveragePooling (class in imgaug.augmenters.pooling)

 	avg_pool() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(in module imgaug.imgaug)

B

 	
 	BackgroundAugmenter (class in imgaug.multicore)

 	BackgroundAugmenter() (in module imgaug.imgaug)

 	Batch (class in imgaug.augmentables.batches)

 	Batch() (in module imgaug.imgaug)

 	BatchLoader (class in imgaug.multicore)

 	BatchLoader() (in module imgaug.imgaug)

 	Beta (class in imgaug.parameters)

 	beta() (imgaug.random.RNG method)

 	BGR (imgaug.augmenters.color.ChangeColorspace attribute)

 	(imgaug.augmenters.contrast.CLAHE attribute)

 	(imgaug.augmenters.contrast.HistogramEqualization attribute)

 	BilateralBlur (class in imgaug.augmenters.blur)

 	Binomial (class in imgaug.parameters)

 	binomial() (imgaug.random.RNG method)

 	blend_alpha() (in module imgaug.augmenters.blend)

 	BlendAlpha (class in imgaug.augmenters.blend)

 	BlendAlphaBoundingBoxes (class in imgaug.augmenters.blend)

 	BlendAlphaCheckerboard (class in imgaug.augmenters.blend)

 	BlendAlphaElementwise (class in imgaug.augmenters.blend)

 	
 	BlendAlphaFrequencyNoise (class in imgaug.augmenters.blend)

 	BlendAlphaHorizontalLinearGradient (class in imgaug.augmenters.blend)

 	BlendAlphaMask (class in imgaug.augmenters.blend)

 	BlendAlphaRegularGrid (class in imgaug.augmenters.blend)

 	BlendAlphaSegMapClassIds (class in imgaug.augmenters.blend)

 	BlendAlphaSimplexNoise (class in imgaug.augmenters.blend)

 	BlendAlphaSomeColors (class in imgaug.augmenters.blend)

 	BlendAlphaVerticalLinearGradient (class in imgaug.augmenters.blend)

 	blur_gaussian_() (in module imgaug.augmenters.blur)

 	blur_mean_shift_() (in module imgaug.augmenters.blur)

 	both_np_float_if_one_is_float() (in module imgaug.parameters)

 	bounding_boxes (imgaug.augmentables.batches.Batch attribute)

 	BoundingBox (class in imgaug.augmentables.bbs)

 	BoundingBox() (in module imgaug.imgaug)

 	BoundingBoxesMaskGen (class in imgaug.augmenters.blend)

 	BoundingBoxesOnImage (class in imgaug.augmentables.bbs)

 	BoundingBoxesOnImage() (in module imgaug.imgaug)

 	Brightness (class in imgaug.augmenters.imgcorruptlike)

 	bytes() (imgaug.random.RNG method)

C

 	
 	caller_name() (in module imgaug.imgaug)

 	Canny (class in imgaug.augmenters.edges)

 	Cartoon (class in imgaug.augmenters.artistic)

 	center_x (imgaug.augmentables.bbs.BoundingBox attribute)

 	center_y (imgaug.augmentables.bbs.BoundingBox attribute)

 	CenterCropToAspectRatio (class in imgaug.augmenters.size)

 	CenterCropToFixedSize (class in imgaug.augmenters.size)

 	CenterCropToMultiplesOf (class in imgaug.augmenters.size)

 	CenterCropToPowersOf (class in imgaug.augmenters.size)

 	CenterCropToSquare (class in imgaug.augmenters.size)

 	CenterPadToAspectRatio (class in imgaug.augmenters.size)

 	CenterPadToFixedSize (class in imgaug.augmenters.size)

 	CenterPadToMultiplesOf (class in imgaug.augmenters.size)

 	CenterPadToPowersOf (class in imgaug.augmenters.size)

 	CenterPadToSquare (class in imgaug.augmenters.size)

 	change_color_temperature() (in module imgaug.augmenters.color)

 	change_color_temperatures_() (in module imgaug.augmenters.color)

 	change_colorspace_() (in module imgaug.augmenters.color)

 	change_colorspaces_() (in module imgaug.augmenters.color)

 	change_dtype_() (in module imgaug.dtypes)

 	change_dtypes_() (in module imgaug.dtypes)

 	change_first_point_by_coords() (imgaug.augmentables.polys.Polygon method)

 	change_first_point_by_index() (imgaug.augmentables.polys.Polygon method)

 	change_normalization() (imgaug.augmentables.heatmaps.HeatmapsOnImage class method)

 	ChangeColorspace (class in imgaug.augmenters.color)

 	ChangeColorTemperature (class in imgaug.augmenters.color)

 	ChannelShuffle (class in imgaug.augmenters.meta)

 	CheckerboardMaskGen (class in imgaug.augmenters.blend)

 	ChiSquare (class in imgaug.parameters)

 	chisquare() (imgaug.random.RNG method)

 	Choice (class in imgaug.parameters)

 	choice() (imgaug.random.RNG method)

 	CIE (imgaug.augmenters.color.ChangeColorspace attribute)

 	CLAHE (class in imgaug.augmenters.contrast)

 	Clip (class in imgaug.parameters)

 	clip_() (in module imgaug.dtypes)

 	clip_augmented_image() (in module imgaug.augmenters.meta)

 	clip_augmented_image_() (in module imgaug.augmenters.meta)

 	clip_augmented_images() (in module imgaug.augmenters.meta)

 	clip_augmented_images_() (in module imgaug.augmenters.meta)

 	clip_out_of_image() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	clip_out_of_image_() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	clip_to_dtype_value_range_() (in module imgaug.dtypes)

 	ClipCBAsToImagePlanes (class in imgaug.augmenters.meta)

 	close() (imgaug.multicore.Pool method)

 	CloudLayer (class in imgaug.augmenters.weather)

 	Clouds (class in imgaug.augmenters.weather)

 	CoarseDropout (class in imgaug.augmenters.arithmetic)

 	CoarsePepper (class in imgaug.augmenters.arithmetic)

 	CoarseSalt (class in imgaug.augmenters.arithmetic)

 	CoarseSaltAndPepper (class in imgaug.augmenters.arithmetic)

 	colorize() (imgaug.augmenters.edges.IBinaryImageColorizer method)

 	(imgaug.augmenters.edges.RandomColorsBinaryImageColorizer method)

 	COLORSPACES (imgaug.augmenters.color.ChangeColorspace attribute)

 	compress_jpeg() (in module imgaug.augmenters.arithmetic)

 	compute_croppings_to_reach_aspect_ratio() (in module imgaug.augmenters.size)

 	compute_croppings_to_reach_multiples_of() (in module imgaug.augmenters.size)

 	compute_croppings_to_reach_powers_of() (in module imgaug.augmenters.size)

 	compute_distance() (imgaug.augmentables.lines.LineString method)

 	compute_geometric_median() (in module imgaug.augmentables.kps)

 	(in module imgaug.imgaug)

 	compute_line_intersection_point() (in module imgaug.imgaug)

 	compute_neighbour_distances() (imgaug.augmentables.lines.LineString method)

 	
 	compute_out_of_image_area() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.polys.Polygon method)

 	compute_out_of_image_fraction() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	compute_paddings_for_aspect_ratio() (in module imgaug.imgaug)

 	compute_paddings_to_reach_aspect_ratio() (in module imgaug.augmenters.size)

 	compute_paddings_to_reach_exponents_of() (in module imgaug.imgaug)

 	compute_paddings_to_reach_multiples_of() (in module imgaug.augmenters.size)

 	(in module imgaug.imgaug)

 	compute_paddings_to_reach_powers_of() (in module imgaug.augmenters.size)

 	compute_pointwise_distances() (imgaug.augmentables.lines.LineString method)

 	concatenate() (imgaug.augmentables.lines.LineString method)

 	contains() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.lines.LineString method)

 	Contrast (class in imgaug.augmenters.imgcorruptlike)

 	ContrastNormalization() (in module imgaug.augmenters.arithmetic)

 	convert_cbaois_to_kpsois() (in module imgaug.augmentables.utils)

 	convert_iterable_to_string_of_types() (in module imgaug.validation)

 	convert_seed_sequence_to_generator() (in module imgaug.random)

 	convert_seed_to_generator() (in module imgaug.random)

 	Convolve (class in imgaug.augmenters.convolutional)

 	coords (imgaug.augmentables.bbs.BoundingBox attribute)

 	(imgaug.augmentables.kps.Keypoint attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

 	coords_almost_equals() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	copy() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	(imgaug.augmenters.meta.Augmenter method)

 	(imgaug.parameters.StochasticParameter method)

 	(imgaug.random.RNG method)

 	copy_arrays() (in module imgaug.augmenters.meta)

 	copy_augmentables() (in module imgaug.augmentables.utils)

 	copy_dtypes_for_restore() (in module imgaug.dtypes)

 	copy_generator() (in module imgaug.random)

 	copy_generator_unless_global_generator() (in module imgaug.random)

 	copy_random_state() (imgaug.augmenters.meta.Augmenter method)

 	(in module imgaug.imgaug)

 	copy_random_state_() (imgaug.augmenters.meta.Augmenter method)

 	copy_unless_global_rng() (imgaug.random.RNG method)

 	count_workers_alive() (imgaug.multicore.BatchLoader method)

 	create_for_noise() (imgaug.parameters.Sigmoid static method)

 	create_fully_random() (imgaug.random.RNG class method)

 	create_fully_random_generator() (in module imgaug.random)

 	create_pseudo_random_() (imgaug.random.RNG class method)

 	create_pseudo_random_generator_() (in module imgaug.random)

 	Crop (class in imgaug.augmenters.size)

 	CropAndPad (class in imgaug.augmenters.size)

 	CropToAspectRatio (class in imgaug.augmenters.size)

 	CropToFixedSize (class in imgaug.augmenters.size)

 	CropToMultiplesOf (class in imgaug.augmenters.size)

 	CropToPowersOf (class in imgaug.augmenters.size)

 	CropToSquare (class in imgaug.augmenters.size)

 	current_random_state() (in module imgaug.imgaug)

 	cut_out_of_image() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.polys.Polygon method)

 	Cutout (class in imgaug.augmenters.arithmetic)

 	cutout() (in module imgaug.augmenters.arithmetic)

 	cutout_() (in module imgaug.augmenters.arithmetic)

 	CV_VARS (imgaug.augmenters.color.ChangeColorspace attribute)

D

 	
 	deepcopy() (imgaug.augmentables.batches.Batch method)

 	(imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	(imgaug.augmenters.meta.Augmenter method)

 	(imgaug.parameters.StochasticParameter method)

 	deepcopy_fast() (in module imgaug.augmentables.utils)

 	DEFAULT_SEGMENT_COLORS (imgaug.augmentables.segmaps.SegmentationMapsOnImage attribute)

 	DefocusBlur (class in imgaug.augmenters.imgcorruptlike)

 	deprecated (class in imgaug.imgaug)

 	DeprecationWarning

 	derive_generator_() (in module imgaug.random)

 	derive_generators_() (in module imgaug.random)

 	derive_random_state() (in module imgaug.imgaug)

 	derive_random_states() (in module imgaug.imgaug)

 	derive_rng_() (imgaug.random.RNG method)

 	derive_rngs_() (imgaug.random.RNG method)

 	Deterministic (class in imgaug.parameters)

 	DeterministicList (class in imgaug.parameters)

 	DirectedEdgeDetect (class in imgaug.augmenters.convolutional)

 	dirichlet() (imgaug.random.RNG method)

 	DiscreteUniform (class in imgaug.parameters)

 	Discretize (class in imgaug.parameters)

 	Divide (class in imgaug.parameters)

 	do_assert() (in module imgaug.imgaug)

 	draw() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	draw_box_on_image() (imgaug.augmentables.bbs.BoundingBox method)

 	draw_debug_image() (in module imgaug.augmenters.debug)

 	draw_distribution_graph() (imgaug.parameters.StochasticParameter method)

 	
 	draw_distributions_grid() (in module imgaug.parameters)

 	draw_grid() (imgaug.augmenters.meta.Augmenter method)

 	(in module imgaug.imgaug)

 	draw_heatmap_array() (imgaug.augmentables.lines.LineString method)

 	draw_label_on_image() (imgaug.augmentables.bbs.BoundingBox method)

 	draw_lines_heatmap_array() (imgaug.augmentables.lines.LineString method)

 	draw_lines_on_image() (imgaug.augmentables.lines.LineString method)

 	draw_mask() (imgaug.augmentables.lines.LineString method)

 	draw_masks() (imgaug.augmenters.blend.BoundingBoxesMaskGen method)

 	(imgaug.augmenters.blend.CheckerboardMaskGen method)

 	(imgaug.augmenters.blend.IBatchwiseMaskGenerator method)

 	(imgaug.augmenters.blend.InvertMaskGen method)

 	(imgaug.augmenters.blend.RegularGridMaskGen method)

 	(imgaug.augmenters.blend.SegMapClassIdsMaskGen method)

 	(imgaug.augmenters.blend.SomeColorsMaskGen method)

 	(imgaug.augmenters.blend.StochasticParameterMaskGen method)

 	draw_on_image() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	(imgaug.augmenters.weather.CloudLayer method)

 	(imgaug.augmenters.weather.SnowflakesLayer method)

 	draw_points_heatmap_array() (imgaug.augmentables.lines.LineString method)

 	draw_points_on_image() (imgaug.augmentables.lines.LineString method)

 	draw_sample() (imgaug.parameters.StochasticParameter method)

 	draw_samples() (imgaug.parameters.StochasticParameter method)

 	draw_text() (in module imgaug.imgaug)

 	Dropout (class in imgaug.augmenters.arithmetic)

 	Dropout2d (class in imgaug.augmenters.arithmetic)

 	DropoutPointsSampler (class in imgaug.augmenters.segmentation)

 	dummy_random_state() (in module imgaug.imgaug)

 	duplicate() (imgaug.random.RNG method)

E

 	
 	EdgeDetect (class in imgaug.augmenters.convolutional)

 	ElasticTransform (class in imgaug.augmenters.imgcorruptlike)

 	ElasticTransformation (class in imgaug.augmenters.geometric)

 	Emboss (class in imgaug.augmenters.convolutional)

 	empty (imgaug.augmentables.bbs.BoundingBoxesOnImage attribute)

 	(imgaug.augmentables.kps.KeypointsOnImage attribute)

 	(imgaug.augmentables.lines.LineStringsOnImage attribute)

 	(imgaug.augmentables.polys.PolygonsOnImage attribute)

 	enhance_brightness() (in module imgaug.augmenters.pillike)

 	enhance_color() (in module imgaug.augmenters.pillike)

 	enhance_contrast() (in module imgaug.augmenters.pillike)

 	enhance_sharpness() (in module imgaug.augmenters.pillike)

 	EnhanceBrightness (class in imgaug.augmenters.pillike)

 	EnhanceColor (class in imgaug.augmenters.pillike)

 	EnhanceContrast (class in imgaug.augmenters.pillike)

 	EnhanceSharpness (class in imgaug.augmenters.pillike)

 	Equalize (class in imgaug.augmenters.pillike)

 	equalize() (in module imgaug.augmenters.pillike)

 	
 	equalize_() (in module imgaug.augmenters.pillike)

 	equals() (imgaug.random.RNG method)

 	equals_global_rng() (imgaug.random.RNG method)

 	estimate_bounding_boxes_norm_type() (in module imgaug.augmentables.normalization)

 	estimate_heatmaps_norm_type() (in module imgaug.augmentables.normalization)

 	estimate_keypoints_norm_type() (in module imgaug.augmentables.normalization)

 	estimate_line_strings_norm_type() (in module imgaug.augmentables.normalization)

 	estimate_max_number_of_channels() (in module imgaug.augmenters.meta)

 	estimate_normalization_type() (in module imgaug.augmentables.normalization)

 	estimate_polygons_norm_type() (in module imgaug.augmentables.normalization)

 	estimate_segmaps_norm_type() (in module imgaug.augmentables.normalization)

 	exponential() (imgaug.random.RNG method)

 	extend() (imgaug.augmentables.bbs.BoundingBox method)

 	extend_() (imgaug.augmentables.bbs.BoundingBox method)

 	exterior_almost_equals() (imgaug.augmentables.polys.Polygon method)

 	extract_from_image() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

F

 	
 	f() (imgaug.random.RNG method)

 	factor (imgaug.augmenters.blend.BlendAlphaElementwise attribute)

 	FastSnowyLandscape (class in imgaug.augmenters.weather)

 	fill_from_augmented_normalized_batch() (imgaug.augmentables.batches.UnnormalizedBatch method)

 	fill_from_augmented_normalized_batch_() (imgaug.augmentables.batches.UnnormalizedBatch method)

 	fill_from_batch_in_augmentation_() (imgaug.augmentables.batches.Batch method)

 	fill_from_xy_array_() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	fill_from_xyxy_array_() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	filter_blur() (in module imgaug.augmenters.pillike)

 	filter_contour() (in module imgaug.augmenters.pillike)

 	filter_detail() (in module imgaug.augmenters.pillike)

 	filter_edge_enhance() (in module imgaug.augmenters.pillike)

 	filter_edge_enhance_more() (in module imgaug.augmenters.pillike)

 	filter_emboss() (in module imgaug.augmenters.pillike)

 	filter_find_edges() (in module imgaug.augmenters.pillike)

 	filter_sharpen() (in module imgaug.augmenters.pillike)

 	filter_smooth() (in module imgaug.augmenters.pillike)

 	filter_smooth_more() (in module imgaug.augmenters.pillike)

 	FilterBlur (class in imgaug.augmenters.pillike)

 	FilterContour (class in imgaug.augmenters.pillike)

 	FilterDetail (class in imgaug.augmenters.pillike)

 	FilterEdgeEnhance (class in imgaug.augmenters.pillike)

 	FilterEdgeEnhanceMore (class in imgaug.augmenters.pillike)

 	FilterEmboss (class in imgaug.augmenters.pillike)

 	FilterFindEdges (class in imgaug.augmenters.pillike)

 	FilterSharpen (class in imgaug.augmenters.pillike)

 	FilterSmooth (class in imgaug.augmenters.pillike)

 	FilterSmoothMore (class in imgaug.augmenters.pillike)

 	
 	find_augmenters() (imgaug.augmenters.meta.Augmenter method)

 	find_augmenters_by_name() (imgaug.augmenters.meta.Augmenter method)

 	find_augmenters_by_names() (imgaug.augmenters.meta.Augmenter method)

 	find_closest_point_index() (imgaug.augmentables.polys.Polygon method)

 	find_first_nonempty() (in module imgaug.augmentables.normalization)

 	find_intersections_with() (imgaug.augmentables.lines.LineString method)

 	flatten() (in module imgaug.imgaug)

 	Fliplr (class in imgaug.augmenters.flip)

 	fliplr() (in module imgaug.augmenters.flip)

 	Flipud (class in imgaug.augmenters.flip)

 	flipud() (in module imgaug.augmenters.flip)

 	Fog (class in imgaug.augmenters.imgcorruptlike)

 	(class in imgaug.augmenters.weather)

 	force_np_float_dtype() (in module imgaug.parameters)

 	ForceSign (class in imgaug.parameters)

 	forward_random_state() (in module imgaug.imgaug)

 	FrequencyNoise (class in imgaug.parameters)

 	FrequencyNoiseAlpha() (in module imgaug.augmenters.blend)

 	from_0to1() (imgaug.augmentables.heatmaps.HeatmapsOnImage static method)

 	from_coords_array() (imgaug.augmentables.kps.KeypointsOnImage static method)

 	from_distance_maps() (imgaug.augmentables.kps.KeypointsOnImage static method)

 	from_keypoint_image() (imgaug.augmentables.kps.KeypointsOnImage static method)

 	from_point_soup() (imgaug.augmentables.bbs.BoundingBox class method)

 	from_point_soups() (imgaug.augmentables.bbs.BoundingBoxesOnImage class method)

 	from_shapely() (imgaug.augmentables.polys.MultiPolygon static method)

 	(imgaug.augmentables.polys.Polygon static method)

 	from_uint8() (imgaug.augmentables.heatmaps.HeatmapsOnImage static method)

 	from_xy_array() (imgaug.augmentables.kps.KeypointsOnImage class method)

 	from_xy_arrays() (imgaug.augmentables.lines.LineStringsOnImage class method)

 	from_xyxy_array() (imgaug.augmentables.bbs.BoundingBoxesOnImage class method)

 	FromLowerResolution (class in imgaug.parameters)

 	Frost (class in imgaug.augmenters.imgcorruptlike)

G

 	
 	gamma() (imgaug.random.RNG method)

 	GammaContrast (class in imgaug.augmenters.contrast)

 	gate_dtypes() (in module imgaug.dtypes)

 	GaussianBlur (class in imgaug.augmenters.blur)

 	(class in imgaug.augmenters.imgcorruptlike)

 	GaussianNoise (class in imgaug.augmenters.imgcorruptlike)

 	generate_jigsaw_destinations() (in module imgaug.augmenters.geometric)

 	generate_maps() (imgaug.augmenters.weather.CloudLayer method)

 	generate_mask() (imgaug.augmenters.blend.BoundingBoxesMaskGen class method)

 	(imgaug.augmenters.blend.CheckerboardMaskGen class method)

 	(imgaug.augmenters.blend.HorizontalLinearGradientMaskGen class method)

 	(imgaug.augmenters.blend.RegularGridMaskGen class method)

 	(imgaug.augmenters.blend.SegMapClassIdsMaskGen class method)

 	(imgaug.augmenters.blend.SomeColorsMaskGen class method)

 	(imgaug.augmenters.blend.VerticalLinearGradientMaskGen class method)

 	generate_seed_() (imgaug.random.RNG method)

 	(in module imgaug.random)

 	generate_seeds_() (imgaug.random.RNG method)

 	(in module imgaug.random)

 	generate_similar_points_manhattan() (imgaug.augmentables.kps.Keypoint method)

 	geometric() (imgaug.random.RNG method)

 	get_all_children() (imgaug.augmenters.meta.Augmenter method)

 	get_arr() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	get_arr_int() (imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	get_batch() (imgaug.multicore.BackgroundAugmenter method)

 	get_children_lists() (imgaug.augmenters.blend.BlendAlpha method)

 	(imgaug.augmenters.blend.BlendAlphaMask method)

 	(imgaug.augmenters.color.WithBrightnessChannels method)

 	(imgaug.augmenters.color.WithColorspace method)

 	(imgaug.augmenters.color.WithHueAndSaturation method)

 	(imgaug.augmenters.geometric.WithPolarWarping method)

 	(imgaug.augmenters.meta.Augmenter method)

 	(imgaug.augmenters.meta.Sequential method)

 	(imgaug.augmenters.meta.SomeOf method)

 	(imgaug.augmenters.meta.Sometimes method)

 	(imgaug.augmenters.meta.WithChannels method)

 	(imgaug.augmenters.size.KeepSizeByResize method)

 	get_column_names() (imgaug.augmentables.batches.Batch method)

 	(imgaug.augmentables.batches.UnnormalizedBatch method)

 	get_coords_array() (imgaug.augmentables.kps.KeypointsOnImage method)

 	get_corruption_names() (in module imgaug.augmenters.imgcorruptlike)

 	get_generator_state() (in module imgaug.random)

 	get_global_rng() (in module imgaug.random)

 	get_minimal_dtype() (in module imgaug.dtypes)

 	get_parameters() (imgaug.augmenters.arithmetic.Add method)

 	(imgaug.augmenters.arithmetic.AddElementwise method)

 	(imgaug.augmenters.arithmetic.Cutout method)

 	(imgaug.augmenters.arithmetic.Dropout2d method)

 	(imgaug.augmenters.arithmetic.Invert method)

 	(imgaug.augmenters.arithmetic.JpegCompression method)

 	(imgaug.augmenters.arithmetic.Multiply method)

 	(imgaug.augmenters.arithmetic.MultiplyElementwise method)

 	(imgaug.augmenters.arithmetic.ReplaceElementwise method)

 	(imgaug.augmenters.arithmetic.TotalDropout method)

 	(imgaug.augmenters.artistic.Cartoon method)

 	(imgaug.augmenters.blend.BlendAlpha method)

 	(imgaug.augmenters.blend.BlendAlphaMask method)

 	(imgaug.augmenters.blur.AverageBlur method)

 	(imgaug.augmenters.blur.BilateralBlur method)

 	(imgaug.augmenters.blur.GaussianBlur method)

 	(imgaug.augmenters.blur.MeanShiftBlur method)

 	(imgaug.augmenters.blur.MedianBlur method)

 	(imgaug.augmenters.collections.RandAugment method)

 	(imgaug.augmenters.color.AddToHueAndSaturation method)

 	(imgaug.augmenters.color.ChangeColorTemperature method)

 	(imgaug.augmenters.color.ChangeColorspace method)

 	(imgaug.augmenters.color.WithBrightnessChannels method)

 	(imgaug.augmenters.color.WithColorspace method)

 	(imgaug.augmenters.color.WithHueAndSaturation method)

 	(imgaug.augmenters.contrast.AllChannelsCLAHE method)

 	(imgaug.augmenters.contrast.AllChannelsHistogramEqualization method)

 	(imgaug.augmenters.contrast.CLAHE method)

 	(imgaug.augmenters.contrast.HistogramEqualization method)

 	(imgaug.augmenters.convolutional.Convolve method)

 	(imgaug.augmenters.debug.SaveDebugImageEveryNBatches method)

 	(imgaug.augmenters.edges.Canny method)

 	(imgaug.augmenters.flip.Fliplr method)

 	(imgaug.augmenters.flip.Flipud method)

 	(imgaug.augmenters.geometric.Affine method)

 	(imgaug.augmenters.geometric.AffineCv2 method)

 	(imgaug.augmenters.geometric.ElasticTransformation method)

 	(imgaug.augmenters.geometric.Jigsaw method)

 	(imgaug.augmenters.geometric.PerspectiveTransform method)

 	(imgaug.augmenters.geometric.PiecewiseAffine method)

 	(imgaug.augmenters.geometric.Rot90 method)

 	(imgaug.augmenters.geometric.WithPolarWarping method)

 	(imgaug.augmenters.meta.Augmenter method)

 	(imgaug.augmenters.meta.ChannelShuffle method)

 	(imgaug.augmenters.meta.ClipCBAsToImagePlanes method)

 	(imgaug.augmenters.meta.Identity method)

 	(imgaug.augmenters.meta.Lambda method)

 	(imgaug.augmenters.meta.RemoveCBAsByOutOfImageFraction method)

 	(imgaug.augmenters.meta.Sequential method)

 	(imgaug.augmenters.meta.SomeOf method)

 	(imgaug.augmenters.meta.Sometimes method)

 	(imgaug.augmenters.meta.WithChannels method)

 	(imgaug.augmenters.pillike.Affine method)

 	(imgaug.augmenters.pillike.Equalize method)

 	(imgaug.augmenters.segmentation.Superpixels method)

 	(imgaug.augmenters.segmentation.Voronoi method)

 	(imgaug.augmenters.size.CropAndPad method)

 	(imgaug.augmenters.size.CropToAspectRatio method)

 	(imgaug.augmenters.size.CropToFixedSize method)

 	(imgaug.augmenters.size.CropToMultiplesOf method)

 	(imgaug.augmenters.size.CropToPowersOf method)

 	(imgaug.augmenters.size.KeepSizeByResize method)

 	(imgaug.augmenters.size.PadToAspectRatio method)

 	(imgaug.augmenters.size.PadToFixedSize method)

 	(imgaug.augmenters.size.PadToMultiplesOf method)

 	(imgaug.augmenters.size.PadToPowersOf method)

 	(imgaug.augmenters.size.Resize method)

 	(imgaug.augmenters.weather.CloudLayer method)

 	(imgaug.augmenters.weather.FastSnowyLandscape method)

 	(imgaug.augmenters.weather.SnowflakesLayer method)

 	
 	get_pointwise_inside_image_mask() (imgaug.augmentables.lines.LineString method)

 	get_value_range_of_dtype() (in module imgaug.dtypes)

 	GlassBlur (class in imgaug.augmenters.imgcorruptlike)

 	GRAY (imgaug.augmenters.color.ChangeColorspace attribute)

 	Grayscale (class in imgaug.augmenters.color)

 	gumbel() (imgaug.random.RNG method)

H

 	
 	handle_categorical_string_param() (in module imgaug.parameters)

 	handle_children_list() (in module imgaug.augmenters.meta)

 	handle_continuous_param() (in module imgaug.parameters)

 	handle_discrete_kernel_size_param() (in module imgaug.parameters)

 	handle_discrete_param() (in module imgaug.parameters)

 	handle_probability_param() (in module imgaug.parameters)

 	heatmaps (imgaug.augmentables.batches.Batch attribute)

 	HeatmapsOnImage (class in imgaug.augmentables.heatmaps)

 	HeatmapsOnImage() (in module imgaug.imgaug)

 	height (imgaug.augmentables.bbs.BoundingBox attribute)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage attribute)

 	(imgaug.augmentables.kps.KeypointsOnImage attribute)

 	(imgaug.augmentables.lines.LineString attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

 	
 	HistogramEqualization (class in imgaug.augmenters.contrast)

 	HLS (imgaug.augmenters.color.ChangeColorspace attribute)

 	(imgaug.augmenters.contrast.CLAHE attribute)

 	(imgaug.augmenters.contrast.HistogramEqualization attribute)

 	HooksHeatmaps (class in imgaug.imgaug)

 	HooksImages (class in imgaug.imgaug)

 	HooksKeypoints (class in imgaug.imgaug)

 	HorizontalFlip() (in module imgaug.augmenters.flip)

 	HorizontalLinearGradientMaskGen (class in imgaug.augmenters.blend)

 	HSV (imgaug.augmenters.color.ChangeColorspace attribute)

 	(imgaug.augmenters.contrast.CLAHE attribute)

 	(imgaug.augmenters.contrast.HistogramEqualization attribute)

 	hypergeometric() (imgaug.random.RNG method)

I

 	
 	IAugmentable (class in imgaug.augmentables.base)

 	IBatchwiseMaskGenerator (class in imgaug.augmenters.blend)

 	IBinaryImageColorizer (class in imgaug.augmenters.edges)

 	Identity (class in imgaug.augmenters.meta)

 	images (imgaug.augmentables.batches.Batch attribute)

 	imap_batches() (imgaug.multicore.Pool method)

 	imap_batches_unordered() (imgaug.multicore.Pool method)

 	imgaug.augmentables.base (module)

 	imgaug.augmentables.batches (module)

 	imgaug.augmentables.bbs (module)

 	imgaug.augmentables.heatmaps (module)

 	imgaug.augmentables.kps (module)

 	imgaug.augmentables.lines (module)

 	imgaug.augmentables.normalization (module)

 	imgaug.augmentables.polys (module)

 	imgaug.augmentables.segmaps (module)

 	imgaug.augmentables.utils (module)

 	imgaug.augmenters.arithmetic (module)

 	imgaug.augmenters.artistic (module)

 	imgaug.augmenters.base (module)

 	imgaug.augmenters.blend (module)

 	imgaug.augmenters.blur (module)

 	imgaug.augmenters.collections (module)

 	imgaug.augmenters.color (module)

 	imgaug.augmenters.contrast (module)

 	imgaug.augmenters.convolutional (module)

 	imgaug.augmenters.debug (module)

 	imgaug.augmenters.edges (module)

 	imgaug.augmenters.flip (module)

 	imgaug.augmenters.geometric (module)

 	imgaug.augmenters.imgcorruptlike (module)

 	imgaug.augmenters.meta (module)

 	imgaug.augmenters.pillike (module)

 	imgaug.augmenters.pooling (module)

 	imgaug.augmenters.segmentation (module)

 	imgaug.augmenters.size (module)

 	imgaug.augmenters.weather (module)

 	imgaug.dtypes (module)

 	imgaug.imgaug (module)

 	imgaug.multicore (module)

 	imgaug.parameters (module)

 	imgaug.random (module)

 	imgaug.validation (module)

 	ImpulseNoise (class in imgaug.augmenters.arithmetic)

 	(class in imgaug.augmenters.imgcorruptlike)

 	imresize_many_images() (in module imgaug.imgaug)

 	imresize_single_image() (in module imgaug.imgaug)

 	imshow() (in module imgaug.imgaug)

 	InColorspace() (in module imgaug.augmenters.color)

 	increase_array_resolutions_() (in module imgaug.dtypes)

 	increase_itemsize_of_dtype() (in module imgaug.dtypes)

 	integers() (imgaug.random.RNG method)

 	interpolate_point_pair() (in module imgaug.augmentables.utils)

 	interpolate_points() (in module imgaug.augmentables.utils)

 	
 	interpolate_points_by_max_distance() (in module imgaug.augmentables.utils)

 	intersection() (imgaug.augmentables.bbs.BoundingBox method)

 	Invert (class in imgaug.augmenters.arithmetic)

 	invert() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(in module imgaug.augmenters.arithmetic)

 	invert_() (in module imgaug.augmenters.arithmetic)

 	invert_convert_cbaois_to_kpsois_() (in module imgaug.augmentables.utils)

 	invert_normalize_bounding_boxes() (in module imgaug.augmentables.normalization)

 	invert_normalize_heatmaps() (in module imgaug.augmentables.normalization)

 	invert_normalize_images() (in module imgaug.augmentables.normalization)

 	invert_normalize_keypoints() (in module imgaug.augmentables.normalization)

 	invert_normalize_line_strings() (in module imgaug.augmentables.normalization)

 	invert_normalize_polygons() (in module imgaug.augmentables.normalization)

 	invert_normalize_segmentation_maps() (in module imgaug.augmentables.normalization)

 	invert_reduce_to_nonempty() (in module imgaug.augmenters.meta)

 	invert_to_keypoints_on_image_() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	InvertMaskGen (class in imgaug.augmenters.blend)

 	iou() (imgaug.augmentables.bbs.BoundingBox method)

 	IPointsSampler (class in imgaug.augmenters.segmentation)

 	is_activated() (imgaug.imgaug.HooksImages method)

 	is_callable() (in module imgaug.imgaug)

 	is_float_array() (in module imgaug.imgaug)

 	is_fully_within_image() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	is_generator() (in module imgaug.imgaug)

 	is_generator_equal_to() (in module imgaug.random)

 	is_global_rng() (imgaug.random.RNG method)

 	is_integer_array() (in module imgaug.imgaug)

 	is_iterable() (in module imgaug.imgaug)

 	is_iterable_of() (in module imgaug.validation)

 	is_np_array() (in module imgaug.imgaug)

 	is_np_scalar() (in module imgaug.imgaug)

 	is_out_of_image() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	is_partly_within_image() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	is_propagating() (imgaug.imgaug.HooksImages method)

 	is_single_bool() (in module imgaug.imgaug)

 	is_single_float() (in module imgaug.imgaug)

 	is_single_integer() (in module imgaug.imgaug)

 	is_single_number() (in module imgaug.imgaug)

 	is_string() (in module imgaug.imgaug)

 	is_valid (imgaug.augmentables.polys.Polygon attribute)

 	items (imgaug.augmentables.bbs.BoundingBoxesOnImage attribute)

 	(imgaug.augmentables.kps.KeypointsOnImage attribute)

 	(imgaug.augmentables.lines.LineStringsOnImage attribute)

 	(imgaug.augmentables.polys.PolygonsOnImage attribute)

 	IterativeNoiseAggregator (class in imgaug.parameters)

J

 	
 	Jigsaw (class in imgaug.augmenters.geometric)

 	join() (imgaug.multicore.Pool method)

 	
 	JpegCompression (class in imgaug.augmenters.arithmetic)

 	(class in imgaug.augmenters.imgcorruptlike)

K

 	
 	KeepSizeByResize (class in imgaug.augmenters.size)

 	Keypoint (class in imgaug.augmentables.kps)

 	Keypoint() (in module imgaug.imgaug)

 	KEYPOINT_AUG_ALPHA_THRESH (imgaug.augmenters.geometric.ElasticTransformation attribute)

 	
 	KEYPOINT_AUG_SIGMA_THRESH (imgaug.augmenters.geometric.ElasticTransformation attribute)

 	keypoints (imgaug.augmentables.batches.Batch attribute)

 	KeypointsOnImage (class in imgaug.augmentables.kps)

 	KeypointsOnImage() (in module imgaug.imgaug)

 	KMeansColorQuantization (class in imgaug.augmenters.color)

L

 	
 	Lab (imgaug.augmenters.color.ChangeColorspace attribute)

 	(imgaug.augmenters.contrast.CLAHE attribute)

 	(imgaug.augmenters.contrast.HistogramEqualization attribute)

 	Lambda (class in imgaug.augmenters.meta)

 	Laplace (class in imgaug.parameters)

 	laplace() (imgaug.random.RNG method)

 	length (imgaug.augmentables.lines.LineString attribute)

 	LinearContrast (class in imgaug.augmenters.contrast)

 	
 	LineString (class in imgaug.augmentables.lines)

 	LineStringsOnImage (class in imgaug.augmentables.lines)

 	localize_random_state() (imgaug.augmenters.meta.Augmenter method)

 	localize_random_state_() (imgaug.augmenters.meta.Augmenter method)

 	LogContrast (class in imgaug.augmenters.contrast)

 	logistic() (imgaug.random.RNG method)

 	lognormal() (imgaug.random.RNG method)

 	logseries() (imgaug.random.RNG method)

 	Luv (imgaug.augmenters.color.ChangeColorspace attribute)

M

 	
 	map_batches() (imgaug.multicore.Pool method)

 	map_batches_async() (imgaug.multicore.Pool method)

 	max_pool() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(in module imgaug.imgaug)

 	MaxPooling (class in imgaug.augmenters.pooling)

 	MeanShiftBlur (class in imgaug.augmenters.blur)

 	median_pool() (in module imgaug.imgaug)

 	MedianBlur (class in imgaug.augmenters.blur)

 	MedianPooling (class in imgaug.augmenters.pooling)

 	min_pool() (in module imgaug.imgaug)

 	MinPooling (class in imgaug.augmenters.pooling)

 	MotionBlur (class in imgaug.augmenters.blur)

 	(class in imgaug.augmenters.imgcorruptlike)

 	
 	multinomial() (imgaug.random.RNG method)

 	Multiply (class in imgaug.augmenters.arithmetic)

 	(class in imgaug.parameters)

 	multiply_elementwise() (in module imgaug.augmenters.arithmetic)

 	multiply_scalar() (in module imgaug.augmenters.arithmetic)

 	MultiplyAndAddToBrightness (class in imgaug.augmenters.color)

 	MultiplyBrightness (class in imgaug.augmenters.color)

 	MultiplyElementwise (class in imgaug.augmenters.arithmetic)

 	MultiplyHue (class in imgaug.augmenters.color)

 	MultiplyHueAndSaturation (class in imgaug.augmenters.color)

 	MultiplySaturation (class in imgaug.augmenters.color)

 	MultiPolygon (class in imgaug.augmentables.polys)

 	MultiPolygon() (in module imgaug.imgaug)

 	multivariate_normal() (imgaug.random.RNG method)

N

 	
 	n_colors (imgaug.augmenters.color.KMeansColorQuantization attribute)

 	(imgaug.augmenters.color.UniformColorQuantization attribute)

 	nb_cols (imgaug.augmenters.blend.CheckerboardMaskGen attribute)

 	NB_NEIGHBOURING_KEYPOINTS (imgaug.augmenters.geometric.ElasticTransformation attribute)

 	nb_rows (imgaug.augmenters.blend.CheckerboardMaskGen attribute)

 	Negative() (in module imgaug.parameters)

 	negative_binomial() (imgaug.random.RNG method)

 	NEIGHBOURING_KEYPOINTS_DISTANCE (imgaug.augmenters.geometric.ElasticTransformation attribute)

 	new_random_state() (in module imgaug.imgaug)

 	NO_RESIZE (imgaug.augmenters.size.KeepSizeByResize attribute)

 	noncentral_chisquare() (imgaug.random.RNG method)

 	noncentral_f() (imgaug.random.RNG method)

 	Noop (class in imgaug.augmenters.meta)

 	Normal (class in imgaug.parameters)

 	
 	normal() (imgaug.random.RNG method)

 	normalize_bounding_boxes() (in module imgaug.augmentables.normalization)

 	normalize_dtype() (in module imgaug.dtypes)

 	normalize_dtypes() (in module imgaug.dtypes)

 	normalize_generator() (in module imgaug.random)

 	normalize_generator_() (in module imgaug.random)

 	normalize_heatmaps() (in module imgaug.augmentables.normalization)

 	normalize_images() (in module imgaug.augmentables.normalization)

 	normalize_keypoints() (in module imgaug.augmentables.normalization)

 	normalize_line_strings() (in module imgaug.augmentables.normalization)

 	normalize_polygons() (in module imgaug.augmentables.normalization)

 	normalize_random_state() (in module imgaug.imgaug)

 	normalize_segmentation_maps() (in module imgaug.augmentables.normalization)

 	normalize_shape() (in module imgaug.augmentables.utils)

O

 	
 	on() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	
 	on_() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	OneOf (class in imgaug.augmenters.meta)

P

 	
 	Pad (class in imgaug.augmenters.size)

 	pad() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	(in module imgaug.augmenters.size)

 	(in module imgaug.imgaug)

 	pad_to_aspect_ratio() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	(in module imgaug.augmenters.size)

 	(in module imgaug.imgaug)

 	pad_to_multiples_of() (in module imgaug.augmenters.size)

 	(in module imgaug.imgaug)

 	PadToAspectRatio (class in imgaug.augmenters.size)

 	PadToFixedSize (class in imgaug.augmenters.size)

 	PadToMultiplesOf (class in imgaug.augmenters.size)

 	PadToPowersOf (class in imgaug.augmenters.size)

 	PadToSquare (class in imgaug.augmenters.size)

 	pareto() (imgaug.random.RNG method)

 	Pepper (class in imgaug.augmenters.arithmetic)

 	permutation() (imgaug.random.RNG method)

 	PerspectiveTransform (class in imgaug.augmenters.geometric)

 	PiecewiseAffine (class in imgaug.augmenters.geometric)

 	Pixelate (class in imgaug.augmenters.imgcorruptlike)

 	Poisson (class in imgaug.parameters)

 	poisson() (imgaug.random.RNG method)

 	polyfill_integers() (in module imgaug.random)

 	polyfill_random() (in module imgaug.random)

 	Polygon (class in imgaug.augmentables.polys)

 	
 	Polygon() (in module imgaug.imgaug)

 	PolygonsOnImage (class in imgaug.augmentables.polys)

 	PolygonsOnImage() (in module imgaug.imgaug)

 	Pool (class in imgaug.multicore)

 	pool (imgaug.multicore.Pool attribute)

 	pool() (imgaug.augmenters.meta.Augmenter method)

 	(in module imgaug.imgaug)

 	Positive() (in module imgaug.parameters)

 	Posterize (class in imgaug.augmenters.color)

 	(class in imgaug.augmenters.pillike)

 	posterize() (in module imgaug.augmenters.color)

 	(in module imgaug.augmenters.pillike)

 	posterize_() (in module imgaug.augmenters.pillike)

 	postprocess() (imgaug.imgaug.HooksImages method)

 	Power (class in imgaug.parameters)

 	power() (imgaug.random.RNG method)

 	preprocess() (imgaug.imgaug.HooksImages method)

 	project() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	project_() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	project_coords() (in module imgaug.augmentables.utils)

 	project_coords_() (in module imgaug.augmentables.utils)

 	promote_array_dtypes_() (in module imgaug.dtypes)

Q

 	
 	quantize_colors_kmeans() (in module imgaug.augmenters.color)

 	quantize_colors_uniform() (in module imgaug.augmenters.color)

 	quantize_kmeans() (in module imgaug.augmenters.color)

 	quantize_uniform() (in module imgaug.augmenters.color)

 	quantize_uniform_() (in module imgaug.augmenters.color)

 	quantize_uniform_to_n_bits() (in module imgaug.augmenters.color)

 	quantize_uniform_to_n_bits_() (in module imgaug.augmenters.color)

 	
 	quokka() (in module imgaug.imgaug)

 	quokka_bounding_boxes() (in module imgaug.imgaug)

 	quokka_heatmap() (in module imgaug.imgaug)

 	quokka_keypoints() (in module imgaug.imgaug)

 	quokka_polygons() (in module imgaug.imgaug)

 	quokka_segmentation_map() (in module imgaug.imgaug)

 	quokka_square() (in module imgaug.imgaug)

R

 	
 	Rain (class in imgaug.augmenters.weather)

 	RainLayer (class in imgaug.augmenters.weather)

 	rand() (imgaug.random.RNG method)

 	RandAugment (class in imgaug.augmenters.collections)

 	randint() (imgaug.random.RNG method)

 	randn() (imgaug.random.RNG method)

 	random() (imgaug.random.RNG method)

 	random_integers() (imgaug.random.RNG method)

 	random_sample() (imgaug.random.RNG method)

 	RandomColorsBinaryImageColorizer (class in imgaug.augmenters.edges)

 	RandomSign (class in imgaug.parameters)

 	rayleigh() (imgaug.random.RNG method)

 	recover_psois_() (in module imgaug.augmentables.polys)

 	reduce_to_nonempty() (in module imgaug.augmenters.meta)

 	RegularGridMaskGen (class in imgaug.augmenters.blend)

 	RegularGridPointsSampler (class in imgaug.augmenters.segmentation)

 	RegularGridVoronoi (class in imgaug.augmenters.segmentation)

 	RelativeRegularGridPointsSampler (class in imgaug.augmenters.segmentation)

 	RelativeRegularGridVoronoi (class in imgaug.augmenters.segmentation)

 	remove_augmenters() (imgaug.augmenters.meta.Augmenter method)

 	remove_augmenters_() (imgaug.augmenters.meta.Augmenter method)

 	remove_augmenters_inplace() (imgaug.augmenters.meta.Augmenter method)

 	remove_out_of_image() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	remove_out_of_image_() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	
 	remove_out_of_image_fraction() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	remove_out_of_image_fraction_() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	RemoveCBAsByOutOfImageFraction (class in imgaug.augmenters.meta)

 	RemoveSaturation (class in imgaug.augmenters.color)

 	replace_elementwise_() (in module imgaug.augmenters.arithmetic)

 	ReplaceElementwise (class in imgaug.augmenters.arithmetic)

 	reseed() (imgaug.augmenters.meta.Augmenter method)

 	reset_cache_() (imgaug.random.RNG method)

 	reset_generator_cache_() (in module imgaug.random)

 	Resize (class in imgaug.augmenters.size)

 	resize() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	restore_dtype_and_merge() (in module imgaug.augmentables.normalization)

 	restore_dtypes_() (in module imgaug.dtypes)

 	RGB (imgaug.augmenters.color.ChangeColorspace attribute)

 	(imgaug.augmenters.contrast.CLAHE attribute)

 	(imgaug.augmenters.contrast.HistogramEqualization attribute)

 	RNG (class in imgaug.random)

 	Rot90 (class in imgaug.augmenters.geometric)

 	Rotate (class in imgaug.augmenters.geometric)

S

 	
 	Salt (class in imgaug.augmenters.arithmetic)

 	SaltAndPepper (class in imgaug.augmenters.arithmetic)

 	SAME_AS_IMAGES (imgaug.augmenters.size.KeepSizeByResize attribute)

 	sample_points() (imgaug.augmenters.segmentation.DropoutPointsSampler method)

 	(imgaug.augmenters.segmentation.IPointsSampler method)

 	(imgaug.augmenters.segmentation.RegularGridPointsSampler method)

 	(imgaug.augmenters.segmentation.RelativeRegularGridPointsSampler method)

 	(imgaug.augmenters.segmentation.SubsamplingPointsSampler method)

 	(imgaug.augmenters.segmentation.UniformPointsSampler method)

 	Saturate (class in imgaug.augmenters.imgcorruptlike)

 	SaveDebugImageEveryNBatches (class in imgaug.augmenters.debug)

 	scale() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	(imgaug.augmentables.segmaps.SegmentationMapsOnImage method)

 	Scale() (in module imgaug.augmenters.size)

 	ScaleX (class in imgaug.augmenters.geometric)

 	ScaleY (class in imgaug.augmenters.geometric)

 	seed() (in module imgaug.imgaug)

 	(in module imgaug.random)

 	seed_() (imgaug.augmenters.meta.Augmenter method)

 	SegMapClassIdsMaskGen (class in imgaug.augmenters.blend)

 	segment_voronoi() (in module imgaug.augmenters.segmentation)

 	segmentation_maps (imgaug.augmentables.batches.Batch attribute)

 	SegmentationMapOnImage() (in module imgaug.augmentables.segmaps)

 	SegmentationMapsOnImage (class in imgaug.augmentables.segmaps)

 	SegmentationMapsOnImage() (in module imgaug.imgaug)

 	Sequential (class in imgaug.augmenters.meta)

 	set_generator_state_() (in module imgaug.random)

 	set_state_() (imgaug.random.RNG method)

 	Sharpen (class in imgaug.augmenters.convolutional)

 	ShearX (class in imgaug.augmenters.geometric)

 	ShearY (class in imgaug.augmenters.geometric)

 	shift() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	shift_() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.Keypoint method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	
 	ShotNoise (class in imgaug.augmenters.imgcorruptlike)

 	show_distributions_grid() (in module imgaug.parameters)

 	show_grid() (imgaug.augmenters.meta.Augmenter method)

 	(in module imgaug.imgaug)

 	shuffle() (imgaug.random.RNG method)

 	shuffle_channels() (in module imgaug.augmenters.meta)

 	Sigmoid (class in imgaug.parameters)

 	SigmoidContrast (class in imgaug.augmenters.contrast)

 	SimplexNoise (class in imgaug.parameters)

 	SimplexNoiseAlpha() (in module imgaug.augmenters.blend)

 	Snow (class in imgaug.augmenters.imgcorruptlike)

 	Snowflakes (class in imgaug.augmenters.weather)

 	SnowflakesLayer (class in imgaug.augmenters.weather)

 	Solarize (class in imgaug.augmenters.arithmetic)

 	(class in imgaug.augmenters.pillike)

 	solarize() (in module imgaug.augmenters.arithmetic)

 	(in module imgaug.augmenters.pillike)

 	solarize_() (in module imgaug.augmenters.arithmetic)

 	(in module imgaug.augmenters.pillike)

 	SomeColorsMaskGen (class in imgaug.augmenters.blend)

 	SomeOf (class in imgaug.augmenters.meta)

 	Sometimes (class in imgaug.augmenters.meta)

 	Spatter (class in imgaug.augmenters.imgcorruptlike)

 	SpeckleNoise (class in imgaug.augmenters.imgcorruptlike)

 	standard_cauchy() (imgaug.random.RNG method)

 	standard_exponential() (imgaug.random.RNG method)

 	standard_gamma() (imgaug.random.RNG method)

 	standard_normal() (imgaug.random.RNG method)

 	standard_t() (imgaug.random.RNG method)

 	state (imgaug.random.RNG attribute)

 	StochasticParameter (class in imgaug.parameters)

 	StochasticParameterMaskGen (class in imgaug.augmenters.blend)

 	stylize_cartoon() (in module imgaug.augmenters.artistic)

 	subdivide() (imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	subdivide_() (imgaug.augmentables.polys.Polygon method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	SubsamplingPointsSampler (class in imgaug.augmenters.segmentation)

 	Subtract (class in imgaug.parameters)

 	Superpixels (class in imgaug.augmenters.segmentation)

 	supports_new_numpy_rng_style() (in module imgaug.random)

 	SuspiciousMultiImageShapeWarning

 	SuspiciousSingleImageShapeWarning

T

 	
 	temporary_numpy_seed (class in imgaug.random)

 	terminate() (imgaug.multicore.BackgroundAugmenter method)

 	(imgaug.multicore.BatchLoader method)

 	(imgaug.multicore.Pool method)

 	to_batch_in_augmentation() (imgaug.augmentables.batches.Batch method)

 	to_bounding_box() (imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	to_deterministic() (imgaug.augmenters.meta.Augmenter method)

 	to_distance_maps() (imgaug.augmentables.kps.KeypointsOnImage method)

 	to_heatmap() (imgaug.augmentables.lines.LineString method)

 	to_keypoint_image() (imgaug.augmentables.kps.KeypointsOnImage method)

 	to_keypoints() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.lines.LineString method)

 	(imgaug.augmentables.polys.Polygon method)

 	to_keypoints_on_image() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	to_line_string() (imgaug.augmentables.polys.Polygon method)

 	to_normalized_batch() (imgaug.augmentables.batches.Batch method)

 	(imgaug.augmentables.batches.UnnormalizedBatch method)

 	
 	to_polygon() (imgaug.augmentables.bbs.BoundingBox method)

 	(imgaug.augmentables.lines.LineString method)

 	to_polygons_on_image() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	to_segmentation_map() (imgaug.augmentables.lines.LineString method)

 	to_shapely_line_string() (imgaug.augmentables.polys.Polygon method)

 	to_shapely_polygon() (imgaug.augmentables.polys.Polygon method)

 	to_uint8() (imgaug.augmentables.heatmaps.HeatmapsOnImage method)

 	to_xy_array() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	(imgaug.augmentables.kps.KeypointsOnImage method)

 	(imgaug.augmentables.lines.LineStringsOnImage method)

 	(imgaug.augmentables.polys.PolygonsOnImage method)

 	to_xy_arrays() (imgaug.augmentables.lines.LineStringsOnImage method)

 	to_xyxy_array() (imgaug.augmentables.bbs.BoundingBoxesOnImage method)

 	tomaxint() (imgaug.random.RNG method)

 	TotalDropout (class in imgaug.augmenters.arithmetic)

 	TranslateX (class in imgaug.augmenters.geometric)

 	TranslateY (class in imgaug.augmenters.geometric)

 	triangular() (imgaug.random.RNG method)

 	TruncatedNormal (class in imgaug.parameters)

U

 	
 	Uniform (class in imgaug.parameters)

 	uniform() (imgaug.random.RNG method)

 	UniformColorQuantization (class in imgaug.augmenters.color)

 	UniformColorQuantizationToNBits (class in imgaug.augmenters.color)

 	
 	UniformPointsSampler (class in imgaug.augmenters.segmentation)

 	UniformVoronoi (class in imgaug.augmenters.segmentation)

 	union() (imgaug.augmentables.bbs.BoundingBox method)

 	UnnormalizedBatch (class in imgaug.augmentables.batches)

 	use_state_of_() (imgaug.random.RNG method)

V

 	
 	VerticalFlip() (in module imgaug.augmenters.flip)

 	VerticalLinearGradientMaskGen (class in imgaug.augmenters.blend)

 	
 	vonmises() (imgaug.random.RNG method)

 	Voronoi (class in imgaug.augmenters.segmentation)

W

 	
 	wald() (imgaug.random.RNG method)

 	warn() (in module imgaug.imgaug)

 	warn_deprecated() (in module imgaug.imgaug)

 	warp_affine() (in module imgaug.augmenters.pillike)

 	warpPolarCoords() (imgaug.augmenters.geometric.WithPolarWarping class method)

 	Weibull (class in imgaug.parameters)

 	weibull() (imgaug.random.RNG method)

 	width (imgaug.augmentables.bbs.BoundingBox attribute)

 	(imgaug.augmentables.bbs.BoundingBoxesOnImage attribute)

 	(imgaug.augmentables.kps.KeypointsOnImage attribute)

 	(imgaug.augmentables.lines.LineString attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

 	
 	WithBrightnessChannels (class in imgaug.augmenters.color)

 	WithChannels (class in imgaug.augmenters.meta)

 	WithColorspace (class in imgaug.augmenters.color)

 	WithHueAndSaturation (class in imgaug.augmenters.color)

 	WithPolarWarping (class in imgaug.augmenters.geometric)

X

 	
 	x1_int (imgaug.augmentables.bbs.BoundingBox attribute)

 	x2_int (imgaug.augmentables.bbs.BoundingBox attribute)

 	x_int (imgaug.augmentables.kps.Keypoint attribute)

 	xx (imgaug.augmentables.lines.LineString attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

 	
 	xx_int (imgaug.augmentables.lines.LineString attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

 	xy (imgaug.augmentables.kps.Keypoint attribute)

 	xy_int (imgaug.augmentables.kps.Keypoint attribute)

Y

 	
 	y1_int (imgaug.augmentables.bbs.BoundingBox attribute)

 	y2_int (imgaug.augmentables.bbs.BoundingBox attribute)

 	y_int (imgaug.augmentables.kps.Keypoint attribute)

 	YCrCb (imgaug.augmenters.color.ChangeColorspace attribute)

 	
 	yy (imgaug.augmentables.lines.LineString attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

 	yy_int (imgaug.augmentables.lines.LineString attribute)

 	(imgaug.augmentables.polys.Polygon attribute)

Z

 	
 	zipf() (imgaug.random.RNG method)

 	
 	ZoomBlur (class in imgaug.augmenters.imgcorruptlike)

 _images/blendalphasomecolors_saturation.jpg

_images/blendalphasomecolors_total_dropout.jpg

_images/blendalphasomecolors_pooling_2_bins.jpg

_images/blendalphasomecolors_pooling_bgr.jpg

_images/blendalphaverticallineargradient_clouds.jpg

_images/blendalphaverticallineargradient_hue.jpg

_images/blendalphasomecolors_grayscale.jpg

_images/blendalphasomecolors_pooling.jpg

_images/blendalphasimplexnoise_nearest.jpg

_images/blendalphasimplexnoise_sigmoid_thresh_normal.jpg

_images/arithmetic_power.jpg

_images/arr_small.jpg

_images/arithmetic_divide.jpg

_images/arithmetic_multiply.jpg

_images/averageblur.jpg

_images/averageblur_mixed.jpg
o

s
K
-

it

£
E
E
-

£
E
E
o

")

.
g
4
-

_images/array.jpg

_images/autocontrast.jpg

_images/averagepooling.jpg

_images/averagepooling_choice.jpg

_images/bilateralblur.jpg
ey

—

—

ottt

_images/blendalpha_050_grayscale.jpg

_images/averagepooling_uniform.jpg

_images/averagepooling_unsymmetric.jpg

_images/blendalpha_uniform_factor.jpg

_images/blendalpha_with_choice.jpg

_images/blendalpha_affine_per_channel.jpg

_images/blendalpha_two_branches.jpg

_images/blendalphaboundingboxes_multiply_background.jpg

_images/averagepooling_keep_size_false.jpg

_images/blendalphaelementwise_uniform_factor.jpg

_images/blendalphaelementwise_with_choice.jpg

_images/blendalphaelementwise_affine_per_channel.jpg

_images/blendalphaelementwise_two_branches.jpg

_images/blendalphafrequencynoise_linear.jpg

_images/blendalphafrequencynoise_nearest.jpg

_images/blendalphafrequencynoise.jpg

_images/blendalphafrequencynoise_clouds.jpg

_images/blendalphacheckerboard_hue.jpg

_images/blendalphaelementwise_050_grayscale.jpg

_images/blendalpharegulargrid_multiply.jpg

_images/blendalpharegulargrid_two_branches.jpg

_images/blendalphahorizontallineargradient_total_dropout.jpg

_images/blendalphamask.jpg

_images/blendalphasimplexnoise_linear.jpg

_images/blendalphasegmapclassids_hue.jpg

_images/blendalphasimplexnoise.jpg

_images/blendalphahorizontallineargradient_hue.jpg

_images/blendalphahorizontallineargradient_pooling.jpg

_images/blendalphafrequencynoise_sigmoid_thresh_normal.jpg

nav.xhtml

 Table of Contents

 		
 imgaug

 		
 Installation

 		
 Installation in Anaconda

 		
 Installation in pip

 		
 Uninstall

 		
 Examples: Basics

 		
 A standard use case

 		
 A simple and common augmentation sequence

 		
 Heavy Augmentations

 		
 Examples: Keypoints

 		
 Notebook

 		
 A simple example

 		
 Examples: Bounding Boxes

 		
 Notebook

 		
 A simple example

 		
 Dealing with bounding boxes outside of the image

 		
 Shifting/Moving Bounding Boxes

 		
 Projection of BBs Onto Rescaled Images

 		
 Computing Intersections, Unions and IoUs

 		
 Examples: Heatmaps

 		
 Notebook

 		
 A simple example

 		
 Multiple sub-heatmaps per heatmaps object

 		
 Accessing the heatmap array

 		
 Resizing heatmaps

 		
 Padding heatmaps

 		
 Examples: Segmentation Maps and Masks

 		
 Notebook

 		
 A simple example

 		
 Using boolean masks

 		
 Accessing the segmentation map array

 		
 Resizing and padding

 		
 Stochastic Parameters

 		
 Introduction

 		
 Continuous Probability Distributions

 		
 Discrete Probability Distributions

 		
 Arithmetic

 		
 Special Parameters

 		
 Noise Parameters

 		
 Blending/Overlaying images

 		
 Introduction

 		
 Imagewise Constant Alphas Values

 		
 BlendAlphaSimplexNoise

 		
 FrequencyNoiseAlpha

 		
 IterativeNoiseAggregator

 		
 Sigmoid

 		
 Overview of Augmenters

 		
 augmenters.meta

 		
 Sequential

 		
 SomeOf

 		
 OneOf

 		
 Sometimes

 		
 WithChannels

 		
 Identity

 		
 Noop

 		
 Lambda

 		
 AssertLambda

 		
 AssertShape

 		
 ChannelShuffle

 		
 RemoveCBAsByOutOfImageFraction

 		
 ClipCBAsToImagePlanes

 		
 augmenters.arithmetic

 		
 Add

 		
 AddElementwise

 		
 AdditiveGaussianNoise

 		
 AdditiveLaplaceNoise

 		
 AdditivePoissonNoise

 		
 Multiply

 		
 MultiplyElementwise

 		
 Cutout

 		
 Dropout

 		
 CoarseDropout

 		
 Dropout2D

 		
 TotalDropout

 		
 ReplaceElementwise

 		
 ImpulseNoise

 		
 SaltAndPepper

 		
 CoarseSaltAndPepper

 		
 Salt

 		
 CoarseSalt

 		
 Pepper

 		
 CoarsePepper

 		
 Invert

 		
 Solarize

 		
 JpegCompression

 		
 augmenters.artistic

 		
 Cartoon

 		
 augmenters.blend

 		
 BlendAlpha

 		
 BlendAlphaMask

 		
 BlendAlphaElementwise

 		
 BlendAlphaSimplexNoise

 		
 BlendAlphaFrequencyNoise

 		
 BlendAlphaSomeColors

 		
 BlendAlphaHorizontalLinearGradient

 		
 BlendAlphaVerticalLinearGradient

 		
 BlendAlphaRegularGrid

 		
 BlendAlphaCheckerboard

 		
 BlendAlphaSegMapClassIds

 		
 BlendAlphaBoundingBoxes

 		
 augmenters.blur

 		
 GaussianBlur

 		
 AverageBlur

 		
 MedianBlur

 		
 BilateralBlur

 		
 MotionBlur

 		
 MeanShiftBlur

 		
 augmenters.collections

 		
 RandAugment

 		
 augmenters.color

 		
 WithColorspace

 		
 WithBrightnessChannels

 		
 MultiplyAndAddToBrightness

 		
 MultiplyBrightness

 		
 AddToBrightness

 		
 WithHueAndSaturation

 		
 MultiplyHueAndSaturation

 		
 MultiplyHue

 		
 MultiplySaturation

 		
 RemoveSaturation

 		
 AddToHueAndSaturation

 		
 AddToHue

 		
 AddToSaturation

 		
 ChangeColorspace

 		
 Grayscale

 		
 ChangeColorTemperature

 		
 KMeansColorQuantization

 		
 UniformColorQuantization

 		
 UniformColorQuantizationToNBits

 		
 Posterize

 		
 augmenters.contrast

 		
 GammaContrast

 		
 SigmoidContrast

 		
 LogContrast

 		
 LinearContrast

 		
 AllChannelsCLAHE

 		
 CLAHE

 		
 AllChannelsHistogramEqualization

 		
 HistogramEqualization

 		
 augmenters.convolutional

 		
 Convolve

 		
 Sharpen

 		
 Emboss

 		
 EdgeDetect

 		
 DirectedEdgeDetect

 		
 augmenters.debug

 		
 SaveDebugImageEveryNBatches

 		
 augmenters.edges

 		
 Canny

 		
 augmenters.flip

 		
 HorizontalFlip

 		
 VericalFlip

 		
 Fliplr

 		
 Flipud

 		
 augmenters.geometric

 		
 Affine

 		
 ScaleX

 		
 ScaleY

 		
 TranslateX

 		
 TranslateY

 		
 Rotate

 		
 ShearX

 		
 ShearY

 		
 PiecewiseAffine

 		
 PerspectiveTransform

 		
 ElasticTransformation

 		
 Rot90

 		
 WithPolarWarping

 		
 Jigsaw

 		
 augmenters.imgcorruptlike

 		
 GaussianNoise

 		
 ShotNoise

 		
 ImpulseNoise

 		
 SpeckleNoise

 		
 GaussianBlur

 		
 GlassBlur

 		
 DefocusBlur

 		
 MotionBlur

 		
 ZoomBlur

 		
 Fog

 		
 Frost

 		
 Snow

 		
 Spatter

 		
 Contrast

 		
 Brightness

 		
 Saturate

 		
 JpegCompression

 		
 Pixelate

 		
 ElasticTransform

 		
 augmenters.pillike

 		
 Solarize

 		
 Posterize

 		
 Equalize

 		
 Autocontrast

 		
 EnhanceColor

 		
 EnhanceContrast

 		
 EnhanceBrightness

 		
 EnhanceSharpness

 		
 FilterBlur

 		
 FilterSmooth

 		
 FilterSmoothMore

 		
 FilterEdgeEnhance

 		
 FilterEdgeEnhanceMore

 		
 FilterFindEdges

 		
 FilterContour

 		
 FilterEmboss

 		
 FilterSharpen

 		
 FilterDetail

 		
 Affine

 		
 augmenters.pooling

 		
 AveragePooling

 		
 MaxPooling

 		
 MinPooling

 		
 MedianPooling

 		
 augmenters.segmentation

 		
 Superpixels

 		
 Voronoi

 		
 UniformVoronoi

 		
 RegularGridVoronoi

 		
 RelativeRegularGridVoronoi

 		
 augmenters.size

 		
 Resize

 		
 CropAndPad

 		
 Pad

 		
 Crop

 		
 PadToFixedSize

 		
 CropToFixedSize

 		
 PadToMultiplesOf

 		
 CropToMultiplesOf

 		
 CropToPowersOf

 		
 PadToPowersOf

 		
 CropToAspectRatio

 		
 PadToAspectRatio

 		
 CropToSquare

 		
 PadToSquare

 		
 CenterPadToFixedSize

 		
 CenterCropToFixedSize

 		
 CenterCropToMultiplesOf

 		
 CenterPadToMultiplesOf

 		
 CenterCropToPowersOf

 		
 CenterPadToPowersOf

 		
 CenterCropToAspectRatio

 		
 CenterPadToAspectRatio

 		
 CenterCropToSquare

 		
 CenterPadToSquare

 		
 KeepSizeByResize

 		
 augmenters.weather

 		
 FastSnowyLandscape

 		
 Clouds

 		
 Fog

 		
 CloudLayer

 		
 Snowflakes

 		
 SnowflakesLayer

 		
 Rain

 		
 RainLayer

 		
 Performance

 		
 Results Overview

 		
 Images

 		
 Heatmaps

 		
 Keypoints and Bounding Boxes

 		
 dtype support

 		
 Legend

 		
 imgaug helper functions

 		
 imgaug.augmenters.meta

 		
 imgaug.augmenters.arithmetic

 		
 imgaug.augmenters.blend

 		
 imgaug.augmenters.blur

 		
 imgaug.augmenters.collections

 		
 imgaug.augmenters.color

 		
 imgaug.augmenters.contrast

 		
 imgaug.augmenters.convolutional

 		
 imgaug.augmenters.debug

 		
 imgaug.augmenters.edges

 		
 imgaug.augmenters.flip

 		
 imgaug.augmenters.geometric

 		
 imgaug.augmenters.imgcorruptlike

 		
 imgaug.augmenters.pillike

 		
 imgaug.augmenters.segmentation

 		
 imgaug.augmenters.size

 		
 imgaug.augmenters.weather

 		
 Jupyter Notebooks

 		
 API

 		
 imgaug

 		
 imgaug.parameters

 		
 imgaug.multicore

 		
 imgaug.dtypes

 		
 imgaug.random

 		
 Definitions

 		
 imgaug.validation

 		
 imgaug.augmentables.base

 		
 imgaug.augmentables.batches

 		
 imgaug.augmentables.bbs

 		
 imgaug.augmentables.heatmaps

 		
 imgaug.augmentables.kps

 		
 imgaug.augmentables.lines

 		
 imgaug.augmentables.normalization

 		
 imgaug.augmentables.polys

 		
 imgaug.augmentables.segmaps

 		
 imgaug.augmentables.utils

 		
 imgaug.augmenters.arithmetic

 		
 imgaug.augmenters.artistic

 		
 imgaug.augmenters.base

 		
 imgaug.augmenters.blend

 		
 imgaug.augmenters.blur

 		
 imgaug.augmenters.collections

 		
 imgaug.augmenters.color

 		
 imgaug.augmenters.contrast

 		
 imgaug.augmenters.convolutional

 		
 imgaug.augmenters.debug

 		
 imgaug.augmenters.edges

 		
 imgaug.augmenters.flip

 		
 imgaug.augmenters.geometric

 		
 imgaug.augmenters.imgcorruptlike

 		
 imgaug.augmenters.meta

 		
 imgaug.augmenters.pillike

 		
 imgaug.augmenters.pooling

 		
 imgaug.augmenters.segmentation

 		
 imgaug.augmenters.size

 		
 imgaug.augmenters.weather

_images/filtersmoothmore.jpg

_images/flipud.jpg

_images/fliplr.jpg

_images/fog1.jpg

_images/fog.jpg

_images/gammacontrast.jpg

_images/frost.jpg

_images/gaussianblur.jpg

_images/gammacontrast_per_channel.jpg

_images/gaussianblur1.jpg

_images/filterblur.jpg

_images/fastsnowylandscape_random_uniform.jpg

_images/filterdetail.jpg

_images/filtercontour.jpg

_images/filteredgeenhancemore.jpg

_images/filteredgeenhance.jpg

_images/filterfindedges.jpg

_images/filteremboss.jpg

_images/filtersmooth.jpg

_images/filtersharpen.jpg

_images/uniformcolorquantizationtonbits_2_to_8.jpg

_images/cropandpad_percent.jpg

_images/minpooling_uniform.jpg

_images/uniformvoronoi_p_replace_max_size.jpg

_images/minpooling_keep_size_false.jpg

_images/uniformvoronoi.jpg

_images/croptofixedsize_center.jpg

_images/motionblur.jpg
g i
St
0l Y
i e e\

_images/voronoi_regular_grid.jpg

_images/croptofixedsize.jpg

_images/minpooling_unsymmetric.jpg

_images/voronoi_complex.jpg

_images/cutout_gaussian.jpg

_images/motionblur_angle.jpg
)l
e
e et
TTETETRT

_images/withbrightnesschannels_to_colorspace.jpg

_images/cutout_cval_255.jpg

_images/motionblur1.jpg

_images/withbrightnesschannels.jpg

_images/cutout_non_square.jpg

_images/multiply.jpg

_images/withchannels_affine.jpg

_images/cutout_nb_iterations_2.jpg

_images/multiple_small.jpg

_images/withchannels.jpg

_images/defocusblur.jpg

_images/multiplyandaddtobrightness.jpg

_images/cutout_rgb.jpg

_images/multiply_per_channel.jpg

_images/withcolorspace.jpg

_images/cropandpad_pad_complex.jpg

_images/cropandpad_mode_cval.jpg

_images/minpooling_choice.jpg

_images/maxpooling_unsymmetric.jpg

_images/translatex_absolute.jpg

_images/totaldropout_50_percent.jpg

_images/continuous_poisson.jpg

_images/medianblur.jpg
ot

_images/translatey_absolute.jpg

_images/continuous_normal.jpg
. »
s -
o s
. -
o -
-
oo -
ey o e
i
-
]
o

sase

_images/meanshiftblur.jpg

_images/translatex_relative.jpg

_images/continuous_weibull.jpg

_images/medianpooling_choice.jpg

_images/uniformcolorquantization.jpg

_images/continuous_uniform.jpg

_images/medianpooling.jpg

_images/translatey_relative.jpg

_images/convolve.jpg

_images/medianpooling_uniform.jpg

_images/uniformcolorquantization_with_8_colors.jpg

_images/contrast.jpg

_images/medianpooling_keep_size_false.jpg

_images/uniformcolorquantization_in_rgb_or_hsv.jpg

_images/cropandpad_correlated.jpg

_images/minpooling.jpg

_images/uniformcolorquantizationtonbits.jpg

_images/convolve_callable.jpg

_images/medianpooling_unsymmetric.jpg

_images/uniformcolorquantization_with_random_n_colors.jpg

_images/continuous_discreteuniform.jpg
S0
003
o
004
002
095
025

003

o

0

io2

o5t

_images/maxpooling_uniform.jpg

_images/continuous_chisquare.jpg

_images/maxpooling_keep_size_false.jpg

_images/totaldropout_100_percent.jpg

_images/continuous_laplace.jpg

_images/emboss.jpg

_images/padding.jpg

_images/ooi.jpg

_images/emboss_vary_strength.jpg

_images/padtofixedsize_center.jpg

_images/emboss_vary_alpha.jpg

_images/padtofixedsize.jpg

_images/enhancecolor.jpg

_images/padtofixedsize_with_croptofixedsize.jpg

_images/enhancebrightness.jpg

_images/padtofixedsize_pad_mode.jpg

_images/enhancesharpness.jpg

_images/perspectivetransform.jpg

_images/enhancecontrast.jpg

_images/pepper.jpg

_images/fastsnowylandscape.jpg
T

_images/piecewiseaffine.jpg

_images/equalize.jpg

_images/perspectivetransform_keep_size_false.jpg

_images/fastsnowylandscape_random_choice.jpg
ot e i e
i gt
N

_images/multiplybrightness.jpg

_images/dropout.jpg

_images/multiplyelementwise_per_channel.jpg

_images/directededgedetect_vary_direction.jpg

_images/multiplyelementwise.jpg

_images/dropout2d_keep_no_channels.jpg

_images/multiplyhueandsaturation.jpg

_images/dropout2d.jpg

_images/multiplyhue.jpg

_images/edgedetect_vary_alpha.jpg

_images/multiplyhueandsaturation_mul_saturation.jpg

_images/dropout_per_channel.jpg

_images/multiplyhueandsaturation_mul_hue.jpg

_images/elastictransformations.jpg

_images/noop.jpg

_images/elastictransform.jpg

_images/multiplysaturation.jpg

_images/elastictransformations_vary_sigmas.jpg

_images/elastictransformations_vary_alpha.jpg

_images/oneof.jpg

_images/directededgedetect_vary_alpha.jpg

_images/sigmoid_vary_threshold.jpg
-100 78

_images/cartoon_nonstochastic_landscape.jpg

_images/introduction.jpg

_images/sigmoidcontrast_per_channel.jpg

_images/input_image.jpg

_images/sigmoidcontrast.jpg

_images/cartoon_nonstochastic_people.jpg

_images/invert.jpg

_images/simple1.jpg

_images/cartoon_nonstochastic_object.jpg

_images/introduction1.jpg

_images/simple.jpg

_images/cartoon_people.jpg

_images/iou.jpg

_images/simple3.jpg

_images/cartoon_object.jpg

_images/invert_per_channel.jpg

_images/simple2.jpg

_images/canny_alpha.jpg

_images/imgaug_augmenters_weather.png
uintg | uintl6

uint32

uint64

int8

int16

int32

int64

float16 | float32 | float64 |float12s | bool

FastSnowyLandscape

CloudLayer

Clouds

Fog

snowflakesLayer

snowflakes

RainLayer

Rain

_images/shift.jpg

_images/canny.jpg

_images/imgaug_augmenters_size.png
uints | uint16 | uint32 | uinté4 | ints int16 | int32 | int64 | floatl6 | fioat32 | float64 |float128 | bool
pad Bl B e B e B B I B e e B ++
pad_to_aspect_ratio Bl B e B e B B I B e e B ++
pad_to_multiples_of Bl B e B e B B I B e e B ++
Resize et ++ ++ ++ ++ ++ ++ ++ ++
CropAndPad (keep_size=False) et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
CropAndPad (keep_size=True) et ++ ++ ++ ++ ++ ++ ++ ++
Pad et ++ ++ ++ ++ ++ ++ ++ ++
Crop et ++ ++ ++ ++ ++ ++ ++ ++
PadToFixedsize Bl B e B e B B I B e e B ++
CenterPadToFixedsize Bl B e B e B B I B e e B ++
CropToFixedsize et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
CenterCropToFixedsize et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
CropToMultiplesOf et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
CenterCropToMultiplesOf et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PadToMultiplesof Bl B e B e B B I B e e B ++
CenterPadToMultiplesOf Bl B e B e B B I B e e B ++
CropToPowersOf et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
CenterCropToPowersOf et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PadToPowersOf Bl B e B e B B I B e e B ++
CenterPadToPowersOf Bl B e B e B B I B e e B ++
CropToAspectRatio et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
CenterCropToAspectRatio et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PadToAspectRatio Bl B e B e B B I B e e B ++
CenterPadToAspectRatio Bl B e B e B B I B e e B ++
CropTosquare et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
CenterCropToSquare et ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
PadTosquare Bl B e B e B B I B e e B ++
CenterPadToSquare Bl B e B e B B I B e e B ++
KeepsizeByResize et ++ ++ ++ ++ ++

_images/sheary.jpg

_images/canny_alpha_white_on_black.jpg

_images/impulsenoise.jpg

_images/sigmoid_vary_activated.jpg
activated=
False

activated=
True

_images/canny_alpha_median_blur.jpg

_images/imgaug_imgaug.png
uint8 float128
draw_text .
imresize_many_images et
imresize_single_image +
pool +
avg_pool +
max_pool +
min_pool +
median_pool ot
draw_grid Ee I R s e I e T e B s D= = o IR () e ey
show_grid - B B B B B B B B B B B B
imshow - ? ? ? 2 2 2 2 B B B B B
apply_lut +

apply_lut_

e

_images/shotnoise.jpg

_images/cartoon_landscape.jpg

_images/canny_sobel_kernel_size.jpg

_images/impulsenoise1.jpg

_images/additivegaussiannoise.jpg

_images/additivegaussiannoise_large.jpg

_images/addelementwise.jpg

_images/addelementwise_per_channel.jpg

_images/additivegaussiannoise_per_channel.jpg

_images/add.jpg

_images/add_per_channel.jpg

_images/imgaug_augmenters_geometric.png
uint8 uintl6 uint32 uint64 int8 int16 int32 int64 float16 | float32 | float64 |float128 bool
apply_jigsaw e B B e T T B e B e I o) o e
Affine (backend="skimage", order i [0, 11) ++ e e e ++
Affine (backend="skimage", order in [3, 4]) ++ e -+ ++ -
Affine (backend="skimage", order=5]) ++ e -+ - -
Affine (backend="cv2", order=0) ++ e -+ ++ ++
Affine (backend="cv2", order=1) et e -+ ++ ++
Affine (backend="cv2", order=3) ++ e -+ ++ ++
Scalex 4+ i ++ ++ ++
Scaley 4+ i ++ ++ ++
TranslateX 4+ i ++ ++ ++
TranslateY 4+ i ++ ++ ++
Rotate 4+ i ++ ++ ++
Shearx 4+ i ++ ++ ++
Sheary 4+ i ++ ++ ++
AffineCv2 +++ ? ? 7 - ?
PiecewiseAffine 4+ i ++ ++ ++
PerspectiveTransform (keep_size=False) et e e -+ ++
PerspectiveTransform (keep_size=True) et e e e ++
ElasticTransformation 4+ i ++ ++ ++
Rot90 (keep_size=False) +Ht ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Rot90 (keep_size=True) +Ht ++ ++ ++ ++ ++ ++ ++ ++
WithPolarwarping 4+ ++ ++ ++ ++ ++
Jigsaw e+ e+ e+ e+ e+ e+ e+ e+ e+ e+ e+ e+ e+

_images/sequential_random_order.jpg

_images/sequential.jpg

_images/blendalphaverticallineargradient_total_dropout.jpg
>)) >
3

_images/imgaug_augmenters_meta.png
e S T E B R C S e
IR

_images/sharpen_vary_alpha.jpg

_images/blendalphaverticallineargradient_pooling.jpg

_images/imgaug_augmenters_imgcorruptlike.png

_images/sharpen.jpg

_images/brightness.jpg
E‘%Hi‘%idﬁ‘éﬁ

_images/imgaug_augmenters_segmentation.png
Superpixels (image size <= max_size)

int64

float16

float32

float64

float128

bool

Superpixels (image size > max_size)

Voronoi (image size <= max_size)

Voronoi (image size > max_size)

UniformVoronoi

RegularGridVoronoi

RelativeRegularGridvoronoi

_images/shearx.jpg

_images/bool_small.jpg

_images/imgaug_augmenters_pillike.png

_images/sharpen_vary_lightness.jpg

_images/imgaug_augmenters_contrast.png
int8 intl6 | int32 | int64 | floatl6 | float32 | float64 |fioat128 | bool

adjust_contrast_gamma ++ ++ + ++ ++ ++ ++

adjust_contrast_sigmoid ++ ++ ++ ++ ++ ++ ++

adjust_contrast_log

adjust_contrast_linear

GammaContrast

SigmoidContrast ++ ++ ++ ++ ++ ++ ++

LogContrast

LinearContrast

AliChannelsCLAHE

CLAHE

AllchannelsHistogramEqualization

HistogramEqualization

_images/saturate.jpg

_images/imgaug_augmenters_color.png
uint8

uint16

uint32

uint64

int8

int16

int32

int64

float16

float32

float64

float128

bool

change_colorspace_

change_colorspaces_

change_color_temperatures_

change_color_temperature

WithColorspace

WithBrightnessChannels

MultiplyAndAddToBrightness

MultiplyBrightness

AddToBrightness

WithHueAndSaturation

MultiplyHueAndsaturation

MultiplyHue

MultiplySaturation

RemoveSaturation

AddToHueAndSaturation

AddToHue

AddTosSaturation

ChangeColorspace

Grayscale

ChangeColorTemperature

KMeansColorQuantization (image size <= max_size)

KMeansColorQuantization (image size > max_size)

quantize_kmeans

UniformColorQuantization (image size <= max_size)

UniformColorQuantization (image size > max_size)

UniformColorQuantizationToNBits (image size <= max_size)

UniformColorQuantizationToNBits (image size > max_size)

Posterize

quantize_uniform

quantize_uniform_

quantize_uniform_to_n_bits

quantize_uniform_to_n_bits_

posterize

_images/saltandpepper_per_channel.jpg

_images/imgaug_augmenters_debug.png
uints

uint16

uint32

uint64

int8

intl6

int32

int64

float16

float32

float64

float128

bool

draw_debug_image

7

7

SaveDebugimageEveryNBatches

7

7

_images/scalex.jpg

_images/imgaug_augmenters_convolutional.png
uints | uint16
Convolve e+
Sharpen et
Emboss et
EdgeDetect e+
DirectedEdgeDetect e+

uint32

uint64

int8

int16 | int32 [int64 [floatl6 | float32 [float64 [fioat128] bool
++ ++ ++ ++
++ ++ ++ ++
++ ++ ++ ++
++ ++ ++ ++
++ ++ ++ ++

_images/savedebugimageeverynbatches.jpg
Images SegMaps Bounding Boxes

list of 4 arrays Channel 1 of 1 items for 4 images
all shape (128,128, 3) items for 4 images fewest items on image: 1
all dtype uint8 all arrays of shape (128,128, 1) most items on image: 1

value range: 0to249 all on image shape (128, 128, 3)
value range: Oto 1
number of unique classes: 2

most common labels:
- None (4, 100.00%)

coords out of image: 4 (50.00%)

most extreme coord: (98.1, 144.1)

all on image shape (128, 128, 3)

_images/imgaug_augmenters_flip.png
uints [uint16 [uint32 [uinté4 | ints int16 [int32 [int64 [float16 [fioat32 [fioate4 [float128 | bool
fliplr e e e e e e e e e e e e
fipud | bt | br | kb | bbd | bdE | b | bR | bR | bR | k| b | b | bt
Fliplr e e T
Fipud |+ | bt | A | Frr | A | daE | trE | bbE | b | | b | drE |

_images/imgaug_augmenters_edges.png
Uint32

Uint64

int8

int16

int32

int64

float16

float32

float64

float128

bool

Unt8 | _uint16
[Canny

_images/scaley.jpg

_images/special_clip.jpg

_images/coarsepepper.jpg

_images/lambda.jpg

_images/special_forcesign.jpg

_images/kmeanscolorquantization_with_random_n_colors.jpg

_images/special_discretize.jpg

_images/coarsesaltandpepper.jpg

_images/linearcontrast_per_channel.jpg

_images/specklenoise.jpg

_images/coarsesalt.jpg

_images/linearcontrast.jpg

_images/special_randomsign.jpg

_images/coarsesaltandpepper_pixels.jpg

_images/logcontrast_per_channel.jpg

_images/superpixels_50_64.jpg

_images/coarsesaltandpepper_per_channel.jpg

_images/logcontrast.jpg

_images/superpixels.jpg

_images/continuous_binomial.jpg

_images/maxpooling_choice.jpg

_images/superpixels_vary_p.jpg

_images/continuous_beta.jpg

_images/maxpooling.jpg

_images/superpixels_vary_n.jpg

_images/coarsedropout.jpg

_images/kmeanscolorquantization_in_rgb_or_hsv.jpg

_images/special_choice.jpg

_images/clouds.jpg

_images/kmeanscolorquantization_from_bgr.jpg

_images/special_absolute.jpg

_images/coarsedropout_per_channel.jpg

_images/coarsedropout_both_uniform.jpg

_images/kmeanscolorquantization_with_8_colors.jpg

_images/jigsaw_random_max_steps.jpg

_images/solarize1.jpg

_images/solarize.jpg

_images/clahe_clip_limit.jpg

_images/jpegcompression1.jpg

_images/someof_0_to_none.jpg

_images/clahe_bgr_to_hsv.jpg

_images/jpegcompression.jpg
! i
[e
. ;
- ~
\»"5 ; 13 :

[

¥

(e

\ -‘!
% b

®.47)
AN
‘ :

_images/someof.jpg

_images/clahe_grid_sizes_gaussian.jpg

_images/keepsizebyresize_crop_nearest.jpg

_images/sometimes.jpg

_images/clahe_grid_sizes.jpg

_images/keepsizebyresize_crop.jpg

_images/someof_random_order.jpg

_images/clipcbastoimageplanes.jpg

_images/kmeanscolorquantization.jpg

_images/spatter.jpg

_images/clahe_grid_sizes_uniform.jpg

_images/keepsizebyresize_various_augmentables.jpg

_images/sometimes_if_else.jpg

_images/changecolortemperature.jpg

_images/iterative_vary_methods.jpg
Siter. 6iter.

-

~

_images/snow.jpg

_images/changecolorspace.jpg

_images/iterative_vary_iterations.jpg

_images/simple4.jpg

_images/channelshuffle_limited_channels.jpg

_images/jigsaw_random_grid.jpg

_images/channelshuffle.jpg

_images/jigsaw.jpg

_images/snowflakes.jpg

_images/clahe.jpg

_images/additivelaplacenoise_per_channel.jpg

_images/additivepoissonnoise.jpg

_images/additivelaplacenoise.jpg

_images/additivelaplacenoise_large.jpg

_images/addtobrightness.jpg

_images/addtohue.jpg

_images/additivepoissonnoise_large.jpg

_images/additivepoissonnoise_per_channel.jpg

_images/regulargridvoronoi.jpg

_images/addtohueandsaturation.jpg

_images/relativeregulargridvoronoi_p_replace_max_size.jpg

_images/addtosaturation.jpg

_images/relativeregulargridvoronoi.jpg

_images/pixelate.jpg

_images/piecewiseaffine_vary_scales.jpg

_images/rain.jpg

_images/projection.jpg

_images/randaugment_random_magnitude.jpg

_images/randaugment_random_iterations.jpg

_images/randaugment_strong_magnitude.jpg

_images/randaugment_standard_case.jpg

_images/affine_fill.jpg

_images/affine_scale.jpg
S)

_images/affine_scale1.jpg

_images/affine_rotate.jpg
f\

h

B0

_images/affine_rotate_fillcolor.jpg

_images/affine_translate_fillcolor.jpg

_images/affine_translate_percent.jpg

_images/affine_scale_independently.jpg
=
=

_images/affine_shear.jpg

_images/affine_translate_px.jpg
e e

_images/piecewiseaffine_vary_grid.jpg

_images/piecewiseaffine_checkerboard.jpg

_static/down.png

_static/minus.png

_static/file.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/allchannelsclahe.jpg

_images/allchannelsclahe_per_channel.jpg

_images/allchannelshistogramequalization_alpha.jpg

_images/alpha_constant_example_affine.jpg

_images/allchannelsclahe_random_clip_limit.jpg

_images/allchannelshistogramequalization.jpg

_images/alpha_frequency_example_basic.jpg

_images/alpha_frequency_example_per_channel.jpg

_images/alpha_constant_example_basic.jpg

_images/rot90_keep_size_false.jpg

_images/alpha_constant_example_per_channel.jpg

_images/imgaug_augmenters_blend.png
uint8 uintl6 uint32 uint64 int8 int16 int32 int64 float16 | float32 | float64 |float128 bool
blend_alpha +
BlendAlpha +
BlendAlphaMask +
BlendAlphaElementwise +
BlendAlphasimplexNoise +
BlendAlphaFrequencyNoise 4+
BlendAlphasomeColors +
BlendAlphaHorizontalLinearGradient +++
BlendAlphaVerticalLinearGradient +++
BlendAlphaRegularGrid +
BlendAlphaCheckerboard +
BlendAlphaBoundingBoxes +
SomeColorsMaskGen +++

_images/rotation.jpg

_images/imgaug_augmenters_arithmetic.png
uint8 | uint16 | uint32 | uint64 | ints | int16 | int32 | int64 | floatl6 | float32 | floaté4 |float12s | bool
add_scalar .
add_elementwise et
multiply_scalar .
multiply_elementwise et
cutout et
cutout_ .
replace_elementwise_ et
invert .
invert_ (min_value=None and max_value=None) et
invert_ (min_valuei=None or max_value!=None) et
solarize et
solarize_ .
compress_jpeg .
Add et
AddElementwise et
AdditiveGaussianNoise et
AdditiveLaplaceNoise et
AdditivePoissonNoise et
Multiply et
MultiplyElementwise et
cutout et
Dropout et
CoarseDropout .
Dropout2d .
TotalDropout et
ReplaceElementwise et
saltAndPepper .
ImpulseNoise et
CoarsesaltandPepper .
salt P
Coarsesalt et
Pepper et
CoarsePepper .
Invert .
Solarize .
JpegCompression .

_images/rotate.jpg

_images/imgaug_augmenters_collections.png
Uint32

Uint64

int8

int16

int32

int64

float16

float32

float64

float128

bool

uints | uintic
[RandAugment

_images/saltandpepper.jpg

_images/imgaug_augmenters_blur.png
uint8

uint16

uint32

uint64

int8

int16

int32

int64

float16

float32

float64 | float128

bool

blur_gaussian_ (backend="auto")

blur_gaussian_ (backend="cv2")

blur_gaussian_ (backend="scipy")

blur_mean_shift_

GaussianBlur

AverageBlur

MedianBlur

BilateralBlur

MotionBlur

MeanshiftBlur

_images/salt.jpg

_images/heavy.jpg

_images/resizing.jpg

_images/grayscale_vary_alpha.jpg

_images/resize_h_uniform_w_choice.jpg

_images/histogramequalization.jpg

_images/rot90_k_is_1.jpg

_images/heavy1.jpg

_images/rot90_base_image.jpg

_images/histogramequalization_bgr_to_hsv.jpg

_images/rot90_k_is_1_or_3.jpg

_images/histogramequalization_alpha.jpg

_images/rot90_k_is_1_or_2_or_3.jpg

_images/identity.jpg

_images/alpha_frequency_noise_masks_exponents.jpg

_images/alpha_frequency_noise_masks_linear.jpg

_images/alpha_frequency_noise_masks.jpg

_images/alpha_simplex_example_per_channel.jpg

_images/alpha_simplex_noise_masks.jpg

_images/alpha_frequency_noise_masks_nearest.jpg

_images/alpha_simplex_example_basic.jpg

_images/arithmetic_add.jpg

_images/alpha_simplex_noise_masks_linear.jpg

_images/alpha_simplex_noise_masks_nearest.jpg

_images/gaussiannoise.jpg

_images/resize_32x64.jpg

_images/replaceelementwise_per_channel_050.jpg

_images/grayscale.jpg

_images/resize_50_to_100_percent.jpg

_images/glassblur.jpg

_images/resize_32xkar.jpg
s
s

_images/removecbasbyoutofimagefraction_comparison.jpg

_images/removecbasbyoutofimagefraction.jpg

_images/removesaturation_all.jpg

_images/removesaturation.jpg

_images/replaceelementwise_gaussian_noise.jpg

_images/replaceelementwise.jpg

_images/replaceelementwise_gaussian_noise_coarse.jpg

_static/down-pressed.png

_static/comment.png

_images/withpolarwarping_affine.jpg

_images/withhueandsaturation_modify_both.jpg

_images/withpolarwarping_cropandpad.jpg

_images/withpolarwarping_averagepooling.jpg
g e

_static/ajax-loader.gif

_images/zoomblur.jpg

_static/comment-bright.png

_static/comment-close.png

_images/withhueandsaturation_add_to_hue.jpg

